Neural Review Ranking Models for Ads at Yelp

Vishnu Purushothaman Sreenivasan Florian Hartl
visp@stanford.edu florianh@stanford.edu

Abstract

Predicting the click-through rate (CTR) of online advertisements lies at the heart
of the business model of many of the world’s biggest Internet-based companies
like Google, Facebook, or Twitter. While Yelp’s main source of revenue is also
online ads, one characteristic which sets us apart from other companies is that
we often will display a review snippet of the advertised business in the ad cre-
ative. Optimizing which review out of potentially thousands to present to the user
has a significant impact on the CTR. We show that while a simple bag-of-words
model provides a good baseline for selecting reviews, advanced neural models
for natural language processing like Long Short-Term Memory (LSTM) networks
substantially outperform such a baseline. We also report detailed results of the
extensive hyper-parameter optimization we performed.

1 Introduction

Yelp’s main source of revenue stems from online advertising. On all supported platforms - desktop,
mobile web, and mobile app - business ads are presented to users in various parts of the Yelp product.
Figure [T] showcases a sample mobile app ad creative. An advertiser only pays when a user clicks

Next Day Dry Cleaning
ﬂﬂﬂﬂﬂ 5 Reviews

Kate B. said: "l could not love this service more! You put out
your clothes in the morning and they're back the next even...

Figure 1: Example Yelp advertisement.

on the ad, where the final cost of the click is determined by a “generalized second price” auction.
Such an approach is formally described in Edelman et al. [1]] and Varian [2]] and was spearheaded by
Google and Yahoo!. Being able to predict the click-through rate (CTR) of an ad accurately in order
to get a good proxy for its relevance is essential for the efficiency of such an auction. While there are
many factors which influence the CTR of an ad like business, time, and location-based properties,
it is also important how the ad gets displayed to the user. In the example shown in Figure[I]a large
part of the ad is occupied by a snippet of a review of the advertising business. This is representative
of Yelp ads as most will highlight such a review snippet. In previous experiments we were able
to prove that by optimizing the selection of a review for a given business, which might potentiall
have thousands of reviews, based on a simple bag-of-words model, we can significantly improveﬁ
the CTR of the advertisement.

In this paper, we investigate whether we can further enhance the review ranking by applying the re-
cent state-of-the-art neural language models, like LSTMs. We examine multiple model architectures

'Because the CTR metric is used as a proxy for relevance, ideally we would like to select reviews which
maximize CTR and therewith provide a better experience for both users and advertisers of Yelp.

and provide a performance comparison, including detailed results of the extensive hyper-parameter
optimization we performed.

The rest of the paper is organized as follows. We begin by describing related work in Section [2]
Section [3] outlines our approach and experimental setup, including descriptions of the data and the
applied evaluation procedure. Results for all experiments are presented and discussed in Section 4]
before we conclude the paper and report future work in Section [5]

2 Related work

Three areas of research are related to our work: CTR prediction for online advertising by applying
machine learning techniques, learning to rank, and NLP with deep learning.

Industry leaders of online advertising like Google and Facebook have a strong incentive to invest in
click prediction because on the one hand it’s a central input to the ads auction mechanism as pointed
out by He et al. [3] and on the other hand favoring ads with a high CTR leads to a better user and
advertiser experience. Consequently, most published literature in this area of research stems from
Google and the likes. LinkedIn for example outlines an adaptive approach to CTR prediction based
on logistic regression in combination with Thompson sampling in Agarwal et al. [4]. Moreover, two
of the most influential research publications for CTR prediction are by He et al. [3]], describing a
model at Facebook where logistic regression is stacked on top of gradient boosted decision trees,
and by McMabhan et al. [5] from Google, who provide an overview of a series of experiments they
have conducted. None of these works fully apply to our special situation of displaying a review
snippet of the advertised business in the ad creative. Since we already know which advertiser got
selected and the process of choosing a review happens after the ads auction, one main difference is
that we are not concerned as much about the calibration of our CTR predictions as we are about the
correct ranking of the reviews.

With their introduction of RankNet, Burges et al. [6] describe a landmark approach for learning to
rank. Unfortunately, this paper is not set in the domain of ad CTR prediction. Additionally, while
they apply neural networks, the text-based features do not leverage the predictive power of word
vectors or Recurrent Neural Networks (RNNs). Therefore, a more relevant research publication was
made by Li et al. [7]. They approach the CTR prediction task as a ranking problem, in particular
the proposed loss function is a pairwise and pointwise ranking loss. Moreover, word vectors are
used as features. That said, they are focused on predicting the CTR of an ad as a whole and not on
optimizing parts of the ad creative as it is the case for us with reviews and they also still don’t apply
RNN:ss to the text input.

The type of RNNs we examine in this paper are the LSTM and the Gated Recurrent Unit (GRU).
LSTMs were first introduced by Hochreiter and Schmidhuber [§] and a thorough comparison be-
tween LSTMs and GRUs can be found in Jozefowicz et al. [9]. The jury is still out on which archi-
tecture generally performs better. An extension of LSTMs called bidirectional LSTMs is presented
in Graves and Schmidhuber [10]].

A slightly tangential but related approach to deep learning for textual data stems from the use of
Convolutional Neural Networks (CNNs). Kalchbrenner et al. [11]] and Kim [12] investigated the
efficacy and effectiveness of using CNNs for neural language modeling and propose novel model
architectures which achieve state-of-the-art performance when juxtaposing against RNNs.

3 Approach

3.1 Feature pipeline

The inputs to all the models discussed in this paper are detailed in Figure[2] We use the review text as
the primary feature source but also supply the models with other associated meta information about
the review and the business. The four additional meta features which are not derived from the review
text are (1) Review rating (2) Business rating (3) Business review count (4) Business expected CTR
obtained from and in-house CTR model. Given that this in-house business CTR model is agnostic
to reviews of a business just like the other business features, all of them only function as bias terms
to remove the effect of the popularity of a business on the target CTR. Such a bias interpretation

Text preprocessing

Y

‘ and tokenization
Review Tokens
data
Review N Model Predicted

meta features CTR

Y

Business
data

Business
meta features

Figure 2: High level overview of the feature pipeline used across all models.

is only valid for simple linear models and does not generalize to non linear models. Overall, the
described meta features lead to significant improvements on the baseline model (Section [3.2.)) and
hence were used as features in all models outlined in this paper.

For the review text we perform very minimal pre-processing. Some salient points about the review
pre-processing pipeline include

* No lower-casing is performed. The effect of lower-casing was studied for the baseline
model and was seen to not produce any tangible improvements.

* We truncated the review to 300 characters to account for the shortened snippet shown on
the screen. The snippet was tokenized using NLTK’s Tweet Tokeni zerﬂp

* No stemming or lemmatization is performed. These operations were analyzed in the base-
line model producing minimal to no differences in the model performance.

» Stop words and punctuations except for the question mark and exclamation point are re-
moved.

3.2 Model architectures
3.2.1 Baseline: Logistic Regression
We already had a baseline model at our disposal which was a logistic regression trained on

* Unigram (~8000) and bigram (~5000) bag-of-words review text features.
¢ The four additional meta features discussed in the section 3.1}

3.2.2 Neural models
We approach the search over the model space in a two-pronged approach.

1. In the first prong, we search over the space of different model types, like RNNs and CNNs.
This is documented in Table [T| and Appendix [A] contains further details on the different
model architectures.

2. Along the second prong of the search space, we fix on a specific model, namely LSTM,
and a specific hyper-parameter setting. We then vary each hyper-parameter independently
to estimate its effect on model accuracy. Note that we are optimizing a non-convex loss
function and hence the specific model performances corresponding to different parame-
ter settings are not deterministic. The experiments for hyper-parameter optimization are
documented in Table 2l

Review text representation for neural models
We enforce a maximum of 50 words for each review and pad it with zeros in case its word count

2See: https://github.com/nltk/nltk/blob/eac9799f29/nltk/tokenize/casual.py

Table 1: Examined neural models.

MODEL DESCRIPTION
concat-wordvecs Concatenate the word vectors of the review
gru Unidirectional GRU
Istm Unidirectional LSTM
bidir-lstm Bidirectional LSTM
stacked-Istm Two unidirectional, stacked LSTMs
Istm-convnet CNN on word vectors along with a unidirectional LSTM

Table 2: Hyper-parameter settings (* marks default).

HYPER-PARAMETER VALUES
retrain word vectors no*, yes
hidden layers 1,3% 5,7
hidden layer size 32, 64*, 128, 256
dropout none, first hidden layer, all hidden layers*
LSTM hidden state size 100, 200%*, 300, 500

only word vectors of train set no*, yes

is lower. The padded tokens are masked out when computing the loss and during backpropagation
in the case of RNNs whereas for CNNs and concatenated word vectors they cannot be masked
out. The number 50 was chosen after investigating the word count distribution of the review text
snippet shown on ads. For each of these 50 tokens, we fetch its corresponding word vector from
the pretrained, cased 300-dimensional GloVe word vectors which were trained on 840 billion tokens
spanning a vocabulary of 2.2 million Wordﬂ

Default model for hyper-parameter tuning
Figure |3|illustrates the architecture of the default 1 stm model we use to study the effects of hyper-
parameters. The word vectors of the review tokens are fed into an LSTM with a hidden state size

Review tokens (50)
Embedding (50, 300)
LSTM (200) Meta features (4)
\ /

\
Dropout (ReLU (64))
Dropout (tanh (64))
Dropout (ReLU (64))
Sigmoid (1)

Figure 3: LSTM model with default hyper-parameters.

of 200 units. Thereafter, the output of the last time step of the LSTM is concatenated with our four
additional meta features. This vector serves as the input to a three fully connected layers with 64
units each, all of which apply dropout at a rate of 0.5. Both using dropout for all hidden layers as
well as the rate of 0.5 are recommended by Hinton et al. [13]. Finally, we use a sigmoid layer to
obtain the CTR of the review.

We made a conscious decision to include at least one tanh hidden layer. Since we are concatenating
the meta features with the LSTM features, there are no guarantees that the features should be of the
same scale. Having features with widely varying scales usually leads to slower gradient descent.
Using a tanh layer allows us to squish the inputs to a space of (—1,1). We later show the effect of

*Downloaded from: http://nlp.stanford.edu/projects/glove/ (March 4, 2017).

using only ReLU layers (which do not offer sort of data squishing) and show that keeping the tanh
layers does indeed aid the model performance.

3.3 Data

The used data can succinctly be represented as a binomial model:
(review_features) — (#review_ad_impressions, #review_ad_clicks)

Each data point is a review and the target variable is the number of clicks given the number of
impressions. For our purposes we just divide the two to obtain the CTR and use the impression
count to scale the weight of each data point for training and evaluation. The specific contents of
review_features have already been discussed in Section Opverall, the dataset contains
1,350,517 reviews. We randomly divide it into a 50% train, 20% dev, and 30% test set. Because
we care about the ranking order of reviews within each individual business we perform the split by
business-ID.

3.4 Implementation and hardware

For the implementation of our models we used the Kera API which enabled fast iterations and
experimentation while using TensorﬂowE] for the low level optimizations under the hood. To train
our models we found that the Adam optimizer with a learning rate of 0.001 and a mini-batch size
of 1000 worked best. All our models were trained on a g2.2xlarge or, for more memory intensive
models, a g2.8xlarge AWS EC?2 instance, utilizing a single GPU.

3.5 Evaluation
For evaluating the models we use two metrics:

1. The Normalized Cross Entropy (NE) as Cross Entropy (CE) will be the loss the models
will be minimizing. See He et al. [3] for a detailed explanation on the advantages of using
NE over CE.

NE - Sy ik % (g log(pr) + (1 — yi) log(1 — pr))
— k1 T
> pet ik X (yx log(p) + (1 — yx)log(1 — p))

where, iy, is the number of impressions of a review k, y;, is the observed CTR of the review,
Py 1s the predicted CTR of the review, and p is the average CTR of the train set.

2. Since intrinsically the optimization problem we are dealing with is a ranking problem, we
also employ a ranking metric: expected_ctr_gain. For this metric we first compute
the sum of all the clicks and impressions in the dataset (true_clicks). We then sort
the reviews of a business according to the model’s predicted CTR in descending order.
Next, we compute the expected number of clicks each business would have obtained if it
had showed only the best review, according to the model, for all its impressions. For this
we need to assume that the observed CTR for each review is the true click through rate.
Finally, we sum the expected clicks across all businesses (model_expected_clicks)
and compute:

model_expected_clicks — true_clicks

100
true_clicks % %

expected_ctr_gain =

4 Results

In this section we will first describe the evaluation results for the different types of neural models
listed in Table[T|before we address the effects of the hyper-parameters listed in Table [2]

4See: https://github.com/fchollet/keras.
>See: https://www.tensorflow.org/.

bidir-Istm
concat-wordvecs
gru

Istm

Istm-convnet
stacked-Istm

expected CTR gain

bidir-Istm
concat-wordvecs
gru

Istm

10

Istm-convnet
stacked-Istm

5 10 15 20 25 5 10 15 20 25
epochs epochs

Figure 4: NE performance of different Figure 5: Expected CTR gain of differ-
neural models. ent neural models.

4.1 Comparison of neural models

Figure [and Figure [5 illustrate the dev set NE and expected CTR gain performance of the various
model types we experimented with and Table[3|provides an overview of the exact numbers, including
test set results. Since the NE and the expected CTR gain metrics do not share the same best model
across epochs and hence we select the best model for each metric separately based on the dev set
and report the corresponding model’s dev and test metrics in Table[3] Also note that in both Figure[d]
and Figure [5| the baseline bag-of-words model is represented by a black dashed horizontal line.

When looking at the NE evaluation metric, we see that all neural models significantly outperform
the previous bag-of-words approach. While RNN models perform significantly better than the con-
catenated word vectors and the baseline model, the specific type of RNN model doesn’t make much
of a difference. We do not report the metrics here but we found that using averaged word vectors
also performed similar to the concatenated word vectors. Surprisingly, appending a convolutional
max-pooled layer to the LSTM output hurts performance and requires further analysis and hyper-
parameter tuning in order to achieve better results. That the bidirectional LSTM ends up with the
best NE score can be explained by the fact that the beginning of the displayed review snippet is
more likely to be read then the rest of it. It’s also worth mentioning that after about eleven epochs
of training, the RNN model performances flatten out.

For the expected CTR gain metric, we see a similar pattern. All models are able to outperform
the baseline with RNNs in the lead. The effect of overfitting is more pronounced than for the NE
metric as we can see the expected CTR gain of all models decreasing in later epochs. Especially the
bidirectional LSTM reaches its peak performance early before producing steadily declining expected
CTR gains. Surprisingly, the expected CTR gain metric results differ from the NE metric in that the
stacked LSTM is the best model. Since both metrics are reasonable choices, an online A/B test will
have to determine which metric and therewith which model we should deploy in our production
environment.

Table 3: Neural model and baseline performances.

DEV TEST
MODEL NE EXP. CTR GAIN NE EXP. CTR GAIN
bag-of-words 0.97447 22.18 0.97474 25.22
concat-wordvecs | 0.96631 27.57 0.96656 27.32
gru 0.96306 34.46 0.96327 36.13
Istm 0.96313 34.29 0.96331 34.79
bidir-Istm 0.96278 36.21 0.96302 35.57
stacked-1stm 0.96288 36.30 0.96315 38.03
Istm-convnet 0.96382 32.62 0.96411 34.01

4.2 Effects of hyper-parameters

The detailed graphs for each hyper-parameter can be found in Appendix [B| An overview of the
exact evaluation results of the best model for each hyper-parameter setting on the dev set and its
corresponding metrics on the test set is provided in Table[d Note that the expected CTR gain for the
test set sometimes deviates substantially from the dev set results, e.g. for the dropout model variants,
which is a sign that the metric is prone to high variance.

Table 4: Neural model and baseline performances.

DEV TEST
HYPER-PARAMETER NE EXP. CTR GAIN NE EXP. CTR GAIN
retrain word vectors: no 0.96313 34.29 0.96331 34.79
retrain word vectors: yes 0.96626 30.71 0.96648 31.89
hidden layers: 1 0.96327 34.05 0.96352 37.61
hidden layers: 3 0.96313 34.29 0.96331 34.79
hidden layers: 5 0.98373 25.47 0.98380 27.25
hidden layers: 7 0.99594 24.94 0.99579 2343
hidden layer size: 32 0.96364 33.05 0.96383 33.14
hidden layer size: 64 0.96313 34.29 0.96331 34.79
hidden layer size: 128 0.96323 35.76 0.96339 36.29
hidden layer size: 256 0.96288 33.74 0.96329 35.62
dropout: none 0.96267 33.98 0.96293 35.16
dropout: first hidden layer 0.96495 33.63 0.96524 37.86
dropout: all hidden layers 0.96313 34.29 0.96331 34.79
LSTM hidden state size: 100 0.96336 34.10 0.96357 37.27
LSTM hidden state size: 200 0.96313 34.29 0.96331 34.79
LSTM hidden state size: 300 0.96330 34.28 0.96354 37.23
LSTM hidden state size: 500 0.96313 34.09 0.96338 33.91
only word vectors of train set: yes 0.9633 33.18 0.9745 36.31
only word vectors of train set: no 0.96313 34.29 0.96331 34.79
hidden layer activations: (ReLU, ReLU, ReLU) | 0.96432 34.17 0.96455 35.81
hidden layer activations: (ReLU, tanh, ReLU) 0.96313 34.29 0.96331 34.79

Retrain word vectors. Not retraining word vectors but instead keeping them fixed results in signif-
icantly better performance for both NE and expected CTR gain. We most likely don’t have enough
training data for retraining to be favorable.

Number of hidden layers. One and three hidden layers perform much better than the other options
of five or seven layers with three hidden layers having a slight edge over the one layer model,
especially for expected CTR gain. This shows that adding more layers doesn’t necessarily lead to
more accurate models and instead might even lead to the contrary effect. In our case, using five or
seven layers doesn’t even reach the bag-of-words model performance for NE.

Hidden layer size. This hyper-parameter doesn’t have much of an influence on the quality of the
model predictions as all variants perform similarly well. While one might slightly prefer values
of 64 or 128 based on the expected CTR gain graph, the most useful takeaway is that for higher
numbers of units per hidden layer, the training converges faster.

Dropout. While using dropout only in the first hidden layer performs much worse than applying it
to all fully connected layers, not using dropout at all leads to surprisingly good results. The model
without dropout even beats the all dropout version on the NE metric and also seems to be more
resistant to overfitting than expected. Therefore, the conclusion from experimenting with dropout in
our case is that this hyper-parameter has a significant impact on the model performance but doesn’t
follow a clear pattern. Still, the best practice of applying dropout to all fully connected layers worked
well.

LSTM hidden state size. There is no noticeable trend as to which setting would be better than
others. Therefore, the lowest number of LSTM hidden state units of 100 should be chosen in order
to reduce the model training time.

Word vectors from train set only. The idea behind using only the word vectors contained in
our train set instead of the full set of pretrained word vectors is to save resources when operating
the model in a memory restricted production environment. Following this procedure reduced the
memory footprint by an order of magnitude. Since both options exhibit similar performances for
NE as well as expected CTR gain, it turns out that only saving the word vectors of the train set is a
viable approach for our case.

5 Conclusion

We compared various types of neural models against an already existing bag-of-words approach
on the task of ad CTR prediction for reviews of an advertiser. RNNs were able to capture the in-
formation contained in the review text much better than the bag-of-words model and significantly
outperformed it for both the NE as well as the expected CTR gain metric. The best architecture
for NE turned out to be a bidirectional LSTM, whereas for the expected CTR gain metric a stacked
LSTM scored the highest. Both models, however, were only marginally better than a simple LSTM
or GRU model. In addition to these findings, we presented detailed insights into the effects of vari-
ous hyper-parameters on model performance and demonstrated the immense importance of finding
a good configuration. As due to cost and time restrictions it usually is not possible to try all com-
binations of hyper-parameter values, modelling experience and having a good intuition about the
effects of said hyper-parameters go a long way.

Looking forward, we plan to expand our hyper-parameter search; for nstance employing the plethora
of text pre-processing techniques. Thereafter, a meaningful way to utilize the gained knowledge
from our hyper-parameter search would be to apply it to the best neural models from our compar-
ison by retraining them with optimized configurations. An additional direction for future work is
to further explore the combination of convolutional neural networks with RNNs since we currently
don’t have a good understanding why this would have a negative effect on model performance. Fi-
nally, and most importantly, given that each of our two metrics currently feature a different winning
model, the jury is still out on which metric and consequently which model we should prioritize.
Therefore, production environment A/B tests for the bidirectional and stacked LSTMs in order to
answer this question should be the focus of immediate next steps.

Acknowledgments

We’d like to thank Danqi Chen for mentoring this project and the course instructors, Chris Manning
& Richard Socher, together with all teaching assistants for delivering an excellent, highly informa-
tive course.

References

[1] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the generalized
second price auction: Selling billions of dollars worth of keywords. Working Paper 11765, National
Bureau of Economic Research, November 2005. URL http://www.nber.org/papers/wll765.

[2] Hal R. Varian. Position auctions. International Journal of Industrial Organization, 25
(6):1163-1178, December 2007. URL https://ideas.repec.org/a/eee/indorg/
v25y200716pl163-1178.htmll

[3] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Her-
brich, Stuart Bowers, and Joaquin Quifionero Candela. Practical lessons from predicting clicks on ads
at facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Adver-
tising, ADKDD’ 14, pages 5:1-5:9, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2999-6. doi:
10.1145/2648584.2648589. URL http://doi.acm.orqg/10.1145/2648584.2648589,

[4] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang Zhang. Laser: A scalable re-
sponse prediction platform for online advertising. In Proceedings of the 7th ACM International Con-
ference on Web Search and Data Mining, WSDM ’14, pages 173-182, New York, NY, USA, 2014.

http://www.nber.org/papers/w11765
https://ideas.repec.org/a/eee/indorg/v25y2007i6p1163-1178.html
https://ideas.repec.org/a/eee/indorg/v25y2007i6p1163-1178.html
http://doi.acm.org/10.1145/2648584.2648589

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

ACM. ISBN 978-1-4503-2351-2. doi: 10.1145/2556195.2556252. URL http://doi.acm.orqg/
10.1145/2556195.2556252.

H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan
Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg,
Arnar Mar Hrafnkelsson, Tom Boulos, and Jeremy Kubica. Ad click prediction: A view from the trenches.
In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 13, pages 1222-1230, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2174-7. doi:
10.1145/2487575.2488200. URL http://doi.acm.org/10.1145/2487575.2488200,

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender.
Learning to rank using gradient descent. In Proceedings of the 22Nd International Conference on Machine
Learning, ICML ’05, pages 89-96, New York, NY, USA, 2005. ACM. ISBN 1-59593-180-5. doi:
10.1145/1102351.1102363. URL http://doi.acm.org/10.1145/1102351.1102363,

Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and Sandeep Pandey. Click-through prediction for ad-
vertising in twitter timeline. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 15, pages 1959-1968, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3664-2. doi: 10.1145/2783258.2788582. URL http://doi.acm.org/
10.1145/2783258.2788582]

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735-1780,
November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/
10.1162/neco.1997.9.8.1735.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent network
architectures. Journal of Machine Learning Research, 2015.

Alex Graves and Jiirgen Schmidhuber. Framewise phoneme classification with bidirectional Istm and
other neural network architectures. Neural Networks, 18(5):602-610, 2005.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for modelling
sentences. arXiv preprint arXiv:1404.2188, 2014.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,
2014.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.
URLhttp://arxiv.org/abs/1207.0580.

http://doi.acm.org/10.1145/2556195.2556252
http://doi.acm.org/10.1145/2556195.2556252
http://doi.acm.org/10.1145/2487575.2488200
http://doi.acm.org/10.1145/1102351.1102363
http://doi.acm.org/10.1145/2783258.2788582
http://doi.acm.org/10.1145/2783258.2788582
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1207.0580

A Detailed description of model architectures

Concatenated word vectors

Concatenated Word Vectors (50 = 300) Meta features (4)
\ /
|
Dropout (ReLU (64))
Dropout (tanh (64))
Dropout (ReLU (64))

Sigmoid (1)
GRU
Review tokens (50)
Embedding (50, 300)
GRU (200) Meta features (4)
\ /
|
Dropout (ReLU (64))
Dropout (tanh (64))
Dropout (ReLU (64))
Sigmoid (1)
LSTM
Review tokens (50)
Embedding (50, 300)
LSTM (200) Meta features (4)
\ /
|
Dropout (ReLU (64))
Dropout (tanh (64))
Dropout (ReLU (64))
Sigmoid (1)
Bidirectional LSTM
Review tokens (50)
Embedding (50, 300)
Bidirectional LSTM (200) Meta features (4)
\ /
\
Dropout (ReLU (64))
Dropout (tanh (64))
Dropout (ReLU (64))
Sigmoid (1)
Stacked LSTM
Review tokens (50)
Embedding (50, 300)
LSTM (200)
LSTM (200) Meta features (4)
\ /
|
Dropout (ReLU (64))

(
Dropout (tanh (64))
Dropout (ReLU (64))
Sigmoid (1)

10

LSTM + convolutional neural network

Review tokens (50)
Embedding (50, 300)

Review tokens (50) ConvolutionlD (48, 128)
Embedding (50, 300) MaxPoolinglD (9, 128)
LSTM (200) Flatten (1152)

Meta features

Dropout (ReLU (64))

Dropout (tanh (64))

Dropout (ReLU (64))
Sigmoid (1)

B Hyper-parameter comparison graphs

Retrain word vectors

— Istm-no-retrain®
0985 1 Istm-retrain

0980

w 0975 \
2

N\
N \\/\XJN

expected CTR gain
—

—— Istm-no-retrain®
Istm.retrain

(4)

epochs

Figure 6: NE for retraining word vector

10

0
epochs

variants. training word vector variants.

Number of hidden layers

2

Figure 7: Expected CTR gain for re-

— lstm-1-hidden ™
Istm-3-hidden*

—— Istm5-hidden

—— lstm-7T-hidden

expected CTR gain

— Istm-1-hidden

Istm-3-hidden*

—— Istm-5-hidden
—— Istm-T-hidden

Figure 8: NE for hidden layer variants.

11

15 0
epocns

Figure 9: Expected CTR gain for hidden
layer variants.

Hidden layer size

—— Istm-hidden-128
108 Istm-hidden-256
—— Istm-hidden-32
—— Istm.hidden-64*

epochs

Figure 10: NE for hidden layer size
variants.

Dropout

00416 —— Istm-1-drop
Istm-all-drop*

—— Istm-no-drop

00414

00412

M

00410

00408

epochs

Figure 12: NE for dropout variants.

LSTM hidden state size

— Istm-100

Istm-200%
— Istm-300
— Istm-500

Figure 14: NE for LSTM hidden state
size variants.

12

expected CTR gain

— Istm-hidden-128
o Istm-hidden-256
—— Istm-hidden-32
—— Istm-hidden-64*

5 I 15 0 2
epocns

Figure 11: Expected CTR gain for hid-
den layer size variants.

E3
; e /
E / <
£
8t /
&
g /
5]
bl f
E
g 20r
&
g |
B
| — Istm-1-grop
I Istm-all-drop*
10 — Istm-no-rop
5) 5 0 2
epochs

Figure 13: Expected CTR gain for
dropout variants.

c
=
E
5
2
B
o
g
&
5
—— Istm-100
0 Istm-200+
— Istm-300
st — Istm-500
5 10 5 20 2

epochs

Figure 15: Expected CTR gain for
LSTM hidden state size variants.

Word vectors from train set only

—
~oA,
— Istm-all-wordvecs*
1000
Istmtrain-wordvecs » <
0995 5

0390 5
3
&
3
0985 5
w s
= o380 -4
310
0975

U 5
0970
’\ ol — Istm-all-wordvecs*
- Istm-train-wordvecs
5 10 15 20 2
5 10 15 i x ‘epochs

0965

Figure 17: Expected CTR gain for word

Figure 16: NE for word vector variants. :
vector variants.

13

	Introduction
	Related work
	Approach
	Feature pipeline
	Model architectures
	Baseline: Logistic Regression
	Neural models

	Data
	Implementation and hardware
	Evaluation

	Results
	Comparison of neural models
	Effects of hyper-parameters

	Conclusion
	Detailed description of model architectures
	Hyper-parameter comparison graphs

