
Codalab username: yangxin March 22, 2017 Use 3 late days

1

Filter-Context Dynamic Coattention Networks for

Question Answering

Yangxin Zhong

Stanford University

yangxin@stanford.edu

Peng Yuan

Stanford University

pengy@stanford.edu

Jian Huang

Stanford University

jhuang33@stanford.edu

Abstract

Question Answering (QA) is one of the most challenging and crucial tasks in

Natural Language Processing (NLP) that has a wide range of applications in

various domains, such as information retrieval and entity extraction. Traditional

methods involve linguistically based NLP techniques, and recent researchers

apply Deep Learning on this task and have achieved promising result. In this paper,

we combined Dynamic Coattention Network (DCN) [1] and bilateral multi-

perspective matching (BiMPM) model [2], achieved an F1 score of 63.8% and

exact match (EM) of 52.3% on test set.

1 Introduction and related work

Question Answering (QA) is one of the most challenging and crucial tasks in natural language

processing (NLP) that has a wide range of applications in various domains, such as information

retrieval and entity extraction. In particular, given a paragraph that represents a series of facts, how

can we have machines automatically answer a question that is inferred on these facts?

Traditionally, most of the researches of QA use a pipeline of linguistically based NLP techniques,

such as parsing, part-of-speech tagging and co-reference resolution [3]. Recently, with rapid

developments of deep learning, neural network based models have shown promising results for QA

tasks [1]. However, lack of large-scale high quality datasets limits the training of deep neural

networks. Previous datasets for QA task tend to be high in quality due to human annotation, but

small in size [4]. Although researchers have developed large-scale datasets through semi-automated

techniques [5, 6], they differ from human annotated datasets in the types of reasoning required to

answer the questions [7].

To address the need for a large and high-quality reading comprehension dataset, Rajpurkar et al [8]

released the Stanford Question Answering dataset (SQuAD), which consists of questions posed by

crowdworkers on a set of Wikipedia articles, where the answers to every question is a segment of

text from the corresponding reading paragraph. SQuAD is almost two orders of magnitude larger

than previous manually labeled datasets, and thus is very suitable for deep neural network models

to train.

Codalab username: yangxin March 22, 2017 Use 3 late days

2

Xiong et al [1] introduced the Dynamic Coattention Network (DCN), an end-to-end neural network

for question answering, which consists of a coattentive encoder that captures interactions between

the question and the document, as well as a dynamic pointing decoder that alternates between

estimating the start and end of the answer span. Wang et al [2] proposed a bilateral multi-perspective

matching (BiMPM) model, which first encodes two sentences with a bidirectional Long Short-Term

Memory Network (BiLSTM), and then matched the two encoded sentences in two directions. In this

paper, we propose to combine these two models, and our model obtains an F1 score of 63.8% and

exact match (EM) 52.3%.

2 Dataset

The dataset we use for our project is the Stanford Question Answering Dataset (SQuAD), which

consists of 107,785 question-answer pairs, along with a context paragraph [8]. The context

paragraphs were extracted from 536 articles on Wikipedia by crowdworkers. The answer to every

question is a segment of text, or span, from the corresponding reading passage [8].

3 Problem definition

Our task is to answer questions in SQuAD: given a context paragraph P and a question Q, find an

answer span (s, e) for the question so that P[s:e] gives the corresponding answer, where s is the

answer start position and e is the answer end position. The performance of our model is evaluated

by two metrics: F1 score and exact match (EM).

4 Dynamic coattention model with filter-context encoder

The overview of our model is shown in Figure 1. Our model combines part of the bilateral multi-

perspective matching model [2] (filter-context encoder) with the entire dynamic coattention

networks model [1] (coattention encoder and dynamic pointing decoder).

Figure 1: Model overview.

4.1 Filter-context encoder (component A)

Figure 2 shows the architecture of the filter-context encoder. Given a pair of question 𝑞 and

passage 𝑝, the filter-context encoder produces a new pair of word representations 𝑄 and 𝐷 through

the following three layers.

4.1.1 Word representation layer

This layer represents each word in question and passage with a 𝑑-dimension vector. We employ

word embedding, which is pre-trained with GloVe [9], to construct the 𝑑-dimension vector. The

Codalab username: yangxin March 22, 2017 Use 3 late days

3

output of this layer is word vector sequences for question 𝑞1:𝑀 and passage 𝑝1:𝑁 .

Figure 2: Filter-context encoder [2].

4.1.2 Filter layer

This layer filters out the redundant information that is not relevant to the question from the passage.

First, it calculates a relevancy degree 𝑟𝑗 for each 𝑝𝑗: it computes a relevancy degree 𝑟𝑖𝑗 for each pair

of word vectors 𝑞𝑖 and 𝑝𝑗 , using cosine similarity 𝑟𝑖𝑗 =
𝑞𝑖

𝑇𝑝𝑗

‖𝑞𝑖‖∙‖𝑝𝑗‖
; then 𝑟𝑗 = max

𝑖
𝑟𝑖𝑗 . Second, it filters

the word vector by 𝑝𝑗
′ = 𝑟𝑗 ∙ 𝑝𝑗 and pass 𝑝𝑗

′ to next layer. The motivation here is a word more relevant

to any word in question should have more information for answering the question and should be

considered more.

4.1.3 Context representation layer

This layer incorporates the contextual information into the representation of each time step in

passage and question. It employs two different bidirectional LSTM [10] (BiLSTM).

ℎ⃗ 𝑖
𝑞

= 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑞(ℎ⃗ 𝑖−1
𝑞

, 𝑞𝑖) ∈ ℝ𝑙/2, ℎ⃖⃗𝑖
𝑞

= 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑞(ℎ⃖⃗𝑖+1
𝑞

, 𝑞𝑖) ∈ ℝ𝑙/2

ℎ⃗ 𝑗
𝑝

= 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝(ℎ⃗ 𝑗−1
𝑝

, 𝑝𝑗) ∈ ℝ𝑙/2, ℎ⃖⃗𝑗
𝑝

= 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑝(ℎ⃖⃗𝑗+1
𝑝

, 𝑝𝑗) ∈ ℝ𝑙/2

The output vectors 𝑄 ∈ ℝ𝑙×𝑀 and 𝐷 ∈ ℝ𝑙×𝑁 from each BiLSTM in each time step are passed to the

coattention encoder in next section as input.

The motivation of adding this filter-context encoder to our model is that in the dynamic coattention

networks model [1], they used only one simple LSTM encoder to generate the contextual word

representation. Filter-context encoder is more advanced for: 1) it filters out the redundant

information in the passage according to question, and 2) it uses two different stronger BiLSTM for

question and passage separately to encode the new representations. We will later show that the filter-

context encoder can actually improve the performance of the whole model greatly.

4.2 Coattention encoder (component B)

Figure 3 shows the architecture of coattention encoder. This encoder introduces the attention

technique to strengthen the word representations for both question and passage, and finally fuses

both attention context.

First, the encoder compute the affinity matrix between question and passage. The inputs are word

representations 𝑄 ∈ ℝ𝑙×𝑀 and 𝐷 ∈ ℝ𝑙×𝑁 generated by filter-context encoder in the previous section,

and the affinity matrix is 𝐿 = 𝐷𝑇𝑄 ∈ ℝ𝑁×𝑀. Then 𝐿 is normalized row-wise to produce the attention

weights 𝐴𝑄 and column-wise to produce 𝐴𝐷:

𝐴𝑄 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿) ∈ ℝ𝑁×𝑀, 𝐴𝐷 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑇) ∈ ℝ𝑀×𝑁

Next, it utilizes these affinity weights to produce attention contexts representations:

Codalab username: yangxin March 22, 2017 Use 3 late days

4

𝐶𝑄 = 𝐷𝐴𝑄 ∈ ℝ𝑙×𝑀

𝐶𝐷 = [𝑄; 𝐶𝑄]𝐴𝑄 ∈ ℝ2𝑙×𝑀

The last step is to send 𝐶𝐷, the coattention context for document, to a BiLSTM to fuse the temporal

information to generate our “super powerful” final word representation:

ℎ⃗ 𝑡
𝑒𝑛𝑐 = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒𝑛𝑐(ℎ⃗ 𝑡−1

𝑒𝑛𝑐 , [𝐷𝑡; 𝐶𝑡
𝐷]) ∈ ℝ𝑙

ℎ⃖⃗𝑡
𝑒𝑛𝑐 = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑒𝑛𝑐(ℎ⃖⃗𝑡+1

𝑒𝑛𝑐 , [𝐷𝑡; 𝐶𝑡
𝐷]) ∈ ℝ𝑙

The output vector 𝑈 ∈ ℝ2𝑙×𝑁 from this BiLSTM in each time step are passed to the dynamic

pointing decoder as input. 𝑈 is called coattention encoding.

Figure 3: Coattention encoder [1].

Basically, what the coattention encoder does is to use mutual relevancy scores to filter out the

redundant information and strengthen the related part for question embedding and passage

embedding simultaneously; and then incorporate the temporal (contextual) information into the final

embedding with BiLSTM. To some extent, this is similar to the filter-context encoder but it’s more

powerful since also strengthen the embedding of question using coattention while filter-context

encoder is only for the passage.

The coattention encoder is chosen as part of our model because it can provide a much more powerful

representation for the passage, which contains much mutual relevancy as well as contextual

information. This strong encoding can be very helpful in answer prediction in the dynamic pointing

decoder part.

4.3 Dynamic pointing decoder (component C)

Figure 4: Dynamic pointing decoder [1].

Codalab username: yangxin March 22, 2017 Use 3 late days

5

Figure 4 shows the overview of dynamic pointing decoder. Given the coattention encoding 𝑈, the

dynamic pointing decoder employs a LSTM to re-estimate the answer span for multiple times to

recover from some local optima predictions:

ℎ𝑖 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐(ℎ𝑖−1, [𝑈𝑠𝑖−1
; 𝑈𝑒𝑖−1

]) ∈ ℝ𝑙 ,

where 𝑖 means this is the 𝑖 -th guess of the answer span, ℎ𝑖 is the hidden state of the 𝑖 -th step,

𝑠𝑖−1 and 𝑒𝑖−1 are the predictions for start and end position of the answer span in the (𝑖-1)-th guess,

and 𝑈𝑠𝑖−1
 and 𝑈𝑒𝑖−1

 are the coattention encodings of the corresponding words at start and end

position of the prediction. The output vector of LSTM at step 𝑖 is denoted as 𝑜𝑖 ∈ ℝ𝑙.

To predict the answer span at each iteration 𝑖 , the dynamic pointing decoder generates two

scores 𝛼𝑡 and 𝛽𝑡 for each word in the passage with its coattention encoding 𝑈𝑡 and take the words

with highest score as start and end predictions:

𝑠𝑖 = 𝑎𝑟𝑔 max
𝑡=1:𝑁

𝛼𝑡 , 𝑒𝑖 = 𝑎𝑟𝑔 max
𝑡=1:𝑁

𝛽𝑡

For the 𝑡 -th word, the start score 𝛼𝑡 and end score 𝛽𝑡 are calculated by two Highway Maxout

Networks [1] (HMN) that don’t share parameters. It is stated that HMN can pool across multiple

model variations required for answering different question types and topics. It can be written as:

𝛼𝑡 = 𝐻𝑀𝑁𝑠𝑡𝑎𝑟𝑡(𝑈𝑡 , 𝑜𝑖 , 𝑈𝑠𝑖−1
, 𝑈𝑒𝑖−1

), 𝛽𝑡 = 𝐻𝑀𝑁𝑒𝑛𝑑(𝑈𝑡 , 𝑜𝑖 , 𝑈𝑠𝑖−1
, 𝑈𝑒𝑖−1

)

The detailed model of HMN is described as follows:

𝐻𝑀𝑁(𝑈𝑡 , 𝑜𝑖 , 𝑈𝑠𝑖−1
, 𝑈𝑒𝑖−1

) = max(𝑊(3)[𝑚𝑡
(1)

; 𝑚𝑡
(2)

] + 𝑏(3))

𝑟 = tanh(𝑊(𝐷)[𝑜𝑖; 𝑈𝑠𝑖−1
; 𝑈𝑒𝑖−1

]) ∈ ℝ𝑙

𝑚𝑡
(1)

= max(𝑊(1)[𝑈𝑡; 𝑟] + 𝑏(1)) ∈ ℝ𝑙

𝑚𝑡
(2)

= max(𝑊(2)𝑚𝑡
(1)

+ 𝑏(2)) ∈ ℝ𝑙

where 𝑟 ∈ ℝ𝑙 is the non-linear projection of current state with 𝑊(𝐷) ∈ ℝ𝑙×5𝑙, 𝑚𝑡
(1)

 is the output of

the first maxout layer (pooling size 𝑝) with parameters 𝑊(1) ∈ ℝ𝑝×𝑙×3𝑙 and 𝑏(1) ∈ ℝ𝑝×𝑙, and 𝑚𝑡
(2)

 is

the output of the second maxout layer with parameters 𝑊(2) ∈ ℝ𝑝×𝑙×𝑙 and 𝑏(1) ∈ ℝ𝑝×𝑙 . Then

both 𝑚𝑡
(1)

 and 𝑚𝑡
(2)

 are sent to the final maxout layer with parameters 𝑊(3) ∈ ℝ𝑝×1×2𝑙 and 𝑏(1) ∈

ℝ𝑝. which is called the highway connection.

For training, we minimize the cumulative softmax cross entropy of the start and end points across

all iterations. We also tried different ways to combine the losses of different iterations: sum of all

the losses, weighted sum of them, and only the last loss. Experiments show that the sum of all the

losses can yield a better performance than the other two ways.

The motivation of adding the dynamic pointing decoder to our model is: 1) its LSTM part can predict

the answer span for multiple times and is able to refine the predictions based on the previous ones

and recover from local optima; and 2) its HMN part can train multiple model variations to handle

different question types and topics and produce robust prediction scores.

5 Experiment, result, and discussion

5.1 Hyper-parameter selection and analysis

We implemented our model in TensorFlow and run multiple test cases to determine the best

combination of hyper-parameters. Experiment results after training for 5 epochs is shown in Table

1. From it we found that 1) Cumulative softmax-CE loss gives better performance over other loss

functions. This is expected as CE, or cross-entropy gives a natural loss for tasks like matching the

Codalab username: yangxin March 22, 2017 Use 3 late days

6

answer. 2) Component A (Filter-Context Encoder) boost the model a lot. This reflects that our adding

of component A indeed helps the model by providing a stronger representation of the word which

involves the mutual information between the paragraph and the question. 3) Change in length of

LSTM in Dynamic Pointing Decoder, or H, doesn’t impact the performance much, and H=4 yields

a slightly better one. This is not surprising since the predicted start and end position should converge

fast in order to get a minimal loss, thus making H=10 won’t help much. 4) GloVe 840B is better for

this task than GloVe 6B, though the improvement is limited. On one hand, GloVe 6B is trained based

on Wikipedia data, thus should better match our dataset (which is from Wikipedia as well); on the

other hand, GloVe 840B is trained on more text data thus the vector of each word should be more

representative. Our results show that GloVe 840B is slightly better, implies that GloVe 840B could

be used for more general QA tasks in the future.

Table 1: Experiments for hyper-parameter selection

After the experiments, we selected the top 3 parameter settings from experiments and use them to

train our model.

5.2 Main results

After 10-hour training with more than 10 epochs, the best one among all selected parameter settings

achieved an F1 score of 63.8% and exact match (EM) of 52.3%, with its learning curve in Figure

5. Notice that our model shows signal of over-fitting after 4K iterations, which was not well detected

in our parameter-selection phase as it only tests the parameters on a 5-epoch training.

Figure 5: Learning curve.

Codalab username: yangxin March 22, 2017 Use 3 late days

7

5.3 Performance on different question types and analysis

We split the questions into different groups including “what”, “how”, “who”, “when”, “which”,

“where” and “why”, and analyze our model by examining its performance across question types, as

shown in Figure 6; where the height of each bar represents the mean F1 for the given question type

and the lower number denotes how many instances in the dev set are of the corresponding question

type. We note that our model works best for “when” questions. This may suggest that our model is

best at recognizing temporal expressions. Other groups of questions whose answers are noun phrases,

such as “who”, “where”, “which” and “how” questions, also get relatively better results. On the

other hand, “why” questions are the hardest to answer. This is somewhat expected because the

answers to “why” questions can be very diverse and complex, and they are not restricted to any

certain type of phrases.

Figure 6: Performance across question types.

6 Conclusion and future work

In conclusion, we successfully introduced filter-context encoder to Dynamic Coattention Networks

model, achieved 63.8% F1 and 52.3% EM, which shows a significant improvement over the logistic

regression baseline model with 51% F1 and 40.4% EM [11].

Based on the performance analysis over different question types in Section 5.3, we plan to train sub-

models based on the type of question type, and ensemble them to acquire the overall model. This

may further improve the performance as each type of question has its own characteristic which

might be learned better separately. In addition, one obvious improvement should be made in the

future is to tune the dropout rate to avoid overfitting.

Work division

Yangxin Zhong: took charge of all model design, programed the data flow for training and prediction,

helped in test different set of hyper-parameters, wrote final report.

Peng Yuan: took charge of all the model implementation, tested the model for different set of hyper-

parameters, made analysis on the model, wrote and refined final report.

Jian Huang: took charge of data pre-processing and helper function implementation, made analysis

on the model, made our poster and wrote final report.

Codalab username: yangxin March 22, 2017 Use 3 late days

8

References

[1] C. Xiong, V. Zhong, and R. Socher, "Dynamic Coattention Networks For Question Answering," arXiv

preprint arXiv:1611.01604, 2016.

[2] Z. Wang, W. Hamza, and R. Florian, "Bilateral Multi-Perspective Matching for Natural Language

Sentences," arXiv preprint arXiv:1702.03814, 2017.

[3] D. A. Ferrucci, "Introduction to "This is Watson"," IBM Journal of Research and Development, vol.

56, no. 3.4, pp. 1:1-1:15, 2012.

[4] J. Berant et al., "Modeling Biological Processes for Reading Comprehension," in EMNLP, 2014.

[5] F. Hill, A. Bordes, S. Chopra, and J. Weston, "The Goldilocks Principle: Reading Children's Books

with Explicit Memory Representations," arXiv preprint arXiv:1511.02301, 2015.

[6] K. M. Hermann et al., "Teaching machines to read and comprehend," in Advances in Neural

Information Processing Systems, 2015, pp. 1693-1701.

[7] D. Chen, J. Bolton, and C. D. Manning, "A thorough examination of the cnn/daily mail reading

comprehension task," arXiv preprint arXiv:1606.02858, 2016.

[8] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, "Squad: 100,000+ questions for machine

comprehension of text," arXiv preprint arXiv:1606.05250, 2016.

[9] J. Pennington, R. Socher, and C. D. Manning, "Glove: Global Vectors for Word Representation," in

EMNLP, 2014, vol. 14, pp. 1532-1543.

[10] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp.

1735-1780, 1997.

[11] CS224N, "CS 224N: Assignment #4: Reading Comprehension," 2017.

