
Neural Stance Detectors for Fake News Challenge

Qi Zeng
Department of Physics

Stanford University
qizeng@stanford.edu

Quan Zhou
Department of Physics

Stanford University
quanz@stanford.edu

Shanshan Xu
Department of Physics

Stanford University
xuss@stanford.edu

Abstract

Fake news pose serious threat to our society nowadays, particularly due to its
wide spread through social networks. While human fact checkers cannot handle
such tremendous information online in real time, AI technology can be lever-
aged to automate fake news detection. The first step leading to a sophisticated
fake news detection system is the stance detection between statement and body
text. In this work, we analyze the dataset from Fake News Challenge (FNC1) and
explore several neural stance detection models based on the ideas of natural lan-
guage inference and machine comprehension. Experiment results show that all
neural network models can outperform the hand-crafted feature based system. By
improving Attentive Reader with a full attention mechanism between body text
and headline and implementing bilateral multi-perspective mathcing models, we
are able to further bring up the performance and reach metric score close to 87%.

1 Introduction

New Media, including online newspapers and social media, not only enables people around the
world easily receive news and share information in real-time, but also lets fake news and rumors
spread quickly under no verification. These made-up stories can create a great deal of confusion
in the public about the facts of current events, thus poses a serious challenge to the news industry
as well as the whole of society. It is extremely difficult and even unrealistic to identify rumors and
hoaxes in the information age relying only on the traditional human-based fact checkers, due to both
the tremendous scale and the real-time nature. Artificial intelligence, specifically machine learning
and natural language processing techniques, holds promise for assisting people to win the combat
against fake news.

Although the full procedure for news veracity assessment is complicated and unwieldy even for
trained experts, AI technology can be leveraged to significantly automating some parts of it. For
example, an important building block in fact-checking systems is to understand what other orga-
nizations says about one certain topic. In this task, a computer is required to estimate the relative
perspective of two given pieces of texts, specifically the stance of news body relative to a headline.
While the stance detection of news shares a lot in common with various natural language process-
ing tasks, such as natural language inference [1] and machine comprehension [2, 3], it also has its
own distinctness in several aspects. Most natural language inference studies focus on the relation
between two sentences of small or even moderate length, comparatively the body text of news can
have several or tens of sentences, which makes the sequence quite longer than the headline. Machine

1

comprehension indeed deals with the scenario of short question and lengthy context, but it aims to
point out the answer span rather than to evaluate the overall attitude toward the question.

The key in the task of stance detection is to find out good features to represent the relations between
headline and body text. Hand-crafted features of headline-body pair, including bag of words and n-
grams matching, have already been used to achieve moderate accuracy for stance classification with
the dataset of Emergent [4]. Nonetheless, feature engineering requires a lot of linguistic expertise,
and does not fully take advantage of the huge amount of data. Recently, neural-based encoder
architectures are introduced to capture these relations [5]. In general, these neural approaches fall
into two types of framework: the “Siamese” architecture which encodes headline and body text
independently, and the conditional encoder which allows interactions between them in the encoding
stage. Augenstein et. al. have shown that their bi-directional conditional encoding system can reach
state-of-the-art results in SemEval 2016 Task 6 Twitter Stance Detection [5]. However, almost all
the researches until now, studied the dataset of texts of moderate length at most [Twitter, Emergent],
because of the limited availability of human-annotated data for real news headlines and bodies.

Recently, Fake News Challenge (FNC1) derives from Emergent a moderate-sized dataset of expert-
labeled headline-body pairs for the task of stance detection. Body texts in this dataset can contain
up to several thousands of tokens. One baseline model based on handed features is also provided,
which achieves a performance of near 80% under a weighted score metric. In this paper, we analyze
this dataset and investigate several neural stance detection systems for the task, based on ideas from
natural language inference and machine comprehension. We explore a set of Bi-RNN encoders
for feature extraction, and find that they are already able to beat the baseline. With appropriate
connections between headline and body text, as well as large hidden memory in the RNN cell,
this type of models can record a score of about 82%. We further incorporate attention mechanism
[2, 3] beyond the vanilla Bi-RNN encoder, where each position in the body text attends either the
final encoding (simple attention) or every time stamp of the headline (full attention). Attention
brings significant improvements on simple encoders, one of our best attentive reader (full attention)
scores near 87%, which indicates the local context matching nature of the current task. With this
inspiration, we experiment the bilateral multiple perspective matching [6] with only max-pooling
matching, which already reaches a robust score near 85%. More sophisticated matching components
might hold promise for further improvement.

2 The Stance Detection Task

The stance detection task introduced by FNC1 aims to identify perspectives of news body texts to-
ward headlines. Specifically, given a pair of headline and body text, the goal is to predict whether
the body text is related to the headline, and what the exact relationship is between them. Four differ-
ent labels can be assigned to each headline-body pair: Unrelated, Discuss, Agree and Disagree. A
typical example is illustrated in Figure 1. Typically, a headline can be one sentence or a combination
of several short expressions, and a body text consists of several or even tens of sentences.

“Robert	Plant	Ripped	up	$800M	Led	Zeppelin	Reunion	Contract”

“…	No,	Robert	Plant	did	not	rip	up	an	$800	million	deal	to	get	Led	Zeppelin	back	together.	…”

“…	Robert	Plant	reportedly	tore	up	an	$800	million	Led	Zeppelin	reunion	deal.	…”

“…	Richard	Branson’s	Virgin	Galactic	is	set	to	launch	SpaceShipTwo	today.	…”

Agree

Headline

Body Text Snippets of different Stances

Disagree

Discuss

Unrelated

“…	Led	Zeppelin’s	Robert	Plant	turned	down	£500	MILLION	to	reform	supergroup.	…”

Figure 1: One example of body stances toward a headline

The dataset provided by FNC1 is derived from Emergent, a digital journalism project for rumor
debunking. There are 49972 headline-body pairs in total, with stances labeled by expert journalists.
The populations of the four labels are imbalanced, with nearly three quarters belonging to the type
Unrelated, which is reasonable for real news data but poses challenge for relationship identification.
There is a severe overlap of either body text or headline among these pairs, as there are only 1683

2

distinct body texts and 1648 distinct headlines. Therefore shared body texts must be avoided in data
split of training and test set, as suggest by the baseline model provided by the challenge. In our
work, 10% of the body texts are selected as hold-out first, where all the pairs with these body texts
constitute the test set. The remaining 90% body texts are randomly divided based on 8 : 1 ratio every
time. The corresponding two sets of pairs are used as training set and validation set respectively.
Detailed data statistics is given in Table 1.

Headline-body pairs 49972
Headlines 1648
Bodies 1683
Bodies in test set 169
Headline-body pairs in test set 5025
Average # tokens of headline 12.6
Average # tokens of body 427.5
Unrelated Discuss Agree Disagree
73.1% 17.8% 7.4% 1.7%

Table 1: Statistics of FNC1 dataset

Headline Body Text

Related

Relationship

UnrelatedNo

Yes

DisagreeAgree

Discuss

25% Weighted Score

75% Weighted Score

Figure 2: Score Metric for FNC1

FNC1 also provides a score metric for the task of stance detection. Since relationship identification is
more important in real fake news detection, larger portion of score is given to the correct prediction
of this part, while discrimination over related/unrelated is less weighted. More specifically, 25%
weighted score is for correct prediction on relatedness, and another 75% weighted score is for correct
prediction on relationship, as shown in Figure 2.

3 Methods

There are in general two approaches to the stance detection: hand-crafted feature engineering and
neural networks. While the first approach largely depends on human experts with domain knowledge
in NLP, the second one is trying to reveal the hidden structure between headlines and body texts
using recurrent neural network structures.

The baseline method, provided by the FNC1 organizer, is following the first approach. Hand-crafted
features used by this method includes

• Fraction of overlapped words between headline and body
• Appearnce of refuting words in headline
• Polarity of both headline and body
• Counting of occurence of a token in headline in the body text (with and without stopwords

included in title)
• Counting of occurence of an n-gram of the title in both the body text and paragrphs

And then these features are concatenated and fed into a GradientBoosting classifier.

For the neural network approaches, there are two components: feature extractor and classifier. The
feature extractors, which would be described in details in Section 3.1, 3.2 and 3.3, are all RNN
based, while the classifier is a simple feedforward neural network. For this task, since we believe
the feature extractor is the key part, we put most of our focus on it, with the classifier network fixed.
Due to the nature of text encoding, only bidirectional RNN is considered in feature extractor.

3.1 Bidirectional Encoder

This is the simplest RNN approach that we start with. In this approach, we encode both headline
and body text with bidirectional recurrent neural networks, and the final states of RNN cells are
concatenated as features for classifier network. Furthermore, three slightly different architectures
are considered as following.

3

Unconditional Bidirectional Encoder. Headline and body text are encoded using separate bidirec-
tional RNN cells with different weights. Both are initialized with hidden states all set to 0 before
processing headline or body text independently. The final states of each RNN encoder are concate-
nated as feature for classifier.

Conditional Bidirectional Encoder. Headline and body text are encoded using separate bidirec-
tional RNN cells with different weights. The headline is first processed. Then the RNN cells encod-
ing body text is initialized with final states of the headline encoder before processing through body
text. The final states of each RNN encoder are concatenated as feature for classifier.

Concatenated Bidirectional Encoder. Headline and body text are first concatenated together and
then encoded by common RNN cells. The final states of this RNN encoder are concatenated as
feature for classifier.

3.2 Attentive Reader

While the simple bidirectional encoder can build the contextual representation of headline and body,
it is hard to identify the most relevant part in body text for a given headline. Therefore, we introduce
the attention mechanism, as first proposed in [2]. Similar to the unconditional bidirecitonal encoder,
we first build a contextual representation of each word in headline and body text using independent
bidirectional RNN cells. Output vector of each body word (each time-stamp) is then compared to
the headline in order to determine an attention weight for each word. Based on how we generate
attention weight, two different models are explored as following.

Attentive Reader with simple attention. This is illustrated in the left of Figure 3. Each time-stamp
in the RNN processing body text is compared with the final states of RNN cells processing headlines
using a bilinear term, as proposed in [3], which is further normalized with a softmax nonlinearity to
generate the attention weight for each word in body text:

αi = softmaxiqTWsp̃i (1)

where Ws ∈ Rh×h is the bilinear term, q is the final states of headline RNN, p̃i is the contextual
embedding of body text and αi is the attention weight.

Then we compute the weighted sum of each time-stamp vector and concatenated it with the final
states of headline RNN as features for classifier. This last concatenation step is different from [3]
since we find this to give a better performance.

Attentive Reader with full attention. This is illustrated in the right of Figure 3. The major dif-
ference from “simple attention” is that we calculate the attention weight by comparing time-stamp
vector of body RNN to each time-stamp vector of headine RNN, instead of the final states. The
maximum over all attention weights calculated for headline time-stamps would be taken as the final
attention weight for each time-stamp of body text. We call this approach “full attention” since it is
able to perform a comparison at a much finer granularity compared to the “simple attention”.

… …

……

… …

… …

……

… … … …

Classifier

Embedding Layer

Encoding Layer

Attention Layer

Attention Weighted Average

Headline Body Text

… …

……

… …

… …

……

… … … …

Classifier

Embedding Layer

Encoding Layer

Attention Layer

Attention Weighted Average

… …

(Max-Pooling)

Headline Body Text

Figure 3: Illustration of Attentive Reader with simple attention (left) and full attention (right)

4

3.3 Bilateral Multiple Perspective Matching (BiMPM)

Another similar approach is to check the matching between headline and body text word by word
in various perspectives. In the work of [6], a bilateral multi-perspective matching architecture is
proposed, on which we do some slight modification for this specific task. The model is illustrated in
Figure 4. We again first build the contextual representation of headline and body text using separate
bidirectional RNN, as done in unconditional bidirectional encoder. Then, we calculate the cosine
similarity between headline and body contextual representation vectors:

mk = cosine(Wk ◦ v1,Wk ◦ v2) (2)

where v1 and v2 represents the two vectors of dimension d to be compared, W ∈ Rl×d is a trainable
parameter, Wk is the k-th row of W .

… …

……

… …

……

… … … …

Classifier

Embedding Layer

Encoding Layer

… …

… … … …

… …

……

… …

……

Multi-Perspective Matching
(Max-Pooling)

Matching Layer

Aggregation Layer

Headline Body Text

Figure 4: Illustration of Bilateral Multiple Perspective Matching

Different from the attention mechanism mentioned in Section 3.2, the output of comparison here
is a l-dimension vector, with each dimension representing a certain perspective and thus assigning
different weights to different perspectives. For a given time-stamp vector in body text, it compares
with every time-stamp vectors in the headline and takes the maximum over all time-stamp vectors
in headline for each perspective dimension. Furthermore, as suggested by [6], we adopt bilateral
architecture here such that the same matching procedure is also repeated for headline time-stamps
as well. As a result, one would eventually get a list of l-dimension vectors, one for each time-stamp
in the headline and body text.

In addition to the l-dimenion matching vectors in matching layer, we apply an aggregation layer on
top of it, which is another bidirectionl RNN layer for headline and body text respectively. Then the
final states of healine RNN cells and body text RNN cells in the aggregation layer is concatenated
as feature for classifier.

It should be noticed that in the original paper [6], four different kinds of mathing layers are applied
and concatenated, while we only take one of them here (the maxpooling-matching). This is mainly
due to the consideration of computing time.

4 Experiments

4.1 Experiment Setup

The raw text is first tokenized using “nltk” package, and then further embedded using 50-dimension
word vectors using GloVe 6B. The embedding parameters are non-trainable during our experiments
here since we do not think the given dataset in this task is large enough. For the out-of-vocabulary
words, we initialize them with random noise. Headline texts are padded with length of 50 while
body texts are padded with length of 200. In case the text length is larger than padding size it is
truncated at padding size.

5

For all the bidirectional RNN, we use GRU cell with 100 hidden size for both kinds of Attentive
Readers and BiMPM models, but 200 hidden size for three kinds of simple bidirectional encoders.
Please be noticed that the hidden size mentioned here is for GRU cell in one direction, thus the
number of dimensions of either time-stamp vector or final states is twice of it since we have GRU
cells for both directions. For BiMPM model, we take number of perspective to be 40 (l = 40).

For the classifier, we use a 1-hidden layer forward NN with 50 dimensions on hidden layer for
both kinds of Attentive Readers and BiMPM models, but 100 for three kinds of simple bidirectional
encoders. The final output layer of this forward NN is a 4-class softmax representing probability of
4 classes we are predicting here. A dropout with keep probability 0.9 is applied only on the hidden
layer of classifier.

The loss used is cross entropy, optimized using Adam optimizer [8], with 0.001 learning rate. For
each model we train for 10 epoches with 32 batch size. Our experiments show that 10 epoch is
enough for all models to converge without running into overfit. Thus the maximal score evaluated
on development set is reported for each run. For a fixed model / configuration, we repeat the training
several times, and take average to deal with randomness.

The setup above is the optimal one within all different configurations that we have scanned. More
details on hyper-parameter fine tuning can be found in Section 4.2. The final evaluation results with
this set of hyper-parameters can be found in Section 4.3.

4.2 Hyper-parameter Tuning

Due to the extreme large hyper-parameter space, it is impractical to scan over all possibel combi-
nations, given our limited computing resources. Thus our strategy is to start with the configuration
mentioned above, and vary each hyper-parameter one-by-one. For some hyper-parameters that are
not sensitive to the choice of model, we only scan them on some certain model.

Loss Function. We notice that our dataset is very imbalanced between four classes. One way
to address this would be to assign different weights to different classes during the training. In
particular, we comes up with a customized loss called “conditional cross-entropy” that can easily
tune such weights with only one hyper-parameter.

The standard cross-entropy for a single data point can be written as:

CE =
∑
k

qk log pk
def
=
∑
k

CEk (3)

where q is the one-hot truth label vector, p is the prediction probability. Now for classes (index k)
belonging to discuss, agree and disagree (i.e. related) this can be re-written as:

CEk = −qk log pk
= −qk log(

pk
p1 + p2 + p3

× (p1 + p2 + p3))

= −qk log p̃k − qk log(1− p0)

(4)

where we are denoting index 0 as unrelated class. p̃k represents the conditional probability of class k
given it is related. As one can see, this split cross entropy into two parts: the part for being unrelated
and the part for being otherwise, given it is related. Then we are able to tune the relative weights
between these two parts by applying a hyper-parameter λ on one of them:

CE′k =

{
−qk log pk, k = 0

−qk log(1− p0)− λ · qk log p̃k, k 6= 0
(5)

Apparently, when λ = 1, this will get back to the standard cross-entropy. When λ = 0, this will
reduce to a binary classification between related and unrelated. For our problem here, we only need
to scan λ around 1.

In our experiments we find that when we set λ > 1, the training will overfit rapidly. This suggests
putting too much weight on related dataset is dangerous, possibly due to the lack of statistics in
these categories. So we instead try λ < 1, as shown in Table 2. The result indicates that λ = 1, i.e.,
the standard cross-entropy, is still preferred, depsite of the imbalance of dataset.

6

Bidirectional Encoder
(concatenated)

Attentive Reader
(simple attention)

Attentive Reader
(full attention)

Bilateral Multiple
Perspective Matching

λ = 0.5 80.8% 81.1% 80.1% 83.5%
λ = 1.0 82.7% 82.4% 83.7% 84.1%

Table 2: Average score on development set for various λ values and models

Embedding training. We did a quick scan on “Attentive Reader with simple attention” allowing
embedding parameters to be trainable. The result shows that average score on development set
would drop from 82.4% to 79.3% by including embedding parameters in the training. This is not
too surprising given our dataset is not very big. Thus we always keep embedding non-trainable
through out experiments.

Choice of RNN Cell. We find that there is no essential difference between using LSTM and GRU
cells. Therefore we fix on GRU since it is slightly faster in terms of computing.

Hidden Size. A scan over different hidden size can be found in Table 3. It turns out for relatively
simple models such as a direct bidirectional encoders, larger hidden size is preferred, while a smaller
hidden size is favored for relatively more complex model as Attentive Reader.

Bidirectional Encoder
(concatenated)

Attentive Reader
(simple attention)

Attentive Reader
(full attention)

100d (RNN), 50d (classifier) 78.5% 82.4% 83.7%
200d (RNN), 100d (classifier) 82.7% 77.7% 81.2%

Table 3: Average score on development set for different RNN cell hidden size

Padding Size. For the headline part, we fix our padding length to be 50 since it is enough to cover
most of cases. For the body text, a scan of padding length can be found in Table 4. It shows that 200
or 400 padding size would give roughly the same result, with difference less than 1%, while a 800
padding size might damage the performance probably because this is too large for GRU to establish
a long-term memory. We eventually fix on 200 since it would be much faster than 400.

Bidirectional Encoder
(concatenated)

Attentive Reader
(simple attention)

Attentive Reader
(full attention)

200 82.7% 82.4% 83.7%
400 83.0% 83.2% 83.3%
800 – 80.7% –

Table 4: Average score on development set for different padding length on body text

Dropout.In all our models, dropout is applied only at the hidden layer of classifier, hence playing a
limited role. A quick scan suggests that using lower dropout value could only decrease final score
by less than 1%. Therefore we fix on 0.9 keep probability throughout all models.

4.3 Evaluations

Table 5 shows the evaluation results on both development set and test set using various models with
hyper-parameter fixed as described above. All neural network approaches outperform hand-crafted
feature based baseline significantly.

The direct bidirectional encoding approach is performing worst among all neural network models.
This is not too surprising since a simple encoding can hardly capture the matching information
between headline and body text. On ther other hand, it is interesting to see that if we concatenate
headline and body text first and just apply one bidirectional RNN on it, it works moderately as good
as one of our Attentive Readers.

7

Attentive Readers, especially with full attention, and the BiMPM achieves the highest score. This
is mainly because the architecture design of these two models are specific for the matching purpose
between headline and body text.

Models Ave. Dev. Score Max Dev. Score Ave. Test Score Max Test Score

FNC Baseline – – 79.2% –

Bidirectional Encoder
(unconditional) 80.1% 80.5% 79.9% 80.1%

Bidirectional Encoder
(conditional) 79.5% 81.2% 80.2% 82.0%

Bidirectional Encoder
(concatenated) 82.7% 82.9% 82.0% 83.5%

Attentive Reader
(simple attention) 82.4% 83.4% 81.4% 82.6%

Attentive Reader
(full attention) 83.7% 85.4% 85.2% 86.5%

Bilateral Multiple
Perspective Matching 84.1% 84.8% 84.6% 85.6%

Table 5: Evaluation results on both development set and test set for various models

To get some intuition on what Attentive Reader learns, Figure 5 shows two examples of correct
prediction given by Attentive Reader with full attention. In case of unrelated prediction, the attention
weight is random distribution across the words. On the other hand, for agree prediction, a localized
region of body text that can match headline gets a significantly higher attention weights than other
regions.

280	pound	catfish	:	fisherman	makes	huge	catch	in	Italy,	catfish	could	set	record

Mates Casey Dean and Eduard Nitz
1.22e-2 1.03e-3 2.60e-3 7.98e-3 2.34e-4 2.16e-4

Mcdonald ‘ s in 1995 .
8.19e-3 3.52e-3 1.35e-2 3.32e-1 2.99e-2 3.34e-2

Unrelated

wish a happy 20th birthday to
2.01e-2 3.24e-1 1.09e-1 9.57e-3 1.72e-2 9.56e-3

a quarter pounder they bought from
2.93e-2 2.15e-2 2.74e-3 3.41e-3 5.96e-3 2.41e-3

Mates Casey Dean and Eduard Nitz
3.29e-4 7.81e-4 2.09e-4 4.01e-4 7.65e-5 7.27e-6

a quarter pounder they bought from
1.26e-3 3.45e-3 9.23e-1 4.11e-2 2.30e-2 1.20e-3

20-year-old	quarter	pounder	looks	about	the	same

Agree

wish a happy 20th birthday to
3.52e-4 5.60e-4 4.77e-4 1.88e-4 5.32e-5 3.34e-4

Mcdonald ‘ s in 1995 .
2.14e-3 2.31e-4 4.14e-4 1.25e-4 3.67e-5 1.73e-5

Figure 5: Examples of headline and body text alogn with attention weights

Figure 6 shows how the confusion matrix is improved step by step by using various models. Al-
though FNC model is able to predict unrelated and discuss correctly, it totally mess up with the
agree and disagree classes. A direct bidirectional encoder is able to achieve more accurate pre-
diction for agree category, though there is a lot of leaakge of misclassification in discuss category.
By using Attentive Reader with full attention, the recall on agree category gets improved signifi-
cantly, though the precision is still not high enough. In all cases, we notice that disagree category is
poorly predicted. For one thing this comes from very limited statistics of disagree category, while on
the other hand it suggests we need some more dedicate treament of “negation” semantics between
headline and body text.

5 Conclusions

In this work, we apply various recurrent neural network based models on the stance detection
task for fake news challenge. Direct bidirectional encoding, Attentive Reader and Bilateral Multi-
Perspective Matching models are explored. Our result suggests that all neural network based method
can outperform the hand-crafted feature based approach. In addition, we improve the existing Atten-
tive Reader with a full attention mechanism between words in body text and headlines. Evaluation
result shows that this gives the best performance over other explored methods.

8

Predicted	Label

Tr
ue
	L
ab
el

Unrelated

Discuss

Agree

Disagree

3620 45 5 0

156 769 020

39 263 339

9 46 8 2

Confusion	Matrix	of	FNC1	Baseline

Predicted	Label

Tr
ue
	L
ab
el

Unrelated

Discuss

Agree

Disagree

1913378 95 6

52 759 107 27

29 101 206 8

5 23 22 15

Confusion	Matrix	of	Bidirectional	Encoder
(concatenated)

Predicted	Label

Tr
ue
	L
ab
el

Unrelated

Discuss

Agree

Disagree

3505 68 89 8

31 768 137 9

32 64 242 6

2 12 40 11

Confusion	Matrix	of	Attentive	Reader
(Full	Attention)

Figure 6: Confusion matrix on test set using FNC1 Baseline (left), Bidirectional Encode (concate-
nated) (middle) and Attentive Reader with full attention (right)

Future Work. To further improve the performance, one needs to first improve the precision on
agree category, and further improve the accuracy on disagree cateogry. One possible approach is
the combination of hand-crafted features and hidden features learnt by RNN. A full implementation
of the BiMPM models with all different matching layers is also worth trying. Finer tuning of hyper-
parameter, e.g., embedding dimensionality, might also improve performance. Methods to handle the
imbalance of current dataset would also be important for any further improvement.

Contributions of Team Member

Qi Zeng and Quan Zhou are equally involved in the implementation and improvement of all models
explored in this work, hyper-parameter tuning, evaluation and analysis of results and summary report
writeup. Shanshan Xu is involved in test of baseline model, bidirectional encoder and discussion.

References

[1] Samuel R. Bowman, Gabor Angeli, Christopher Potts & Christopher D. Manning. 2015. A large
annotated corpous for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP).

[2] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman & Phil Blunsom. 2015. Teaching Machine to read and comprehend. In Neural Informa-
tion Processing Systems (NIPS).

[3] Danqi Chen, Jason Bolton & Christopher D. Manning. 2016. A thorough examination of the
CNN/Daily Mail reading comprehension task. In Association for Computational Linguistics (ACL).

[4] William Ferriera & Andreas Vlachos. 2016. Emergent: a novel data-set for stance classification.
In North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT).

[5] Isabelle Augenstein, Tim Rocktaschel, Andreas Vlachos & Kalina Bontcheva. 2016. Stance
detection with bidirectional conditional encoding. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP).

[6] Zhiguo Wang, Wael Hamaza & Radu Florian. 2017. Bilateral multi-Perspective matching for
natural language sentences. arXiv preprint, arXiv: 1702.03814v1.

[7] Jeffrey Pennington, Richard Socher & Christopher D. Manning. 2014. GloVe: global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

[8] Diederik P. Kingma & Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. In arXiv
preprint, arXiv: 1412.6980.

9

	Introduction
	The Stance Detection Task
	Methods
	Bidirectional Encoder
	Attentive Reader
	Bilateral Multiple Perspective Matching (BiMPM)

	Experiments
	Experiment Setup
	Hyper-parameter Tuning
	Evaluations

	Conclusions

