CS224N Final Project: Detecting Key Needs in Crisis

Tulsee Doshi (tdoshi), Emma Marriott (emarriott), Jay Patel (jayhp9)
March 22, 2017

Abstract

When a crisis occurs, the world springs into action to try and understand what is happening
and what help is required. During these times, twitter has become a key avenue through which
to disseminate information. In this paper, we classify tweets into 18 key categories (such as
[volunteering] or [injury]) in order to organize the stream of knowledge coming in. We also
attempt to predict when a particular category will be tweeted about by leveraging past tweets
and categories to predict future tweet categories. Our most successful result, intermixing a
Word2Vec model with a standard feed-forward classifier is able to classify the tweets with
59% accuracy. We find that more sophisticated models (including added depth to a feed-
forward model and an LSTM that uses a sequence of words to predict a tweet) prove to
be less effective than a more generic classification methodology, likely because of overfitting
on labels that are more common and 2) noise created by combining various types of crises,
such as earthquakes and floods, together. We show that our classification model is more
successful when restrained to specific types of events, with 70% accuracy on earthquake data,
for example. Additionally, we determine that leveraging past history to predict future tweet
patterns is moderately successful. We showcase our LSTM methodology which has achieved
a 33% accuracy. Lastly, we test out our model on the more recent twitter compilations for
two natural disasters: the earthquake in Italy and Louisiana Floods. We show, via qualitative
examples and analysis, that our model can likely scale to natural disasters of various forms.

1 Introduction

2016 saw a number of high-profile natural disasters ranging from the devastation in Haiti, to the
earthquakes in Italy and Japan, to the floods in China. According to CNN, 2016 has seen the
largest financial loss as a result of natural disasters — a whopping $170 Billion dollars [5]. In the
US alone, natural disasters have taken 8 million lives since the year 1900 [3].

Management of natural crises is non-trivial. In most cases, connectivity drops, infrastructure
breaks down, and phone line jams block engagement. As a result, the world is often standing by at
a distance, unaware of the exact state of the situation or how individuals can jump in to help. In
the modern environment, Twitter has taken on a critical role in crisis management. Local tweets
provide updates about injuries etc. from the actual location. Tweets from volunteers, non-profits,
and other organizations provide details about community involvement and donation ability. While
these tweets are grouped together by a collective event hashtag, they often emerge as a disorganized
stream from which important details can be easily lost.

Tangentially, mining twitter data for information has become a key application for natural language
processing. New approaches to understanding words in an embedding space (such as word2vec and
glove), have led to an increased understanding and an ability to classify tweets based on a small
vocabulary. Additionally, both traditional techniques such as SVMs as well as more advanced neu-
ral networks and sequence models have been applied successfully to tweet-classification problems.
These successes are discussed in more depth in the background section below.

In this paper, we tackle crisis management and the organization of information, via classifying
relevant tweets into key categories. Some examples are listed below:

e Donation offers or volunteer services

e Displaced people and activations

e Animal management

e Response efforts

e Caution and advice

e Sympathy and emotional support
e Injured or dead people

e Missing, trapped, or found people
e Infrastructure of utility damage

e Diseases

e Not related or irrelevant

We begin by applying generic linear regression models to the classification problem, and improve
upon this by applying more sophisticated techniques, implemented in Tensorflow. Further details
are provided in the ’Approach’ section below.

2 Background / Related Work

Classification of tweets has been tackled in many shapes and forms over the years. Overtime, we’ve
seen a shift from one-hot vectors representing words to more dense vectors based on word embed-
dings. Yang et.al, for example, show how leveraging word embeddings can improve classification
of tweets to predict election results [7].

Crisis response, in particular, has been tackled leveraging twitter data as well. The paper from
which we borrow data, by Imran et al, focuses on building a strong word2vec model based on crisis
response tweets and leverages basic linear regression models|2].

More sophisticated models have not been used heavily in this space, though a couple papers
have been published in the last year which leverage LSTMs to improve text classification accuracy.
Most notably, Zhou et al showcase that c-LSTMs, a hybrid approach between CNNs and LSTMs
showed significantly improved results over traditional models when classifying text [8].

3 Data

In this paper, we use data created by Imran et al for their paper, "Twitter as a Lifeline: Human-
annotated Twitter Corpora for NLP of Crisis-related Messages" [2]. The dataset consists of tweet
IDs from 19 different natural disasters (including the Nepal earthquake and Ebola virus outbreak).
These 19 disasters represent 8 types of crisis: Earthquakes (5 datasets), Typhoons (3 datasets),
Volcanoes (1 dataset), Floods (2 datasets), War & Conflicts (2 datasets), Biological (2 datasets),
Landslide (3 datasets), Airline Accident (1 dataset). Not all of these datasets are in English,
however. We test with both combining Spanish & English and only leveraging English data. We
determine that only using the English datasets is most effective. The data we use also includes
volunteer-labeled as well as crowd-labeled classifications such as "injury and death" or "volun-
teer". There are 13 such categories.

After taking into account tweets that are no longer present on Twitter, gaps between the la-
beled data and the set of IDs, as well as different languages, we conclude with a resulting data set
of 39000 labeled tweets. We split these tweets into an 80% training set and 20% test set.

3.1 Pre-processing

Using the tweet IDs and a twitter API (tweepy)[6], we scrape tweets based on provided IDs directly
from Twitter, along with the time at which they are posted. We then remove punctuation and stop
words and replace common twitter slang with complete terminology so as to create consistency
(for example, modifying ’gr8’ to be ’great’).

Single tweet classification: feed-forward neural net with hidden layers

Time series: tweet-to-tweet

Arveragad word [l fvsinged woed
Tosswit A Taeet B g of 1= bt & ol
Tuwesl A
—_———

—_—

Figure 1: Diagram illustrating the 3 models: feed forward, LSTM based on individual words, and
LSTM based on tweets

3.2 Word Embeddings

Previous research has shown that dense, learned, word embeddings perform better than sparse
one-hot vectors. We therefore optimize high-quality embeddings. We begin with a baseline of two
sets of Glove pre-trained vectors from the Stanford NLP toolkit[4]. The first is a set of 6B tokens
trained from Wikipedia, and the second is a set of 27B tokens trained specifically on twitter data.

We then improve upon our word vectors by training word2vec skipgram models upon on our
training data of tweets. As shown in Yang. et al, we expect that training specifically on these
words will allow for a more sensitive vocabulary, and will more accurately capture the embedding
space for the crisis response vertical.

In our simple feed forward models (described below), we model each tweet as a simple average
of its word embeddings. While some papers, such as De Boom et al[l], note other ways of doing
this such as concatenating the min and max of the individual word features, we find that averaging
the words proves to be the most successful.

4 Approach

4.1 Baseline based on previous paper

We begin by replicating the work of Imran et al, from whom we take the data. We train an SVM,
a Random Forest, and a Naive Bayes classifier and use this to predict tweet categories.

We penalize the SVM with the Ll-norm in order to account for the high likelihood of having
non-linearly separable data, given that the data is potentially erroneous. Additionally, we start
with a baseline Radial Basis Function (RBF) kernel. The RBF kernel references the following
equation: K(x,x’) = exp(]|x-x’||2). With our RBF kernel, we use the recommended baseline C
value of 1.0 and Gamma value of 0.025 (1/ the number of features).

4.2 Simple feed forward classification

As an initial step to improve classification, we create a simple feed forward neural network. The
network functions as shown in the first row of Figure 1. The individual word embeddings are
averaged and inputted in batches to a neural network and implemented in Tensorflow. We test a

variety of functions, but find best performance with RelU nonlinearities and gradient descent. The
final prediction is based on a softmax distribution.

We experiment & tune for optimal performance. We first look at various levels of hidden lay-
ers (ranging from 1 to 10), and determine that 1 level of depth, with dimension of 200, is the most
successful. This is likely because more layers on such a small dataset, lead to over-fitting.

Figure 2 below shows the tuning of the learning rate. We see that a learning of 3.0 * 1075 is
the most optimal for reducing loss and improving overall performance on the simple feed-forward
neural net, our best performing model overall.

Effect of tuning learning rate on classifier precision (1000 epochs)

0.0004 0.0002 0.0000

Leamning rates

0.0006

Figure 2: Learning Rate vs. Precision

4.3 LSTM classification

We build upon the feed forward baseline by adding an LSTM classifier at the base (shown on the
second row of Figure 1). This classifier takes sequences of word embeddings for a sentence and pro-
duces a hidden layer output at the end of each sentence. Although each tweet is truncated /padded
to be 20 words in length (various padding amounts were tested), we use tensorflow’s dynamic_rnn
function which dynamically generates the computation graph given variable sentence lengths (up
to our maximum length). We also experimented with stacked LSTM cells, although we found that
this multi-cell configuration did not further improve accuracy. The hidden layer from our LSTM
is then fed into a DNN with multiple ReLu layers. We found that the best performance was given
by just one layer with input size 64. The layer is then passed into a softmax distribution with
cross-entropy loss. The equations for the LSTM and its structure are given in Figure 3.

i, =0(W"x, +U"h,_)
f=0Wx, +Uh,_,)

Loss

Softmax
CE

RelLu DNN Layer

0,=c(Wx, +U“h,,)

G, = tanh(W'x, +Uh,.) :

Cf:-flocf—l+lioc’ i

| |
[Tsunami || maximum || wave| [amplitude | [<NULLH [<NULL>|

LSTM Layer

L)

h,= o, otanh(c,)

Figure 3: LSTM Hidden Layer Update Equations (left) and Model Diagram (right)

Once again, we experiment and tune for various parameters. Figure 4 shows the loss curve from
a model with one LSTM and two hidden layers. The table below shows training accuracies and
test accuracies with and without attention on the earthquake data set. Although attention per-
forms better in training, it clearly over-fits and actually performs worse than no attention in test

accuracy.

4.4 Classifying tweets in a time-sequence

Finally, we attempt to classify the label of a tweet by building a sequence model based on the
previous tweets (based on time posted). This is the 3rd row of Figure 1. Many crises have consis-
tent arcs: damage —> information about injury —> sympathy and solidarity —> relief efforts —>

LSTM with Attention

24004 |
2300 \

2200 \

g \
2100 \

o \

1300 ——

Figure 4: LSTM loss

Attention ‘ Training Accuracy Test Accuracy
None 51.65% 45.62%
Length 3 57.48% 42.18%

Table 1: Results from model outputs

volunteering and donations. We hope that this consistency will allow us to build stronger context
about the tweet in question and therefore learn more thoroughly.

This sequence model thus differs from the previous in that instead of taking in individual words in
a single tweet, the model inputs a sequence of tweets one a time, and uses these as well as the tweet
itself to predict the label. The word embeddings in this case are either averaged or aggregated us-
ing min-max (a concatenation of the minimum and maximum embeddings across each dimension),
such that embeddings can still be learned on during training.

As in the other models, we experiment with different levels of attention, hidden layers, learn-
ing rate, and optimization method. We find as before that hidden layers do not further improve
accuracies, while adding attention here helps slightly. Our best performing model had an attention
length of 3, a tweet sequence length of 6, and two ReLu layers in its DNN component. The loss
curve and confusion matrix are shown in the figure below.

Confusion matrix
off75 % @B H 157 83 20 5 7
1750

Tweet Sequence Loss Curve TN DEn e e 7

1
2] s 1
1800 4
5 1500
s 2 Emmmass 72
8 12 2108 41
1600 - s 1250
62795 0827 4 1
Sjuzes 2 2T e @ w8 3 om
s
9

1400 122811 8152 9 81 1 1000

46 3 231 181388 1 2

True label

Loss

10

1200 4 nis s 2 19 R £

12
&)
10004 1

15 250
16

7

Figure 5: Loss curve (right) and confusion matrix (right) for tweet sequence training

4.5 New Twitter Data

In order to test the scalability of our model, we scrape 200 tweets about the Louisiana Floods
and Italy Earthquake last August. We run our model on this sample, and qualitatively evaluate a
sample of 25 tweets. These results can be seen in the Experiment section below.

5 Key Experiment Results

Our initial baseline methods prove to severely under-fit the model. Table 1 showcases the preci-
sions for each of the SVM, Random Forest, and Naive Bayes models. When tested on the training

Model ‘ SVM Random Forest Naive Bayes
Precision | 31.25% 31.25% 25.00%

Table 2: Results from model outputs
data, we see that the output is similar, indicating that the models are training quite poorly.

We then train and run each of our models on all of the English data and compare their best
output. This is shown in Table 2.

Additionally, we compare the 3 types of word embeddings to evaluate their relative performances.
We find that the pre-trained glove vectors have a disadvantage in that many of the words in our
tweets are not in the vocabulary of these vectors. Thus, the trained word2vec embeddings perform
the best. This can be seen in Figure 6.

Vector Type vs. Test Accuracy
65.00% -

55.00%

45.00%

Test Acct

35.00%

25.00% -

Glove 6B Glove 278 word2vec

Vector Type

Figure 6: Word Vector Types vs. Test Accuracy

Model | Feed Forward Feed Forward LSTM (word sequence) LSTM (tweet sequence)
Precision 58.50% 59.01% 45.06% 43.9%
F1-Score .26 33 .34 0.31

Table 3: Results from deep-learning model outputs

We see that the feed forward with a single hidden layer performs the best, while the two LSTMs
perform more poorly than expected. Additionally, the tweet-to-tweet sequence, despite having the
most context, performs the worst in classifying our data. Our hypothesis for this is that more
parameters require more data to learn properly, so any more complex model suffers. With a bigger
data set, we believe an LSTM can outperform the feed-forward neural net.

We investigate this more fully by looking at a confusion matrix to better understand what is
being predicted correctly or incorrectly. In the confusion matrix, which is for Earthquake data, we
can see that not all labels are in all event types. The Earthquake data, for example, only has 6
label types. Additionally, we see that some labels occur significantly more frequently than others.
‘Other Useful Information’ and 'Not_Relevant Information’ are the only two labels, for exam-
ple, that span every event type. They are also the two most common categories, with 51.56% of
the labels being ’Other Useful Information’ and 7.10% being 'Not Relevant Information’. The
large percentage emphasis on one label type likely leads to over-fitting on that label. Note: in the
confusion matrix, label 0 corresponds to 'Not_Relevant Information’ and label 4 corresponds to
’Other Useful Information’. The most common misclassification was 'Not Relevant Information’
as 'Other Useful Information - in examples such as "Balochistan tragic earthquake killing more
thn 300 people PTI Balochistan," the classifier seems to have given the correct label (given that
this pertains to the Pakistan Earthquake), in spite of it being labeled as 'not relevant information.’

Confusion matrix
285 149 37 137 68 30 63 7

IS

19 89 3 49 7 4 31 15 13 11 1 1200

128 100 15 415 3 53 115108 9 76 1000

17 9 6 66 2 1 2
2 1

3 3 3 52 13 58 20 2 5 800

1 1 3 1 3

© @ 9 o W A& W N e

True label

S T L S I T 2 R NP
predicted label

Figure 7: Confusion Matrix for Earthquake Classifications using tweet sequence LSTMs

Model | Feed Forward LSTM (word sequence) LSTM (tweet sequence)
Precision | 66.30% 71.01% 51.75%

Table 4: Model outputs on only earthquake data

Looking through more examples, we found that the disparities in the frequencies of these labels,
as well as unreliability from some volunteer labels, complicate the learning task.

Interestingly, we see that when training and running the model on a single event type (ie. only
Earthquakes), the model performs much better. We believe this is the case because various event
types have specific labels associated with them that may not be present in other events. Addi-
tionally, various events may have different time-series arcs, as well as different word usages. These
differences may make it more difficult to detect patterns and also make it easier to over-fit on the
popular labels that span across multiple events. This was contrary to our hypothesis all along
that a model should generalize to different natural disasters with ease, which rested on the flawed
notion that tweet content related to 'money’ or ’asking for help’ (labels that showed up across a
range of disasters) should not differ all that much across disasters.

Finally, we run our feed forward model on the Louisiana Flood and Italy Earthquake data. We
qualitatively analyze the outputs, and find that in the sample of 25 tweets, 12 are classified cor-
rectly, implying a precision of 0.48%. Some examples of classified tweets are below:

o “Tethered and Abandoned Dogs Left to Die in Louisiana Floods Are Now Forever Safe” —
[Animal Management)]

o “Severe Weather Awareness Week in Louisiana is a good time to prepare for floods, here’s
some tips when prepping — [Caution and Advice]

o FEarthquake (#terremoto) M2.1 strikes 29 km W of Ascoli Piceno (Italy) 10 min ago. —
[Other Useful Information]

6 Conclusion

In conclusion, we find that our neural net model outperforms the linear classification approaches
previously used in this domain. We also find that our model scales moderately well to events
that were not in the training set (such as the earthquake in Italy). We do find, however, that
non-linear, more complex approaches struggle to perform as well. We believe this to be the case
because of a few combining factors: 1) The small sample of usable data, 2) Overfitting to the most

common labels like "Other Useful Information" or "Not Relevant Information", and 3) Noise from
combining multiple different types of events together.

This study accentuates the importance of having larger, more complete datasets, as well as the
importance of training on events that are classified similarly to minimize confusion in the model.
Additionally, we learnt that over-fitting can happen at micro-scale, on a particular label or set of
labels.

A future effort could attempt to retrieve crisis related data from not just Twitter, but also other so-
cial networks like Facebook and Instagram. Additionally, we see better performance when running
the model on individual crises than when training on an aggregate dataset, which breaks our initial
hypothesis that tweets across crises should be quite similar given the nature of natural disasters.
To further explore the correlation inherent in the data (or lack thereof), it would be interesting to
train a model to predict what crisis a tweet is talking about. If that performs well, it implies that
the tweets for different crises are substantially different so we should not expect our very general
neural net (of 59% precision) to do much better.

7 References

[1] Boom, Cedric De, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt. "Representation
Learning for Very Short Texts Using Weighted Word Embedding Aggregation." Elsevier (2016):
n. pag. Ghent University, 2 July 2016. Web. 21 Mar. 2017.

[2] Tmran, Muhammad, Prasenjit Mitra, and Carlos Castillo. "Twitter as a lifeline: Human-
annotated twitter corpora for NLP of crisis-related messages." arXiv preprint arXiv:1605.05894
(2016).

[3] "Natural Disasters since 1900-over 8 Million Deaths and 7 Trillion US Dollars Damage."
Phys.org - News and Articles on Science and Technology. Phys.org, 18 Apr. 2016. Web. 22
Mar. 2017.

[4] Pennington, Jeffrey. "GloVe: Global Vectors for Word Representation." GloVe: Global Vectors
for Word Representation. Stanford University, Aug. 2014. Web. 21 Mar. 2017.

[5] These Disasters Helped Push the Total Damage Caused Natural Catastrophes to 175Billionin2016.” N atural Disast.
Billion in Damage in 2016." CNNMoney. Cable News Network, n.d. Web. 21 Mar. 2017.

[6] "Tweepy." Tweepy. N.p., n.d. Web. 22 Mar. 2017.

[7] Yang, Xiao, Craig Macdonald, and Tadh Ounis. "Using word embeddings in twitter election
classification." arXiv preprint arXiv:1606.07006 (2016).

[8] Zhou, Chunting, et al. "A C-LSTM neural network for text classification." arXiv preprint
arXiv:1511.08630 (2015).

8 Teammate Contributions

Jay, Emma, and Tulsee worked collaboratively to put together this project. Tulsee created the
initial baseline models and word2vec model, Jay created the initial feed-forward model, while Emma
created the LSTM. Each of these was then iterated upon and run by the other two team-members
in terms of tuning, adding hidden layers, attention, etc. The paper was written by Tulsee, with
editing and additions by Jay and Emma.

	Introduction
	Background / Related Work
	Data
	Pre-processing
	Word Embeddings

	Approach
	Baseline based on previous paper
	Simple feed forward classification
	LSTM classification
	Classifying tweets in a time-sequence
	New Twitter Data

	Key Experiment Results
	Conclusion
	References
	Teammate Contributions

