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Abstract 

Question Answering (QA) is one of the most challenging and crucial tasks in 

Natural Language Processing (NLP) that has a wide range of applications in 

various domains, such as information retrieval and entity extraction. Traditional 

methods involve linguistically based NLP techniques, and recent researchers 

apply Deep Learning on this task and have achieved promising result. In this paper, 

we combined Dynamic Coattention Network (DCN) [1] and bilateral multi-

perspective matching (BiMPM) model [2], achieved an F1 score of 63.8% and 

exact match (EM) of 52.3% on test set. 

 

1 Introduction and related work 

Question Answering (QA) is one of the most challenging and crucial tasks in natural language 

processing (NLP) that has a wide range of applications in various domains, such as information 

retrieval and entity extraction. In particular, given a paragraph that represents a series of facts, how 

can we have machines automatically answer a question that is inferred on these facts? 

Traditionally, most of the researches of QA use a pipeline of linguistically based NLP techniques, 

such as parsing, part-of-speech tagging and co-reference resolution [3]. Recently, with rapid 

developments of deep learning, neural network based models have shown promising results for QA 

tasks [1]. However, lack of large-scale high quality datasets limits the training of deep neural 

networks. Previous datasets for QA task tend to be high in quality due to human annotation, but 

small in size [4]. Although researchers have developed large-scale datasets through semi-automated 

techniques [5, 6], they differ from human annotated datasets in the types of reasoning required to 

answer the questions [7]. 

To address the need for a large and high-quality reading comprehension dataset, Rajpurkar et al [8] 

released the Stanford Question Answering dataset (SQuAD), which consists of questions posed by 

crowdworkers on a set of Wikipedia articles, where the answers to every question is a segment of 

text from the corresponding reading paragraph. SQuAD is almost two orders of magnitude larger 

than previous manually labeled datasets, and thus is very suitable for deep neural network models 

to train. 
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Xiong et al [1] introduced the Dynamic Coattention Network (DCN), an end-to-end neural network 

for question answering, which consists of a coattentive encoder that captures interactions between 

the question and the document, as well as a dynamic pointing decoder that alternates between 

estimating the start and end of the answer span. Wang et al [2] proposed a bilateral multi-perspective 

matching (BiMPM) model, which first encodes two sentences with a bidirectional Long Short-Term 

Memory Network (BiLSTM), and then matched the two encoded sentences in two directions. In this 

paper, we propose to combine these two models, and our model obtains an F1 score of 63.8% and 

exact match (EM) 52.3%. 

2 Dataset 

The dataset we use for our project is the Stanford Question Answering Dataset (SQuAD), which 

consists of 107,785 question-answer pairs, along with a context paragraph [8]. The context 

paragraphs were extracted from 536 articles on Wikipedia by crowdworkers. The answer to every 

question is a segment of text, or span, from the corresponding reading passage [8]. 

3 Problem definition 

Our task is to answer questions in SQuAD: given a context paragraph P and a question Q, find an 

answer span (s, e) for the question so that P[s:e] gives the corresponding answer, where s is the 

answer start position and e is the answer end position. The performance of our model is evaluated 

by two metrics: F1 score and exact match (EM). 

4 Dynamic coattention model with filter-context encoder 

The overview of our model is shown in Figure 1. Our model combines part of the bilateral multi-

perspective matching model [2] (filter-context encoder) with the entire dynamic coattention 

networks model [1] (coattention encoder and dynamic pointing decoder). 

 

Figure 1: Model overview. 

4.1 Filter-context encoder (component A) 

Figure 2 shows the architecture of the filter-context encoder. Given a pair of question  𝑞  and 

passage 𝑝, the filter-context encoder produces a new pair of word representations 𝑄 and 𝐷 through 

the following three layers. 

4.1.1 Word representation layer 

This layer represents each word in question and passage with a 𝑑-dimension vector. We employ 

word embedding, which is pre-trained with GloVe [9], to construct the 𝑑-dimension vector. The 
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output of this layer is word vector sequences for question 𝑞1:𝑀 and passage 𝑝1:𝑁 .  

 

Figure 2: Filter-context encoder [2]. 

4.1.2 Filter layer 

This layer filters out the redundant information that is not relevant to the question from the passage. 

First, it calculates a relevancy degree 𝑟𝑗  for each 𝑝𝑗: it computes a relevancy degree 𝑟𝑖𝑗  for each pair 

of word vectors 𝑞𝑖  and 𝑝𝑗  , using cosine similarity 𝑟𝑖𝑗 =
𝑞𝑖

𝑇𝑝𝑗

‖𝑞𝑖‖∙‖𝑝𝑗‖
; then 𝑟𝑗 = max

𝑖
𝑟𝑖𝑗 . Second, it filters 

the word vector by 𝑝𝑗
′ = 𝑟𝑗 ∙ 𝑝𝑗  and pass 𝑝𝑗

′  to next layer. The motivation here is a word more relevant 

to any word in question should have more information for answering the question and should be 

considered more.  

4.1.3 Context representation layer 

This layer incorporates the contextual information into the representation of each time step in 

passage and question. It employs two different bidirectional LSTM [10] (BiLSTM). 

ℎ⃗ 𝑖
𝑞

= 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑞(ℎ⃗ 𝑖−1
𝑞

, 𝑞𝑖) ∈ ℝ𝑙/2, ℎ⃖⃗𝑖
𝑞

= 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑞(ℎ⃖⃗𝑖+1
𝑞

, 𝑞𝑖) ∈ ℝ𝑙/2 

ℎ⃗ 𝑗
𝑝

= 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑝(ℎ⃗ 𝑗−1
𝑝

, 𝑝𝑗) ∈ ℝ𝑙/2, ℎ⃖⃗𝑗
𝑝

= 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑝(ℎ⃖⃗𝑗+1
𝑝

, 𝑝𝑗) ∈ ℝ𝑙/2 

The output vectors 𝑄 ∈ ℝ𝑙×𝑀  and 𝐷 ∈ ℝ𝑙×𝑁 from each BiLSTM in each time step are passed to the 

coattention encoder in next section as input. 

The motivation of adding this filter-context encoder to our model is that in the dynamic coattention 

networks model [1], they used only one simple LSTM encoder to generate the contextual word 

representation. Filter-context encoder is more advanced for: 1) it filters out the redundant 

information in the passage according to question, and 2) it uses two different stronger BiLSTM for 

question and passage separately to encode the new representations. We will later show that the filter-

context encoder can actually improve the performance of the whole model greatly.  

4.2 Coattention encoder (component B) 

Figure 3 shows the architecture of coattention encoder. This encoder introduces the attention 

technique to strengthen the word representations for both question and passage, and finally fuses 

both attention context. 

First, the encoder compute the affinity matrix between question and passage. The inputs are word 

representations 𝑄 ∈ ℝ𝑙×𝑀 and 𝐷 ∈ ℝ𝑙×𝑁 generated by filter-context encoder in the previous section, 

and the affinity matrix is 𝐿 = 𝐷𝑇𝑄 ∈ ℝ𝑁×𝑀. Then 𝐿 is normalized row-wise to produce the attention 

weights 𝐴𝑄 and column-wise to produce 𝐴𝐷: 

𝐴𝑄 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿) ∈ ℝ𝑁×𝑀, 𝐴𝐷 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑇) ∈ ℝ𝑀×𝑁 

Next, it utilizes these affinity weights to produce attention contexts representations: 
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𝐶𝑄 = 𝐷𝐴𝑄 ∈ ℝ𝑙×𝑀 

𝐶𝐷 = [𝑄; 𝐶𝑄]𝐴𝑄 ∈ ℝ2𝑙×𝑀 

The last step is to send 𝐶𝐷, the coattention context for document, to a BiLSTM to fuse the temporal 

information to generate our “super powerful” final word representation: 

ℎ⃗ 𝑡
𝑒𝑛𝑐 = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑒𝑛𝑐(ℎ⃗ 𝑡−1

𝑒𝑛𝑐 , [𝐷𝑡; 𝐶𝑡
𝐷]) ∈ ℝ𝑙 

ℎ⃖⃗𝑡
𝑒𝑛𝑐 = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑒𝑛𝑐(ℎ⃖⃗𝑡+1

𝑒𝑛𝑐 , [𝐷𝑡; 𝐶𝑡
𝐷]) ∈ ℝ𝑙 

The output vector  𝑈 ∈ ℝ2𝑙×𝑁   from this BiLSTM in each time step are passed to the dynamic 

pointing decoder as input. 𝑈 is called coattention encoding. 

 

Figure 3: Coattention encoder [1]. 

Basically, what the coattention encoder does is to use mutual relevancy scores to filter out the 

redundant information and strengthen the related part for question embedding and passage 

embedding simultaneously; and then incorporate the temporal (contextual) information into the final 

embedding with BiLSTM. To some extent, this is similar to the filter-context encoder but it’s more 

powerful since also strengthen the embedding of question using coattention while filter-context 

encoder is only for the passage.  

The coattention encoder is chosen as part of our model because it can provide a much more powerful 

representation for the passage, which contains much mutual relevancy as well as contextual 

information. This strong encoding can be very helpful in answer prediction in the dynamic pointing 

decoder part.  

4.3 Dynamic pointing decoder (component C) 

 

Figure 4: Dynamic pointing decoder [1]. 
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Figure 4 shows the overview of dynamic pointing decoder. Given the coattention encoding 𝑈, the 

dynamic pointing decoder employs a LSTM to re-estimate the answer span for multiple times to 

recover from some local optima predictions: 

ℎ𝑖 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐(ℎ𝑖−1, [𝑈𝑠𝑖−1
; 𝑈𝑒𝑖−1

])  ∈ ℝ𝑙 , 

where 𝑖  means this is the  𝑖 -th guess of the answer span, ℎ𝑖   is the hidden state of the  𝑖 -th step, 

𝑠𝑖−1 and 𝑒𝑖−1 are the predictions for start and end position of the answer span in the (𝑖-1)-th guess, 

and  𝑈𝑠𝑖−1
  and  𝑈𝑒𝑖−1

  are the coattention encodings of the corresponding words at start and end 

position of the prediction. The output vector of LSTM at step 𝑖 is denoted as 𝑜𝑖 ∈ ℝ𝑙. 

To predict the answer span at each iteration  𝑖 , the dynamic pointing decoder generates two 

scores 𝛼𝑡  and 𝛽𝑡  for each word in the passage with its coattention encoding 𝑈𝑡  and take the words 

with highest score as start and end predictions: 

𝑠𝑖 = 𝑎𝑟𝑔 max
𝑡=1:𝑁

𝛼𝑡 , 𝑒𝑖 = 𝑎𝑟𝑔 max
𝑡=1:𝑁

𝛽𝑡 

For the  𝑡 -th word, the start score  𝛼𝑡   and end score  𝛽𝑡   are calculated by two Highway Maxout 

Networks [1] (HMN) that don’t share parameters. It is stated that HMN can pool across multiple 

model variations required for answering different question types and topics. It can be written as: 

𝛼𝑡 = 𝐻𝑀𝑁𝑠𝑡𝑎𝑟𝑡(𝑈𝑡 , 𝑜𝑖 , 𝑈𝑠𝑖−1
, 𝑈𝑒𝑖−1

), 𝛽𝑡 = 𝐻𝑀𝑁𝑒𝑛𝑑(𝑈𝑡 , 𝑜𝑖 , 𝑈𝑠𝑖−1
, 𝑈𝑒𝑖−1

) 

The detailed model of HMN is described as follows: 

𝐻𝑀𝑁(𝑈𝑡 , 𝑜𝑖 , 𝑈𝑠𝑖−1
, 𝑈𝑒𝑖−1

) = max(𝑊(3)[𝑚𝑡
(1)

; 𝑚𝑡
(2)

] + 𝑏(3)) 

𝑟 = tanh(𝑊(𝐷)[𝑜𝑖; 𝑈𝑠𝑖−1
; 𝑈𝑒𝑖−1

]) ∈ ℝ𝑙  

𝑚𝑡
(1)

= max(𝑊(1)[𝑈𝑡; 𝑟] + 𝑏(1)) ∈ ℝ𝑙 

𝑚𝑡
(2)

= max(𝑊(2)𝑚𝑡
(1)

+ 𝑏(2)) ∈ ℝ𝑙 

where 𝑟 ∈ ℝ𝑙  is the non-linear projection of current state with 𝑊(𝐷) ∈ ℝ𝑙×5𝑙, 𝑚𝑡
(1)

 is the output of 

the first maxout layer (pooling size 𝑝) with parameters 𝑊(1) ∈ ℝ𝑝×𝑙×3𝑙 and 𝑏(1) ∈ ℝ𝑝×𝑙, and 𝑚𝑡
(2)

 is 

the output of the second maxout layer with parameters  𝑊(2) ∈ ℝ𝑝×𝑙×𝑙   and 𝑏(1) ∈ ℝ𝑝×𝑙  . Then 

both 𝑚𝑡
(1)

 and 𝑚𝑡
(2)

 are sent to the final maxout layer with parameters 𝑊(3) ∈ ℝ𝑝×1×2𝑙  and 𝑏(1) ∈

ℝ𝑝. which is called the highway connection.  

For training, we minimize the cumulative softmax cross entropy of the start and end points across 

all iterations. We also tried different ways to combine the losses of different iterations: sum of all 

the losses, weighted sum of them, and only the last loss. Experiments show that the sum of all the 

losses can yield a better performance than the other two ways. 

The motivation of adding the dynamic pointing decoder to our model is: 1) its LSTM part can predict 

the answer span for multiple times and is able to refine the predictions based on the previous ones 

and recover from local optima; and 2) its HMN part can train multiple model variations to handle 

different question types and topics and produce robust prediction scores.  

5 Experiment, result, and discussion 

5.1 Hyper-parameter selection and analysis 

We implemented our model in TensorFlow and run multiple test cases to determine the best 

combination of hyper-parameters. Experiment results after training for 5 epochs is shown in Table 

1. From it we found that 1) Cumulative softmax-CE loss gives better performance over other loss 

functions. This is expected as CE, or cross-entropy gives a natural loss for tasks like matching the 
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answer. 2) Component A (Filter-Context Encoder) boost the model a lot. This reflects that our adding 

of component A indeed helps the model by providing a stronger representation of the word which 

involves the mutual information between the paragraph and the question. 3) Change in length of 

LSTM in Dynamic Pointing Decoder, or H, doesn’t impact the performance much, and H=4 yields 

a slightly better one. This is not surprising since the predicted start and end position should converge 

fast in order to get a minimal loss, thus making H=10 won’t help much. 4) GloVe 840B is better for 

this task than GloVe 6B, though the improvement is limited. On one hand, GloVe 6B is trained based 

on Wikipedia data, thus should better match our dataset (which is from Wikipedia as well); on the 

other hand, GloVe 840B is trained on more text data thus the vector of each word should be more 

representative. Our results show that GloVe 840B is slightly better, implies that GloVe 840B could 

be used for more general QA tasks in the future. 

Table 1: Experiments for hyper-parameter selection  

  

After the experiments, we selected the top 3 parameter settings from experiments and use them to 

train our model.  

5.2 Main results 

After 10-hour training with more than 10 epochs, the best one among all selected parameter settings 

achieved an F1 score of 63.8% and exact match (EM) of 52.3%, with its learning curve in Figure 

5. Notice that our model shows signal of over-fitting after 4K iterations, which was not well detected 

in our parameter-selection phase as it only tests the parameters on a 5-epoch training. 

 

Figure 5: Learning curve. 
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5.3 Performance on different question types and analysis 

We split the questions into different groups including “what”, “how”, “who”, “when”, “which”, 

“where” and “why”, and analyze our model by examining its performance across question types, as 

shown in Figure 6; where the height of each bar represents the mean F1 for the given question type 

and the lower number denotes how many instances in the dev set are of the corresponding question 

type. We note that our model works best for “when” questions. This may suggest that our model is 

best at recognizing temporal expressions. Other groups of questions whose answers are noun phrases, 

such as “who”, “where”, “which” and “how” questions, also get relatively better results. On the 

other hand, “why” questions are the hardest to answer. This is somewhat expected because the 

answers to “why” questions can be very diverse and complex, and they are not restricted to any 

certain type of phrases. 

 

 

Figure 6: Performance across question types. 

6 Conclusion and future work 

In conclusion, we successfully introduced filter-context encoder to Dynamic Coattention Networks 

model, achieved 63.8% F1 and 52.3% EM, which shows a significant improvement over the logistic 

regression baseline model with 51% F1 and 40.4% EM [11]. 

Based on the performance analysis over different question types in Section 5.3, we plan to train sub-

models based on the type of question type, and ensemble them to acquire the overall model. This 

may further improve the performance as each type of question has its own characteristic which 

might be learned better separately. In addition, one obvious improvement should be made in the 

future is to tune the dropout rate to avoid overfitting. 
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