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Abstract 13 

There has been significant recent progress on applying end-to-14 

end neural network based models for solving question answering 15 

tasks. We propose a model that consists of a coattention encoder 16 

which captures the interactions between the question and the 17 

context, and we introduce a novel multilayer feed forward neural 18 

network decoder that estimates the answer span in a single pass. 19 

On the SQuAD test dataset, our model achieves a single model 20 

performance of 52.8% EM and 64.5% F1.   21 

 22 

1 Introduction  23 

Question answering (QA) is an important task in natural language processing where the aim 24 
is to build computer systems that can automatically answer questions that are posed in a natural 25 
language. It requires both natural language understanding and contextual world understanding. 26 
The automatic comprehension of text allows insights to be extracted from raw text data and 27 
thus has many real-world applications. 28 

Previous publicly available QA datasets were human annotated and relatively small in size, 29 
which made them unsuitable for high capacity models such as deep neural networks. Recently, 30 
researchers released the Stanford Question Answering dataset (SQuAD), a reading 31 
comprehension dataset that consists of questions posed by crowd workers on a set of Wikipedia 32 
articles (Rajpurkar, Zhang, Lopyrev, & Liang, 2016). This dataset consists of 107,785 question 33 
answer pairs on 536 articles, which is significantly larger than all the previous human 34 
annotated datasets. The size of the SQuAD dataset has enabled the development of much more 35 
expressive models for the QA task.  36 

A unique feature of SQuAD is that all answers are entailed by the corresponding contexts. 37 
Also, compared with other question answer datasets, where the answers are single words or 38 
entities, SQuAD answers can be much longer phrases and often include non-entities. The QA 39 
task with the SQuAD dataset can be formulated as identifying the span of words in a document 40 
(context) that answers a given question.  41 



CODALAB USERNAME: fengjiao 

 

2 

 

This work introduces a novel end-to-end neural network for the QA task. The question and 42 
context are encoded using recurrent neural networks and then combined to form a 43 
representation that captures the interactions between the question and context. This is hea vily 44 
inspired by the recently published Dynamic Coattention Networks (DCN) model (Xiong, 45 
Zhong, & Socher, 2016). We introduce a novel multilayer feed forward neural network decoder 46 
that subsequently calculates the probabilities of all the possible answer start and end index 47 
pairs in the context, and then picks the pair with the highest probability as the final answer  48 
span. 49 

 50 

2 Our Model  51 

We first describe the encoders for the question and context, and subsequently the coattention 52 
mechanism and the feedforward neural network decoder that generates the answer span. 53 

 54 

2 .1  Do cu ment  a nd  Quest io n  Enco der  55 

Similar to (Xiong et al., 2016) the question and context are represented as a sequence of word 56 

vectors,  and  respectively. The question was encoded using a 57 

bidirectional LSTM, . The intermediate question encoding matrix is 58 

defined as . A non-linear projection layer was then applied to Q` to 59 

result in the final question encoding matrix, , where l is twice the size 60 
of the hidden unit of the corresponding unidirectional LSTMs in the bidirectional LSTM 61 
encoder. This layer allows for variation between the question encoding space and the document 62 
encoding space. 63 

In order to share representation power, the same bidirectional LSTM was used to encode the 64 

context as . The resulting context encoding matrix is defined as 65 

 66 

Unlike the reference DCN model, we do not include the sentinel vectors in Q, Q` and D. 67 
Additionally we utilize a bidirectional LSTM instead of a unidirectional LSTM to encode the 68 
question and context. 69 

 70 

2 .2  Co a t t ent io n  Enco der  71 

The coattention mechanism is adapted from (Xiong et al., 2016). It simultaneously attends to 72 
the question and context, and then fuses both attention contexts. The coattention encoder is 73 
illustrated in Figure 1. 74 

 75 

Figure 1: Coattention encoder adapted from (Xiong et al., 2016). The normalized attention 76 
weights AD and AQ

 are shown directly while the affinity matrix L is not shown 77 
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 78 

The question encoding matrix Q and the context encoding matrix D are used to compute the 79 

affinity matrix , which contains affinity scores that correspond to every pair 80 
of document words and question words.  81 

Afterwards, the affinity matrix is normalized column-wise to result in the attention weights 82 
AD across the question for each word in the context, and normalized row-wise to result in the 83 
attention weights AQ across the context for each word in the question.  84 

 and  85 

We then compute the summaries of the context CQ in consideration of each word of the 86 

question as . 87 

We also compute the summaries of the question in consideration of each word of the context 88 

as . Additionally, we compute the summaries of the previous attention 89 

contexts in consideration of each word of the context as . We then 90 

concatenate CD1 with CD2 along the row axis to form the coattention context . 91 

Finally, a bidirectional LSTM is used to integrate the temporal information with the 92 

coattention context as . The resulting coattention encoding matrix 93 

is defined as , and serves as the foundation to select the best possible 94 
answer span. 95 

 96 

2 .3  M ul t i la y er  Feedfo rward  Neura l  Netw o rk Deco der  97 

A multilayer feedforward neural network is utilized as a decoder to identify the start and end 98 
indices of the answer span. Our multilayer decoder is illustrated in Figure 2. The decoder 99 
mechanism is different to that used in (Xiong et al., 2016). The reference DCN implementation 100 
uses a Highway Maxout Network (HMN) based iterative decoder to find the answer span 101 
(Srivastava, Greff, & Schmidhuber, 2015).  102 

We initially explored a naïve decoder that performs a linear mapping of the coattention 103 
encoding matrix U to produce score vectors U1s and U1e, which contains the intermediate 104 
scores of each context word as the start and end indices respectively. Both U1s and U1e have 105 

the general linear mapping form of  where   , but 106 
with an independent set of parameters W0s, b0s, W0e, and b0e. The score vectors U1s and U1e 107 
are converted into the corresponding probability vectors P start = softmax(exp_mask(U1s, 108 
context_mask)) and Pend = softmax(exp_mask(U1e, context_mask)). The exponential masking 109 
operation, exp_mask, and the context mask vector, context_mask, are used to account for the 110 
padded words. They are described in further detail in section 2.4.  111 

The naïve decoder produces intermediate scores for the start and end index scores from the 112 
coattention encoding matrix U in which each context word is considered in isolation. There is 113 
no contribution from the encoding of other words in the context towards the score of a given 114 
word. This motivated us to implement a more complex decoder that accounts for the 115 
interactions between the individual context word encodings.  116 
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 117 

Figure 2: Multilayer feedforward neural network decoder. One model is used to calculate 118 
vector U6s, which contains the intermediate scores of each context word as the start index. 119 
Another model is used to calculate vector U6e, which contains the intermediate scores of 120 

each context word as the end index. The probabilities for the start and end indices are then 121 
obtained from these scores. Each model uses an independent set of parameters W0, b0, W1, 122 

b1, W2, b2, W3, b3, W4, b4, W5.  123 

 124 

We implemented two fully connected layers with tanh nonlinearity to capture the interactions 125 
across word encodings for both the start and end indices. We picked two layers because (Xiong 126 
et al., 2016) reported decent results with a two layer MLP decoder. The general forms of these 127 
connected layers are: 128 

  where  129 

 where  130 

Additionally, since information is condensed when U is transformed to U1, we also define a 131 
fully connected layer with tanh nonlinearity operating on the flattened version of U, Uflat that 132 
has access to the full context encoding. The general form of this connected layer is 133 

 where . We also implement an 134 

additional layer with the general form of   where 135 

. 136 

Finally, we concatenate the vectors U1, U2, U3, U4, U5 and then apply a learnable weight 137 
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vector W5 that automatically sets the relative importance of each vector in obtaining the final 138 
score vector U6s and U6e for either start and end indices respectively. U6s and U6e have the 139 

general form of  where . Analogous to the naïve 140 
decoder, the score vectors U6s and U6e are converted into the corresponding probability 141 
vectors Pstart = softmax(exp_mask(U6s, context_mask)) and Pend = softmax(exp_mask(U6e, 142 
context_mask)).  143 

 144 

2 .4  Lo ss  Fu nct io n  145 

A fixed question length and fixed context length is enforced, so any question and context 146 
shorter than their respective fixed lengths are padded. As a result, the loss must be masked for 147 
answer words that have start and end indices that fall in the padded region. We employ the 148 
exponential mask function that adds a large negative number to scores that correspond to 149 
padded words: 150 

exp_mask(scores, context_mask) = scores + (context_mask - 1)(10e-32), where context_mask 151 
entries are 0 for padded words and 1 for context words. 152 

The resulting loss function that is minimized is: 153 

CE(softmax(exp_mask(start_score)), ground_truth_start_index) + 154 
CE(softmax(exp_mask(end_score)), ground_truth_end_index) 155 

Additionally, L2 regularization for the decoder weights is implemented.  156 

 157 

2 .4  Answ er Spa n  Pred ic t io n  158 

We explored two approaches to predict answer spans based on the Pstart and Pend vectors. The 159 
independent prediction approach predicts the start and end indices of the answer span 160 
independently using: 161 

start_index = argmax(Pstart) and end_index = argmax(Pend)  162 

The joint prediction approach predicts the start and end indices of the answer span to be the 163 
pair of indices that has the largest sum of the start and end probabilities among all the legal 164 
start and end indices pairs, where end_index >= start_index: 165 

 166 

3 Related Work 167 

Since the publication of the SQuAD dataset, there has been significant progress in applying neural 168 

network based models to the QA task. In particular, neural network based models have been shown 169 

to be particularly suited to the relatively complicated answers in the SQuAD dataset, which can be 170 

long phrases and often include non-entities.  171 

 172 

(Wang & Jiang, 2016) proposed an end-to-end neural network model which consists of a Match-173 

LSTM encoder (Wang & Jiang, 2015), and a pointer network decoder (Vinyals, Fortunato, & Jaitly, 174 

2015). (Yu et al., 2016) proposed a dynamic chunk reader, which is a neural network based model 175 

that extracts a set of variable length answer candidates from the context and ranks them to answer 176 

the question. (Lu, Yang, Batra, & Parikh, 2016) proposed a hierarchical coattention model for visual 177 

question answering where the coattention mechanism simultaneously encodes a conditional 178 

representation of the image given a question as well as a conditional representation of the question 179 

given the image. (Xiong et al., 2016) proposed a dynamic coattention model (DCN) which consists 180 

of a coattentive encoder and a novel dynamic decoder that iteratively updates the start and end 181 

indices of the answer span. 182 

 183 

Our model is heavily inspired by the DCN model, however we use a novel multilayer feed forward 184 
neural network decoder that calculates the probabilities of all the possible answer start and 185 
end index pairs in the context in a single pass, and picks the highest probability index pair as 186 
the final answer span. 187 
 188 
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4 Experiments  189 

 190 

4 .1  I mple menta t io n  191 

Our model is trained and evaluated on the SQuAD dataset. The corpus is preprocessed using 192 
the Stanford CoreNLP tokenizer (Manning et al., 2014). We experimented with both fixed 193 
CommonCrawl.840B.300d pretrained word vectors and GLoVE.6B.100d pretrained word 194 
vectors (Pennington, Socher, & Manning, 2015)  195 

We enforce a fixed question length of 22 words, and fixed context length of 300 words. Any 196 
question and context longer than their respective fixed lengths are trimmed and those shorter 197 
are padded up their respective max lengths. Overall this resulted in 98.9% questions and 198 
98.35% contexts remaining in the training set.  199 

  200 

  201 

Figure 3: Training dataset statistics 202 

 203 

Table 1: Hyperparameters used in our model 204 

 205 

Hyperparameters Value 

Learning rate 0.002  0.0008 with exponential decay 

Gradient clipping 5 

Dropout (Pkeep) 0.85 

L2 regularization 0.01 

Batch size 32 

Hidden state size 140 

Fixed question size 22 

Fixed context size 300 

 206 

All models were implemented and trained with Tensorflow v0.12 (Abadi et al., 2015).  207 
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4 .2  Resu l t s  208 

We utilize the same metrics that were introduced in the original SQuAD publication: Exact 209 
Match (EM) and F1 score. The Exact Match score measures the percentage of predictions that 210 
match one of the ground truth answers exactly. The F1 score measures the average overlap 211 
between the prediction and ground truth answer. We consider the prediction and ground truth 212 
as a bag of words to compute their F1 score. Since a context question pair can have multiple 213 
ground truth answers, we take the maximum value of the EM and F1 across all the ground 214 
truth answers for a given question. We then compute the average over all the context question 215 
pairs to obtain the overall Exact Match and F1 scores.  216 

The performance of our model on the SQuAD test dataset compared with the current top 4 217 
submitted single models on the SQuAD leaderboard, and also the Dynamic Coattention 218 
Networks model, is shown in Table 1. Our single model results in a 52.8% Exact Match and 219 
64.5% F1 on the test set.    220 

 221 

Table 2: Performance comparison of our model with the current SQuAD single model 222 
leaderboard. * indicates unpublished model 223 

 224 

Rank Model EM F1 

4 r-net* 72.4 80.8 

6 Ruminate Reader* 70.6 79.5 

7 ReasoNet* 70.6 79.4 

7 Document Reader* 70.7 79.4 

13 Dynamic Coattention 
Networks (Xiong et 
al., 2016) 

66.2 75.9 

 Our Model 52.8 64.5 

 225 

 226 

Figure 4: Training statistics. Our model starts to overfit after epoch 8 227 

 228 

We found that the following factors significantly improved the performance of the model. The 229 
performance scores are the maximum F1 scores over 10 epochs on our validation dataset.  230 

• No masking versus exponential masking for padded words masking (F1 6% to 10%). 231 

• GloVE.6B.100d pretrained word vectors versus CommonCrawl.840B.300d pretrained 232 
word vectors  (F1 10% to 28%). 233 

• Answer span selection based on independently choosing the maximum probability 234 
start and end indices versus choosing the joint sum probability of the start and end 235 
indices (F1 28% to 35%) 236 

• Naïve decoder versus multilayer decoder on multiple representations of the encoder 237 
outputs (F1 35% to 67%). 238 
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4 .2  Erro r  a na ly s i s  239 

Apart from obviously incorrect answers that do not answer the question, there are other types 240 
of errors that are not completely wrong. The SquAD dataset ground truth answers were 241 
obtained from crowd sourced human annotations. As a result, it is almost certain that some 242 
ground truth answers are suboptimal, and other equivalent or better answers are possible for 243 
some questions. Thus, there could be multiple possible answers that, although do not exactly 244 
match the ground truth answer, is for all intents and purposes correct in answering the question. 245 

 246 

• One type of frequently encountered errors is when the predicted answer span is 247 
narrower than the ground truth. In most cases, these predictions are functionally 248 
equivalent to the ground truth answers. 249 
  250 

Pred: “ Nike advertisement“ 251 
Truth: “ a Nike advertisement“ 252 

 253 

• A related type of error is when the predicted answer span is wider than the ground 254 
truth. Sometimes the prediction is not specific enough, while othertimes the 255 
prediction is functionally equivalent to the ground truth answers 256 
 257 

Pred: “The minority leader , in consultation with other party colleagues , has a 258 
range of strategic options that he or she can employ to advance minority party 259 

objectives“ 260 
Truth: “ in consultation with other party colleagues“ 261 

 262 

• Another type of error is when the predicted answer span does not over lap with the 263 
ground truth answer span, yet the predictions are are functionally equilvalent. 264 
 265 

Pred: “OECD“ 266 
Truth: “Organisation for Economic Co-operation and Development“ 267 

 268 

• Some errors should not be considered errors. Instead the predicted answers are 269 
better and clearer than the ground truth answers. 270 
 271 

Question: To what gods did Valerian tell the Christians to sacrifice ?  272 
Pred: “Rome 's traditional gods“ 273 

Truth: “Rome 's traditional“ 274 
 275 

5 Conclusion 276 

Overall, we propose a model that consists of a coattention encoder which learns codependent 277 
representations of the question and the context, and a novel multilayer feed forward neural 278 
network decoder that estimates the answer span in a single pass. On the SQuAD test dataset, 279 
our model achieves a single model performance of 52.8% EM and 64.5% F1. In the future, we 280 
will analyze the effects of ensembling on the model performance. We will also explore adding 281 
an LSTM to the decoder in order to select the start and end indices from the final probability 282 
vectors. Additionally, we will perform additional hyperparameter searching, such as 283 
modifying the fixed length question and context cutoffs.  284 

  285 
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