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Abstract

Cross language-image retrieval is a problem of high interest that is at the fron-
tier between computer vision and natural language processing. State-of-the-art
methods learn a common space with regard to some constraints of correlation or
similarity from two textual and visual modalities that are processed in parallel
and possibly jointly. This paper proposes a different approach that considers the
cross-modal problem as a supervised mapping of visual modalities to textual ones.
Each modality is thus seen as a particular projection of an abstract meta-concept.
In practice, this space is learned through an asymmetric process, where the textual
modality is used to generate a multi-label representation, further used to map the
visual modality through a simple multi-layer perceptron. While being quite easy
to implement, the experiments show that our approach significantly outperforms
the state-of-the-art on FlickR-8K and FlickR-30K datasets for the text-illustration
task.

1 Introduction

Many works deal with multi-modal tasks, either to retrieve an image given a text query (text illus-
tration) or to linguistically describe an image (image captioning) or to classify bi-modal documents.
Most of these approaches aim at learning a joint embedding for both modalities into a common latent
space, in which vectors from the two different modalities are directly comparable [9, 13, 12, 6, 23].

Two families of approaches emerge when reviewing the literature about the design of such a com-
mon latent space. The first, specifically focuses on learning the latent space from existing textual
and visual features. These last, typically result from an embedding representation, such as the
word2vec [17] features for textual content and one layer from a pre-trained Convolutional Neural
Network (CNN) [3, 19] for the visual modality. Then, the latent space is learned according to a cer-
tain principle from aligned textual and visual data described with these features. By “aligned data”,
one must understand that an image is for example aligned with its caption, in the sense that their
respective contents are supposed to match. Regarding the principle used to learn the latent space,
the seminal work of Hardoon [9] consisted in maximizing the correlation of the aligned data once
projected in the common space.

Alternative approaches rely on deep networks to model a full multi-modal embedding. This is the
case of [12] who proposed to infer the correspondences between images and their sentence descrip-
tion. First, they use a Region Convolutional Neural Network (RCNN) [7] as image representation
and a Bidirectional Recurrent Neural Network (BRNN) [18] to textual one. Second, they define a
loss that encourages aligned image-sentences pairs to have a higher score than misaligned pairs.

∗This research has been conducted jointly with Youssef Tamaazousti and supervised by Hervé Le Borgne
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Figure 1: Given input text (a) and an input image (b), our method computes the AMECON-
features for each modality (textual (c) and visual (d)) and matches them in the AMECON Space
(e). The key novelty of our approach is that, each dimension of our AMECON representation
(each bar in (c) and (d)) corresponds to the output probability of an abstract meta-concept detec-
tor applied on the input data. For instance here, the two input modalities are close together in the
AMECON space (e) since they both have the same three abstract meta-concepts that are highly
activated. The arrows (A) and (B) highlight the asymmetry of our approach. In fact, it shows that
more computations are needed to project the visual features than the textual ones. Best view in
color.

Our initial motivation is thus the same as previous work, in particular that of [6] that aimed at match-
ing the visual representation to the textual one. However, our model differs from the previous work
by being much more asymmetric. Indeed, most of previous works use two parallel pipelines, one for
each modality that only differ by the features considered, then determine a method to design a com-
mon space. We adopt a different point of view, considering that the visual and the textual modalities
should not (yet) be processed symmetrically. It refers to the well-known semantic gap [20] that re-
flects the fact that textual features are closer to human understanding than the pixel-based features.
Despite the progresses due to deep learning in visual recognition, we argue that gap is still relevant
to consider.

We thus propose to consider the Abstract MEta-CONcept (AMECON) principle for a multi-modal
(texts and images) alignment. A semantic concept can be named by a word from the vocabulary of a
given language. In line with [1], a meta-concept is defined by a concept subsuming several semantic
concepts. Last, a concept can be qualified as abstract when it does not reflect a notion that is explicit
in a given language. For example, it is sometimes handy to use some words from a foreign language
when it does not really exist in ours. However, in the case of AMECONs, they can be even more
abstract. A key particularity of our approach is that, the mapping from one modality to this space
is asymmetric, i.e specific to each modality. Simply said, the proposed AMECON space is much
closer to the textual embedding space than to the visual one. In practice, on the one hand, the textual
modality is mapped through vector quantization of the textual features, because we consider they are
close enough from the human conceptual space. On the other hand, we learn a mapping from the
visual modality to the AMECON space with a multi-layer perceptron. It takes the visual features as
input and the target (labels) are derived from the textual features by local hard coding. An overview
of our approach is illustrated in Figure 1.

Our proposal is thus a new method to build a multi-modal common latent space. It particularly,
matches visual content to sentences and thus aims to perform cross-modal or bi-modal tasks. In
this paper, we focus on the text-illustration (i.e, retrieve an image from a textual query). Due to
the asymmetry of our approach, we consider the inverse problem (i.e, retrieve a text from a visual
query) as outside of the scope of this paper. While being quite easy to implement, our method ex-
hibits performance above the current state-of-the-art on text-illustration. We conducted experiments
(in Sec. 4) on two publicly available benchmarks, namely FlickR-8k and FlickR-30k, on which our
method significantly outperforms the previous works, using a comparable protocol of performance
measure. We also conducted (in Appendix A) an in-depth analysis of the proposed model to high-
light its insights, including an ablation study that shows the relative importance of each component.
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2 Related Work

In its seminal work on the design of common space to visual and textual data, Hardoon proposed to
maximize the correlation between the projections of both modalities using the Canonical Correlation
Analysis (CCA) and its kernelized version (KCCA) [9]. This work has then be extended by [8] who
added a third view that reflects the “semantic classes” derived from the ground-truth or the keywords
used to download the images. This work also proposed to derive this third view from unsupervised
clustering of the tags to avoid the use of ground truth. While being very different from our approach
since it relies on a symmetric projection of both modalities through KCCA, such a clustering of tags
relates to the process we use to define the projection of the textual features on the AMECON space.
However, while [8] uses the clusters to define a third view that is further projected on the KCCA
space, our approach uses it as a codebook to directly encode the textual projection.

In the vein of reflecting semantics, [4] proposed to build semantic features into the common space,
that is to say to create a signature where each dimension is a given semantic concept that is estimated
by a learned binary classifier [22]. Contrary to ours, these concepts are neither meta nor abstract.
However, one could image to apply the approach of [1] to get meta-concepts in the common space.
Still, a major difference with our work is that each concept is obtained by supervised classification,
while in our case, the abstract concepts deeply result from an unsupervised approach.

Rather than relying on an priori principle such as maximizing the correlation, other works consider
deep neural networks with other type of constraint. As already cited in the introduction, Frome et al.
proposed DeViSE [6] that learns a similarity metric between the top layer of a visual network and
a skip-gram text model (word2vec), optimizing an objective function that forces the similarity of a
given image to the relevant label to be higher than that to other randomly chosen text terms. This
is probably the work that is is closer to ours, in the sense that it tries to directly match the visual
representation to the textual one. However, our work differs on several points. Indeed, our approach
transforms explicitly the textual information into labels to use a supervised classification scheme
to map the visual representation. Thereby, the advantage of our approach is to design a non-linear
mapping between both modalities while DeViSE only proposes a linear transformation between the
original features. In [13] and [12], visual data is also aligned with sentences, thanks to a structured
loss that forces aligned sentences and images to be close reciprocal neighbours. The main difference
between our approach and these deep learning-based approaches is that they rely on a quite symmet-
ric scheme where both modalities are processed similarly. While our asymmetric approach seems
more straightforward, it remains conceptually simpler and has much better performances. Also in-
teresting, the asymmetry of our approach limits the performances on the inverse cross-modal task
thus we only evaluate it on text-illustration. In fact, for these asymmetrical approaches, getting good
performances on one direction of cross-modal task when building the common latent space on the
inverse direction, remains an open problem.

3 Proposed Approach

Our approach to Text-Image matching is named “Abstract Meta-Concept” (AMECON). It consists
of matching texts and images in a common latent space (the AMECON Space, described in Sec. 3.1)
where the cues (visual, textual or both) contribute to activate the different abstract meta-concept
detectors. In Sec. 3.2, we describe how to learn the abstract meta-concepts and how to generate
AMECON features for the text modality. Sec. 3.3 details the learning of AMECON features for the
visual modality.

3.1 AMECON Space

Let first recall that a semantic-concept is any word (associated to a particular notion) from the
real-world vocabulary used by humans (e.g, bicycle plant, bird, etc.).

Definition 1. An abstract meta-concept is both, an abstract concept and a meta-concept. An
abstract concept describes a concept that is not associated to a semantic connotation (that does not
exist in the real-world vocabulary used by humans) and a meta-concept is a concept that subsumes
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Figure 2: Illustration of the proposed AME-
CON principle. Given a set of words from a
training corpus (a) and their projections in a
words embedding space (b), our method clus-
ters the space (c) such that each cluster is an ab-
stract meta-concept that corresponds to an ab-
stract concept (do not exist in the real-world)
and a general concept (group of concepts). For
instance, the blue cluster in (c) is general since
it subsumes the vectors of many words and is
abstract since no semantic connotation can be
attributed to it. Best view in color.

Figure 3: Illustration of the proposed tex-
tual AMECON-features. Given an input cap-
tion (a), our method first selects the non stop-
words (coloured in gray), computes their mid-
level features and projects them in the clustered
word embedding (b) that corresponds to our
AMECON space. After the projection, when a
word embedding representation falls in an ab-
stract meta-concept (e.g, blue cluster), its asso-
ciated dimension is activated (e.g, 3rd dimen-
sion). All other dimensions are filled with a
zero-value. Applying this process on all the se-
lected words and pooling their binary textual
AMECON features together, results in a bi-
nary multi-label representation (c). Best view
in color.

others (at least one). Note that, the subsumed concepts can be either semantic or abstract.

Definition 2. An abstract meta-concept detector (φi(x)) is a visual or textual classifier that takes as
input a mid-level representation (visual xV or textual xT ) of an input data and an AMECON-model
(that has been learned with positive and negative samples of that abstract meta-concept) and returns
the probability of presence of that abstract meta-concept given the input data.

Let us consider a visual representation of an image I noted χV and a linguistic representation of a
text T noted χT , such that each dimension χV

i or χT
i reflects the same abstract meta-concept. Their

integration into a unique multi-modal description χ results from a scheme where each representation
(visual or textual) is an imperfect representation of the corresponding abstract meta-concept. There-
fore, we name “AMECON Space” the space containing these abstract meta-concept and illustrate
the principle in Figure 1. For cross-modal retrieval where we need to retrieve the nearest documents
from another modality, we can simply use the k-Nearest Neighbours (k-NN) algorithm since both
modalities are represented in the same AMECON space.

3.2 Textual AMECON-Features

3.2.1 Learning the AMECONs

We propose to learn the abstract meta-concepts (AMECONs) using unsupervised clustering. Hence,
the AMECON principle verifies its two definitional characteristics: (i) it groups similar data into a
generic cluster that thus corresponds to a meta-concept and (ii) thanks to the unsupervised aspect,
the resulting clusters do not have any explicit semantic connotation (i.e do not exist in the real-world
vocabulary of humans) making them abstract-concepts. More generally, AMECONs are obtained
through unsupervised clustering of textual mid-level features (e.g., word2vec [17]). In that sense,
our method adopts a “bottom-up” approach, generating high-level knowledge from low-level data in
the same vein as [1] for the meta aspect. We illustrate the AMECON principle in Figure 2.

To learn the AMECONs in practice, we collect all the words of a training corpus and represent them
in an embedding space of dimension d. Then, we group the word vector representations using a clus-
tering algorithm (e.g K-means) that results into C clusters (C being chosen arbitrarily or obtained
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through cross-validation). Each cluster is an AMECON that is represented by the corresponding
cluster center (ci)i=1,...,C ∈ Rd. Within an AMECON cluster, words have similar semantic conno-
tations. Note that, the number of AMECONs (C) directly corresponds to the dimensionality of the
AMECON Space presented in the previous section.

3.2.2 Learning the Textual AMECON-Features

The set of C abstract meta-concepts is now seen as a codebook that we use to encode any piece
of information. In the case of textual information, we adopt a coding scheme similar to local soft
coding [15], originally introduced as locality-constrained linear coding [24], that is nevertheless
binarized. Given a caption T composed of nwords, we compute the mid-level representation xT,j ∈
Rd of each word, resulting into a set of n vectors {xT,j}j=1,...,n in the word embedding space. The
jth word is then encoded according to the codebook in the C-dimensional vector:

χT,j
bin =

C∑
i=1

1NNm(xT,j)(ci)ei, (1)

where (e1, . . . , eC) is the standard canonical basis of RC , NNm(xT,j) is the set of the m nearest
AMECON clusters of xT,j in the word embedding space and 1S is the indicator function for the set
S. It is thus a “local hard coding” of χT,j according to the codebook. We add the index notation
.bin to highlight it is a binary vector. The parameter m can be set arbitrarily or determined by cross-
validation. To compute a unique caption’s representation χT in this C-dimensional space, we pool
all the word’s representations. Formally, we obtain χT through:

χT
bin = P

j=1...n
(χT,j

bin), (2)

where P is the pooling operator that can be max or sum pooling. Our proposal to compute the textual
AMECON-features for an input caption is illustrated in Figure 3.

3.3 Visual AMECON-Features

In this section, we describe the proposed method to learn and compute the AMECON-features for
the image modality. More precisely, we represent images through mid-level features extracted from
pre-trained CNNs. Our goal is to project these mid-level features into the AMECON Space. To do
this, we propose (in Sec. 3.3.1) to approach the projection problem as a classification problem with
CNN features as inputs and the corresponding AMECON-features as ground-truth labels. We then,
propose (in Sec. 3.3.2) to solve this classification problem using a neural network algorithm.

3.3.1 Textual AMECON-Features as Image Labels

At the core of our approach, we associate visual mid-level feature to binary textual AMECON
features. It is posed as a classification problem with CNN features as input data and AMECON
features as ground-truth labels. Indeed, the textual AMECON features being binary, they can be
used as ground-truth labels for a multi-label supervised classification problem. Figure 4 illustrates
the pipeline.

Formally, let consider a database D containing N pairs of text-image (T i, Ii). From each image Ii
and caption T i, we respectively extract their mid-level features xV,i and xT,i. For each textual mid-
level feature we compute the corresponding AMECON-feature as depicted in Sec. 3.3.1. We then
use these binary features as ground-truth labels (during training) for the visual mid-level features
xV,i. In the next section, we describe the classification algorithm used to solve this multi-label
classification problem.

3.3.2 Learning the Visual AMECON-Features

To solve the above classification problem, we use anL-layer perceptron. The input layer is the visual
mid-level features xV , the output layer is the predicted visual AMECON representation χV , and the
ground truth label is the binary textual AMECON feature χT

bin. More concretely, by applying an
affine transformation on xV , followed by an element-wise ReLU activation f(z) = max(0, z) we
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Figure 4: Illustration of the proposed method that consists to learn the visual AMECON-features
through a multi-layer neural network using binary textual AMECON-features as ground-truth
labels. Given an input image (b) and its associated caption (a), we first represent the three selected
words and the image through mid-level features (one layer of a CNN (d) for the image and the
word2vec features (c) for the words). Then, we project them in the AMECON space (e) and
compute the binary textual AMECON-features χT

bin of the caption. This latter, is then used as
output layer (ground-truth label for the input image vector). The shallow neural-network is finally
learned to map the CNN features to the binary textual AMECON-features. Best view in color.

obtain the first hidden layer h1(xV ) of a L-layer neural-network through:

h1(xV ) = f(W1xV + b1). (3)

The following hidden layers are expressed by:

hl(hl−1) = f(Wlhl−1 + bl),∀l ∈ [2, . . . , L− 2], (4)

where Wl parametrizes the affine transformation of the lth hidden layer and bl is a bias term. In the
same vein, we compute the output layer χV by:

χV (hL−1) = σ(WLhL−1 + bL), (5)

where σ(z) = 1
1+e−z is the sigmoid function that maps the raw scores to the predicted probabilities.

We then implement the sigmoid cross-entropy loss function L that is computed for N samples
through:

L =
1

N

N∑
k=1

χT
bin,klog(χ

V
k ) + (1− χT

bin,k)log(1− χV
k ), (6)

where χT
bin,k and χV

k are C-dimensional AMECON features for the kth training example. The use
of a sigmoid cross-entropy loss is better adapted to the multi-label problem than a softmax loss,
since it leads to model the marginal probabilities while softmax leads to model the joint probability
of the prediction. The cost function L is then minimized through asynchronized stochastic gradient
descent.

Note that the training dataset D is composed of real-world images and texts that may contain very
rich information. For instance, sentences may contain many entities and relations between them
while images may contain very localized entities. Thus, it is important to consider this complex
information in our model. For the text modality, our textual AMECON feature directly models
this rich information by considering each word (that corresponds to local information) separately
before pooling them together. Regarding the image modality, we follow the local schemes of [3]
which models the rich information through the pooling of features extracted from local regions.
Practically, we extract a set of R regions {Ri, i ∈ [1, R]} that have been identified into an image
I . From each region, we extract a visual mid-level feature xV,Ri . Then, all these local features are
pooled into a global representation of the image through

xV = P
i=1...R

(xV,Ri), (7)
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Method Denotation
FlickR-8k FlickR-30k

R@1 R@5 R@10 R@1 R@5 R@10

Karpathy et al. [13] DeFrag 9.7 29.6 42.5 10.3 31.4 44.5

Kiros et al. [14] MNLM 10.4 31.0 43.7 11.8 34.0 46.3

Mao et al. [16] m-RNN 11.5 31.0 42.4 12.6 31.2 41.5

Karpathy et al. [12] BRNN 11.8 32.1 44.7 15.2 37.7 50.5

Yan et al. [25] DCCA 12.7 31.2 44.1 12.6 31.0 43.0

Tran et al. [23] MACC† 10.2 29.3 41.4 12.4 33.5 46.1

Our Approach AMECON 15.9 37.9 49.5 18.3 41.3 53.5

Table 1: Comparison of our approach with state-of-the-art methods on text-illustration task
through the FlickR-8k and FlickR-30k datasets. The second columns states the denotation of
the different methods. Each method is evaluated on its R@1, R@5 and R@10. All scores are
those released in the original papers, except those marked with † that were re-implemented by
ourselves for fair comparisons.

where P is the pooling operator (max or sum). The resulting mid-level visual features xV that
models the local information of images are thus used as inputs of the neural-network.

During the test phase, given an input image, we extract its mid-level feature according to Eq. (7),
then compute its projection into the AMECON space through a forward pass on the learned network,
which results in the predicted visual AMECON feature χV . In this space, features that are projection
from visual and textual data are directly comparable which allows us to perform multi-modal tasks.

4 Experiments

In this section, we evaluate the performance of our approach in a cross-modal retrieval task namely
text-illustration through two datasets. Before comparing the results of our method to state-of-the-art
in Sec. 4.3, we describe (in Sec. 4.1) the different datasets that we use and the implementation details
(in Sec. 4.2).

4.1 Datasets

We evaluate our system on two datasets commonly used for the task of text-illustration, namely
FlickR-8K [10] and FlickR-30K [26]. Both of them contain images from FlickR groups, but they
differ by their size. In fact, the former (FlickR-8k) contains 8,000 images while the latter consists
of 31,783 images. Moreover, each image is associated to five captions (sentences) thus, they also
differ by their number of texts, i.e., 40,000 captions for FlickR-8k and 158,915 for FlickR-30k.
The two datasets have an official training, validation and testing split that consists of 6,000 images
in FlickR-8k and 29,783 in FlickR-30k for training, and 1,000 images for validation and test sets
in both datasets. In each subset, the images are associated to their five captions. Since, even the
test images are associated to five captions and not one, different evaluation protocols have been
used in the literature. Thus, we used a popular protocol [13, 12, 25] where each caption is treated
individually, i.e. each of the 5,000 captions has to be illustrated by one image from the whole test set
of 1, 000 images. For both datasets, we adopt recall at top K retrieved results (denoted Recall@K
or R@K in the following) as an evaluation metric. We follow the literature and set K ∈ {1, 5, 10}.

4.2 Implementation Details

Representations: For all experiments, the mid-level feature used to represent words and images
are respectively represented using the word2vec [17] representation (300-dimensional vector)
and the penultimate fully-connected layer (4096-dimensional vector) extracted from a pre-trained
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CNN [3, 19]. Once the mid-level features are computed for each modality, they are projected in
the AMECON Space (Section 3.1). More precisely, each textual caption is represented through
the binary textual AMECON feature, as depicted in Section 3.3.1 and each image is represented
through the visual AMECON features with respect to the method described in Section 3.3.2.
Note that, for the captions, we apply pre-processing that aims to remove stop-words following the
pipeline provided by [2]. It is also worth noting that during training, each image Ii is associated
to five captions (T1, . . . , T5). Thus, we use them as five different training examples that result in
the following set of text-image pairs {(Ii, T1), . . ., (Ii, T5)}. Regarding, the CNN features used to
represent images, we used the popular VGG [19] network, slightly modified one to be pre-trained
on a diversified set of ImageNet [5] images. As depicted in Sec. 3.3.2, each image is represented
by the pooling of a global representation (from the whole image) and local features (from local
regions). Regarding the exact regions extracted from each image, we follow [21] and extract the full
image as region R0 and choose following Ri>0 according to regular grid at a smaller scale (2/3 of
the image size).

Neural Networks: We used the Caffe framework [11] to train the networks using standard param-
eters (e.g., learning rate: 10−4, momentum: 0.9, weight decay: 5 · 10−4, batch size: 512). The
networks were trained with full back propagation from scratch, i.e., using a random initialization
(with respect to a Gaussian law) of the weights. Regarding the architecture of the neural network in
Section 3.3.2, we used a standard multi-layer perceptron and tested different architectures through
cross-validation on each dataset. More precisely, we tested with one to three hidden layers (the L
parameter of Eq. 4 is set to 3, 4 or 5) and for each layer, we set a number of hidden units to one of the
following values: {1024, 2048, 3072, 4096}. Note that, the number of hidden-units is set according
to each hidden layer, i.e, one layer can be of size 4096 and the other of size 1024. Regarding the
input and output layers, they respectively corresponds to the visual CNN feature (4096 units) and to
the binary textual AMECON feature (K units since the AMECON space has K dimensions). The
K parameter has also been set by cross-validation and we conducted an analysis on its impact in
A.2. Also important, each layer of the multi-layer perceptron is followed by a ReLU and a dropout
function.

4.3 Text-Illustration Results

In this section, we evaluate our method for the text-illustration task on the two datasets presented
above. We compare our method to the methods of the literature that reports the best results for text-
illustration. All scores of the comparison methods are those released in the original papers, except
those of Tran et al. [23]. Indeed, this very recent paper achieves great results on multi-modal tasks
but uses another evaluation protocol different from ours. Thus, we re-implemented their method and
evaluated it with our protocol for a fair comparison. The results on the FlickR-8k and FlickR-30k
datasets are presented in Table 1.

The best results of the literature on the two datasets were achieved by the method of [12] (BRNN).
Our approach gives an absolute improvement of 4.1 points of R@1 on FlickR-8k and 3.1 points of
R@1 on FlickR-30k.

As said in Sec. 2, here we evaluate our method on one direction of cross-modal retrieval, namely
text-illustration. By definition, our method could also technically deal with the inverse cross-modal
retrieval task that consist to retrieve texts from image queries, which is also well known as image-
captioning. The performances of our proposal on that task are still below those of the state-of-the-art,
certainly due to the asymmetrical property of our approach. As mentioned above, achieving good
performances on one direction of a cross-modal task when building the common latent space on the
inverse direction, remains an open problem.

5 Conclusion

We introduced the Abstract Meta-Concept principle to perform text-illustration. Contrary to most
of recent work on this topic, we consider an asymmetric scheme to process both modalities. The
unifying common space contains concepts that are abstract and that subsumes several semantic-
concepts.
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We evaluated our method on a text-illustration task and obtained significantly better results than
recent methods on publicly available benchmarks, namely FlickR-8k and FlickR-30k. We also con-
ducted an in-depth analysis of the parameters of our method, including an ablation study that shows
the relative importance of each component of the proposed pipeline.

Above the formal definition of the AMECON and the experiments that demonstrate its efficiency
on a particular application task, the proposed principle would be confirmed if one could perform
the inverse projection to that proposed here, namely from the AMECON space to the each original
feature space, or original modality.

A Appendix: Model Parameters

A.1 Impact of Each Component

The goal of this section is to compare our proposal to baseline methods in order to demonstrate the
utility of each component. Roughly, on the textual side, our method represents each word of an
input caption with a word embedding vector (word2vec) and projects them in the AMECON space.
We then use a hard-coding process to compute the textual AMECON features. Thus, in this sec-
tion, we denote our method by Tloc+Chard+Vloc, with Tloc meaning a local textual representation
(extracted from each word w.r.t Eq. (1)) in the sentence, Chard, a hard-coding process, and Vloc

a local visual representation (extracted from each local region w.r.t Eq.(7)). We thus compare our
method to three baseline methods that differ from ours by one or two component which are replaced
by baseline components. The following items describe the baseline methods:

• Tloc+Chard+Vglob: In this baseline method, we use a global visual representation instead
of a local one. More specifically, the visual CNN features are extracted only from the
global image;

• Tloc+Csoft+Vloc: Here, we use a soft-coding process instead of a hard-coding one. In-
deed, for each dimension of the textual AMECON features, we compute the euclidean dis-
tance between the word embedding vector and the vector representing the corresponding
AMECON cluster;

• Tglob+Csoft+Vloc: In this baseline approach, we use a global textual representation in-
stead of a local one. Practically, for an input caption, we compute the word features for all
words and then average them in a vector that corresponds to a global representation of that
caption. This latter is then projected to the AMECON space through Eq (1) and coded with
soft-coding.

The results are presented in Table 2. Our method clearly outperforms the three baselines. More
precisely, Tloc+Chard+Vloc is better than Tloc+Csoft+Vloc which proves the utility of the hard-
coding process. Our method also outperforms Tloc+Chard+ Vglob and Tglob+Csoft+Vloc which
demonstrates the utility of the modelization of the local visual and textual information in our scheme.
Moreover, the results of the baseline Tglob+Csoft+Vloc are very low, which confirms the clear need
of binary outputs in the textual AMECON feature and a computation of locality (at least on the
textual modality).

Method R@1 R@5 R@10

Tloc+Chard+Vglob 12.8 32.5 43.0

Tglob+Csoft+Vloc 1.5 3.5 5.1

Tloc+Csoft+Vloc 13.1 30.6 41.5

Tloc+Chard+Vloc 15.9 35.9 48.0

Table 2: Comparison of our method (denoted Pall+Chard) to three baseline methods
(Pavg+Csoft, Pall+Csoft and Pavg+Chard) that are described in Sec. A.1. The evaluation is
carried in a text-illustration task through the FlickR-8K dataset, with C = 700 and m = 3.
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Figure 5: Evaluation of the impact of the
number of selected clusters on our method in
text-illustration through the FlickR-8k dataset.
The graph presents the recall (R@1, R@5 and
R@10) according to the number of clusters.
Best view in color.

Figure 6: Evaluation of the impact of the
number of selected neighbours (m parameter)
on our method in text-illustration through the
FlickR-8k dataset. The graph presents the re-
call (R@1, R@5 and R@10) according to the
number of selected neighbours. Best view in
color.

A.2 Impact of the Number of AMECONs

In this section, we study the impact of the parameter C in Equations (1) and (2), that corresponds
to the number of abstract meta-concepts (clusters) and thus to the dimensionality of the AMECON
Space. To evaluate its impact on our method, we set it to the seven values of the following set:
{100, 300, 500, 700, 1000, 1100, 1300}. For instance, C = 700 means that the clustering algorithm
(Sec. 3.2.1) was set to output 700 clusters that directly correspond to the AMECONs. Therefore, the
dimensionality of our textual AMECON feature (Sec. 3.3.1) is 700 and the mapping for the visual
side is from a 4096-dimensional CNN feature to a 700-dimensional textual AMECON feature.

The results of our method for the different values of the C parameter evaluated on the FlickR-8k
dataset are presented in Figure 5. We clearly observe that increasing the C parameter significantly
improves the retrieval results. It is also important to note that, globally (from 300 to 1, 100), the
results are very close to one another, meaning that our method is quite robust to the number of
selected clusters (AMECONs).

A.3 Impact of the Number of Neighbours

In this section, we evaluate the impact of the m parameter of Equation (1) that corresponds to the
number of selected neighbours when performing the hard-coding process for each word. To evaluate
its impact on our method, we set it in the seven values of the following set: {1, 2, 3, 4, 5, 6, 7}.
For instance, m = 3 means that three dimensions are activated in the textual AMECON features
computed by Equation (2).

The results of our method for the different values of the m parameter evaluated on the FlickR-8k
dataset are presented in Figure 6. We clearly observe that the three curves (R@1, R@5 and R@10)
are quite flat. This latter means that our method is desirably highly robust to the m parameter.

References

[1] A. Bergamo and L. Torresani. Meta-class features for large-scale object categorization on a
budget. In CVPR, 2012.

[2] S. Bird, E. Klein, and E. Loper. Natural language processing with Python. ” O’Reilly Media,
Inc.”, 2009.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

10



[4] J. Costa Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. Lanckriet, R. Levy, and N. Vascon-
celos. On the role of correlation and abstraction in cross-modal multimedia retrieval. PAMI,
pages 521–535, 2014.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. CVPR, 2009.

[6] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. Devise: A deep
visual-semantic embedding model. NIPS, 2013.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, 2014.

[8] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A multi-view embedding space for modeling
internet images, tags, and their semantics. IJCV, 106(2):210–233, Jan. 2014.

[9] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural Computation, 16(12):2639–2664, 2004.

[10] M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data,
models and evaluation metrics. Journal of Artificial Intelligence Research, 47:853–899, 2013.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Dar-
rell. Caffe: Convolutional architecture for fast feature embedding. In ACM International
Conference on Multimedia, ACM, 2014.

[12] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. CVPR, 2015.

[13] A. Karpathy, A. Joulin, and L. Fei Fei. Deep fragment embeddings for bidirectional image
sentence mapping. NIPS, pages 1889–1897, 2014.

[14] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visual-semantic embeddings with
multimodal neural language models. CoRR, abs/1411.2539, 2014.

[15] L. Liu, L. Wang, and X. Liu. In defense of soft-assignment coding. In Proceedings of the 2011
International Conference on Computer Vision, ICCV ’11, pages 2486–2493, Washington, DC,
USA, 2011. IEEE Computer Society.

[16] J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille. Explain images with multimodal recurrent
neural networks. CoRR, abs/1410.1090, 2014.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. NIPS, 2013.

[18] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, Nov 1997.

[19] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[20] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image
retrieval at the end of the early years. IEEE T PAMI, 22:1349–1380, 2000.

[21] Y. Tamaazousti, H. Le Borgne, and A. Popescu. Constrained local enhancement of semantic
features by content-based sparsity. In ICMR, 2016.

[22] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using
classemes. ECCV, 2010.

[23] T. Q. N. Tran, H. Le Borgne, and M. Crucianu. Aggregating image and text quantized corre-
lated components. In Computer Vision and Pattern Recognition, CVPR, 2016.

[24] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for
image classification. In Computer Vision and Pattern Recognition, CVPR, 2010.

[25] F. Yan and K. Mikolajczyk. Deep correlation for matching images and text. In Computer
Vision and Pattern Recognition, CVPR, 2015.

[26] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denota-
tions: New similarity metrics for semantic inference over event descriptions. Transactions of
the Association for Computational Linguistics, 2:67–78, 2014.

11


	Introduction
	Related Work
	Proposed Approach
	AMECON Space
	Textual AMECON-Features
	Learning the AMECONs
	Learning the Textual AMECON-Features

	Visual AMECON-Features
	Textual AMECON-Features as Image Labels
	Learning the Visual AMECON-Features


	Experiments
	Datasets
	Implementation Details
	Text-Illustration Results

	Conclusion
	Appendix: Model Parameters
	Impact of Each Component
	Impact of the Number of AMECONs
	Impact of the Number of Neighbours


