NN W

7

8
9
10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

36
37

38
39
40
41
42
43
44
45

CS224N: Assignment 4

Saghar Hosseini Yun Li
Microsoft Microsoft
One Microsoft Way One Microsoft Way
Redmond, WA Redmond, WA

Saghar.hosseini@microsoft.com

Abstract

In this assignment, the goal is to implement a deep learning neural networks
for Reading Comprehension using the recently published Stanford Question
Answering Dataset (SQuAD)[1].

1 Introduction

The Machine Reading Comprehension task in this scope refers to the task of finding the span of
answer in a context. The dataset for this task is called SQuAD [2] which is comprised of around
100K question-answer pairs, along with a context paragraph. The context paragraphs were extracted
from a set of articles from Wikipedia. Humans generated questions using that paragraph as a context,
and selected a span from the same paragraph as the target answer.

In our approach, we will implement the baseline which is very similar to [1]. The question is encoded
using a BiLSTM and then the context is encoded conditioned on the question encoding. For this step
we used attention mechanism and BiLSTM. Then, using bidirectional Match-LSTM [1], we can mix
the encoding representation of question and context in a single tensor and call it knowledge
representation. Finally, LSTM will be performed over the knowledge representation to provide two
classifiers. One classifier determines the index of the start of the answer’s span, and the other
classifier predicts the end index of the answer’s span.

The majority of our time and effort were invested on implementation of this method. In the process,
we have faced many challenges including designing the architecture, debugging this complex neural
network, and constraints on memory availability and computational power. Therefore, we were not
able to perform as many experiments as we hoped for this assignment, and it will be performed as
our future work. However, we enjoyed performing this assignment through which we dived deeper
into TensorFlow functionalities and documentations, learned how to efficiently debug a neural
network. In addition, we have become more familiar with different Recurrent Neural Network cells
and their implementations.

2 Background & Related Work

3 Approach

We used a similar approach to what was suggested in handouts to implement the baseline. The data
preprocessing include creating masks and mapping word indexes to their embedding representation.

3.1 Encoder
a. We first ran a BiLSTM over the question sequences using ¢f-nn.bidirectional_dynamic_rnn(...)

and concatenated the two final hidden states from forward and backward passes. This will give
us an encoding of the question represented by H9 € R?*? where [is the size of a hidden state

46
47
48
49

50

51

52
53
54
55

56

57
58
59

60

61

62

63
64
65

66
67
68
69
70
71

72

73

74

75

76

77

in LSTM cell and Q is the number of tokens in questions. Note that we padded all the questions
where the maximum length is 100.

b. Weran a BILSTM over context conditioned on the H? by using an attention LSTM cell. In other
words, we have:

21
HP = LSTM(Q), Atten, = > (HTOHY),, 2 = [}, HeAtcen,),

i=1
h§yy = LSTM (2, hf)

Where hf € R! and we perform the above operation for the backward sequence and concatenate
the hidden states of forward and backward operations. Therefore, thee context representation is
H¢ € R*™P where P is the number of tokens in context and note that we padded all the
paragraphs where the maximum length is 766.

3.2 Decoder

c. Then we used Match-LSTM approach in [1] to calculate a knowledge representation based on
HP and H?. The match-LSTM sequentially goes through the paragraph. At token t it uses the
word-by-word attention mechanism:

G, = tanh(WIHI + (WPh! + W"hi_; + b") ® e,) € R**?
a; = softmax(w' G, b @ ep)
z. = [h},H%,|, hiy, = LSTM(z,h})

Where W9, WP, W" € R*,pP,we RL,bER , hl,; ER! and we perform the above
operation for the backward sequence and concatenate the hidden states of forward and backward
operations. This produce a knowledge representation H” € R2!%F,

3.3 Answer Pointer Layer

d. In this layer we use the Boundary Model in [1]. This layer uses the knowledge representation H"
and predicts two probability distribution over the tokens in the context. One probability
distribution is for the start index and the other one is for the end index. The all the tokens between
these two indices are considered to be the answer.

The attention mechanism is used to produce logits over the tokens in context:
F, = tanh(VH" + (W*h¢ + b*) ® ep) € RI*P
By = softmax(vT'F.,c ® ep)
z, = [hY, Ha,), hl,, = LSTM(z,, hY)
Where W4 € R*LV € R™*?L b4 v e RLc €ER L h%,; € R

We can model the probability distribution of the start index as:

78

79

80
81
82

83

84
85

86
87
88

89

91
92
93
94

95
96

97
98

99
100

101
102
103

104
105
106
107
108
109
110
111
112

113
114

115
116

117
118

119
120

p(as|H") = np(at = 1lay,ay, .., a;_1, H")
t

Where : p(at = 1|a1, a,, ...,at_l,HT) = ﬁf'

Similarly, we perform another answer pointer layer for the end index of the answer and to train
the model, we minimize the summation of the cross-entropy loss functions over these two multi-
classification problems with P classes.

3.4 Evaluation Metrics

Finally the evaluation metrics are F1 score and Exact-Match (EM). F1 score is calculated for each

token with binary classes, part of answer or not part of the answer. Then the micro average of the

2TP

classification results will be presented as F1 score where F1 = ————, EM =TP
2TP+FN+FP

4 Experiments

We tested our model on the SQuAD [1] dataset. It is comprised of around 100K question-
answer pairs, along with a context paragraph. The context paragraphs are extracted from
Wikipedia with answers as human labeled span within the context paragraphs. With the
limitation of computational resource, we manager to run our model with reduced parameters.
The batch size is 10, state size is 10 and output size is 40. And we trained out model on 500
samples with embedding size 100. We were able to run the code with a small F1 score.

Challenges:

To get familiar with a new model in a very short time. Also good architecture of the model in
the code is a new challenge for us.

What we can do to improve:

Running efficiency. We did the implementation in a rush, there is a lot of room to improve in
term of efficiency. Eg. The tf.nn.rnn_cell. BasicLSTMCell we use tensor as input, if using tuple
instead, we can avoid array_ops.split and improve our speed.

Also we did not optimize the memory usage. During the training, we were experiencing a lot of out
of memory exceptions. As a results of that, we have had to reduce the parameters to accommodate
this limitation.

5 Conclusion

In this assignment, we implemented a deep learning model to answer questions for SQuAD. We use
BiLSTM to encode the questions and context, bidirectional Match-LSTM [1] for mixing them
(knowledge representation). Finally, LSTM will be performed over the knowledge representation to
determine the start and end index. We learnt a lot from this project, including implementing deep
learning model from scratch, Dealing with practical constraints and tones of trouble shooting
experience.

6 References

[1] ShuohangWang and Jing Jiang. Machine comprehension using match-lstm and answer
pointer. arXiv preprint arXiv:1608.07905, 2016.

[2] https://stanford-qa.com

121

