
Learning Reading Comprehension with Neural Nets

Li Cai
Stanford University

licai0@stanford.edu

Jason Huang
Stanford University

jhuang99@stanford.edu

Charles Huyi
Stanford University

chuyi@stanford.edu

Abstract

We explored use of Neural Network architectures to learn question-answering over
the Stanford Question Answering Dataset (SQuAD). Question-answering is rel-
evant to many NLP applications ranging from coreference resolution to virtual as-
sistants. SQuAD is among the largest reading-comprehension datasets of its kind
and is well-suited for the training of machine comprehension models. Our model
is based on a BiLSTM architecture that draws from recent papers and incorporates
a wide variety of optimizations at each layer of the network to predict an answer
span within a context paragraph.

1 Introduction

SQuAD is one of the largest reading comprehension datasets of its kind. With Contexts paragraphs
sourced from Wikipedia, it contains over 100,000 question-answer pairs on over 500 articles. Given
the power of Neural Networks in tackling a wide variety of tasks with minimal feature engineering,
we set out to design and build a Neural Network architecture that predicts answer spans within
Context paragraphs for a given question about that paragraph.

1.1 Preprocessing

We stood on the shoulders of past work. To encode the over 2 million words that appear in Contexts,
Questions, and Answers, we used Pennington, Socher, and Manning’s Global Vectors for Word
Representation (or GloVE vectors). Our Context, Question, and Answer data was fed into the model
in the form of lists of GloVE vectors. These GloVE vectors were not trained as part of our network
because we believed that this was a good standard and did not want word representations to be
affected by the particulars of our training data.

To build our model, we relied heavily on Google’s Tensorflow library. Our Neural Network archi-
tecture leveraged many of Tensorflow’s built-in cell types and helpers to handle dropout or compute
loss.

1.2 Problem Statement

Our objective was to predict the correct span of words within a Context paragraph given a Question
about that paragraph. For training, we fed our network a corresponding set of human-labeled Answer
spans. We evaluated our performance using standard measures of F1 and EM scores that account
for both precision and recall.

1



2 Model

2.1 High-Level Architecture

Our architecture was inspired by a variety of recent work, though we modeled our design most
closely off of Wang, Mi, et al. (2016). Wang et al. (2016) At a high level, we run a BiLSTM
over the Context and the Question, use their outputs to compute an attention vector, which we then
use to weight the Context outputs. The resulting object is the pre-knowledge representation that
incorporates both the Context and Question, as well as their interaction. We feed this object into
a third BiLSTM, from which we take the end hidden states to get our knowledge presentation.
This concludes our Encoding process. The knowledge representation is then passed to a Decoder,
which applies two separate linear layers (both with softmax transformations) to predict probability
distributions over the Context for the start and end of the Answer span.

The flow of data in our model can be roughly broken up into three parts: Encoding the question,
Decoding the knowledge representing, and interpreting the decoded result.

2.2 Encoding

2.2.1 Using BiLSTMs

We chose to use bidirectional recurrent networks because these networks are effective at capturing
a large amount of input data. Since information flows in both directions, we get, in addition, the ad-
vantage that information presented later in a Context paragraph is combined with earlier information.
In this sense, we relied on our BiLSTMs to summarize information intelligently.

In our implementation, we decided first to run a BiLSTM over the Question. Ignoring the outputs
from this network, we took the end hidden states, in the forward and backward directions, and used
them to initialize the forward and backward hidden states of a second BiLSTM we ran over the
Context. The intent was that we wanted to seed the representation of the Context paragraph with
information from the Question.

Figure 1: Interaction between Question and Context

2.2.2 Attention

While seeding the second BiLSTM (over the Context) does allow for some interaction effects, the
type of interaction we wanted was for the Question to inform which words in the Context mattered
more and which mattered less. To this end, we concatenated the end hidden states of the Question,
our ”question representation,” and took an element-wise product between this representation and
each output state of our BiLSTM over the Context. We further transformed this product via a sum
to produce a single scalar for each word in the Context. This scalar can be thought of as an attention
weight.

We used the attention weight to scale each output vector in the BiLSTM over the Context. Finally, we
fed the resulting set of vectors into a third BiLSTM to allow for additional synthesis, and formed our
knowledge representation by concatenating the end hidden states of this BiLSTM. This concluded
our Encoding process.

2



Figure 2: Attention and Derivation of Knowledge Representation

2.3 Decoding

The knowledge representation, which combines the Context, Question, and the interaction between
the two, served as the input to our Decoder.

In the Decoder, we run two separate linear layers, each with its own weight matrix and a bias term,
and apply a softmax at the end, to product two probability distributions. The length of the probability
distributions is the length of the maximum Context length we wanted to account for. (Based on some
quick analysis of the Context dataset, we found that Contexts of 400 were quite rare – less than 0.1
percent of the data – and so we chose to ignore Contexts longer than 400 by simply capping our
probability distributions at this length.

These probability distributions are returned by the Decoder to our model.

Figure 3: Decoding the Knowledge Representation

2.4 Interpreting the Decoder’s Output

The first probability distribution represents the likelihood that a particular word in the Context is the
start index. The second distribution does the same for the the end index. Our model then simply
takes the indices of the largest element in the first and second probability distributions and uses those
as the predicted start and end span.

One extension we would have liked to look into was to follow the work of Wang, Mi, et al. (2016) and
instead teach our model to predict a joint probability over both the start and end indices. Intuitively,
it is reasonable to assume that the probability distribution over the span’s start would depend in part
on the prediction for the span’s end. However, in the linear layers in our Decoder, we compute the
probability distributions with the assumptions that the probabilities are independent of one another.

3



2.5 Loss

As our formulation of loss, we use sparse softmax cross-entropy loss, which conveniently is provided
as a helper function in Tensorflow. In our case, the correct label is a one-hot vector (with a one label
at the correct start / end index), and our predictions are probability distributions. By penalizing
the probabilities that we didn’t assign to the correct index, cross-entropy loss fit well with what we
wanted to penalize.

2.6 Dropout and Regularization

While our model easily overfit training data, it was important that we guard against overfitting when
trying to improve our F1 and EM scores on unseen test data. Two techniques we used to this end
were: applying dropout and adding regularization loss to our previously computed loss. Dropout
allows us to disable neurons during learning, which helps what is learned generalize better. We also
added a regularization loss to our calculated loss in order to penalize parameters that are large. Both
dropout and adding regularization loss are forms of regularization in general.

2.7 Hyperparameter Tuning

Finally, we played around with various combinations of hyperparameters. It was often diffcult to
attribute particular increases to certain values, since there were often multiple hyperparameters to
tune, and simply finding an optimal value for one hyperparameter while holding everything else
constant did not necessarily mean that was always the best value for that parameter. In the addition,
the long training times for the model, combined with the fact that (toward the end) we did not have as
much time to tune, meant that we often made calls about hyperparameter values after only a handful
of epochs.

3 Experiment

3.1 Performance and Loss

At the time of this writing, we’re continuing to train our latest model. We’ve observed in our
penultimate model that validation F1 and EM had consistently gone up, although a slowdown started
around epoch 50. This resulted in our tweaking a few hyperparameters further and modifying the
size of our Decoder’s predicted probability distributions. This new model is currently running on
Azure, with Codalab results to be posted tomorrow morning.

Below, we share the performance of the current state of our latest model, even as it will still undergo
additional hours of training (overnight).

First, we observed performance according to our key metrics of F1 and EM.

Figure 4: Model Validation Performance

4



We saw that the validation F1 has reached 0.4 and is showing some signs of slowing down. The
training F1, however, has reached over 0.7, suggesting that we might be overfitting. With additional
time to tune hyperparameters, we could try further increasing our regularization loss constants.

We also examined the loss over time.

Figure 5: Model Loss

Here we see that loss is steadily decreasing, and as of the time of this writing, the loss has dipped
below 3.

Looking more closely at the predicted spans that our model gave, we notice that our model tended
to predict answer spans that closely matched the correct answer span but did not align perfectly.
The close matching may be something that was made possible by attention. On the other hand,
the misalignment was often due to relatively high probabilities appearing around the correct answer
span, with the maximum index not always being at the start. This may be more of a model-design
issue, where we could have perhaps made our predictions less fragile by designing our model to
predict which words are contained in the span and which words are not, as opposed to simply
selecting a maximum from a probability distribution.

Here is one example of our predicting an answer that covers more than the true answer

• ground truth: friction

• prediction: friction include other contact forces , tension , compression , and drag

This hurts not only our EM score but also F1 since we have low precision.

In other instance, our prediction did not cover enough of the true answer.

• ground truth: forces as being due to gradient of potentials

• prediction: gradient of potentials

For short answers, however, our model seems to perform well consistently.

1. ground truth: gravitational force

2. prediction: gravitational force

This is likely due to the fact that there are fewer candidates from which to pick a max, so the design
of our model more closely resembles the alternate design in which the Decoder predicts which words
are part of the span and which are not.

4 Related Literature

The initial attempts at tackling the question answering tasks involved rule-based approaches and
prediction models on engineered features. The first paper that presents the SQuAD data, Rajpurkar
et al. (2016), create chunks of potential answers and rank them. They they ranked them using
Logistic regressions on some hand crafted features. But this ranking method resulted in 20% of the
chunks that did not contain the correct answer. Yu et al. (2016) used part-of-speech pattern to build

5



the candidate list, which increased recall. They then ranked the answers using a attention-based
RNN. Lee et al. (2016) first listed all possible answers up to length 30. They then used a multi-
layered BiLSTM to learn the a fixed length representation for all those possible answers. They
then ranked the answers based on those representations. They use this fixed width presentation to
overcome the complexity of enumerating all possible continuous sub-strings, a neural architecture
they call RaSoR.

Instead of extracting candidate answers, the literature moved onto a predicting the answer span.
Wang and Jiang (2016) put forth a match-LSTM model to match the passage with the question.
They used Pointer Network developed in Oriol Vinyals and Jaitly (2015) to select the start and end
of the answer span. Caiming Xiong and Socher (2016) proposed the Dynamic Coattention Network.
The model first used a co-attentive encoder to model the interaction between questions and context.
It then used a dynamic pointing decoder to predict the start and the end of the answer. Seo et al.
(2016) build on the Caiming Xiong and Socher (2016) by using a bi-directional attention network to
create a question-aware context representations. They then used this hidden state representation to
predict the start and end of the answer. Yang et al. (2016) proposed a fine-grained gating mechanism
to dynamically create a hybrid word representation that combined word-level and character-level
representations based on the word properties.

5 Conclusion

We are impressed by the ability of neural network architectures to learn by backpropagation alone
— without being fed handcrafted features. In building our model, a primary challenge was how to
combine various structures (RNNs) and optimizations (attention, dropout, et al.) in an effective way.
While our model was inspired by existing work, we wanted to contribute original structures and
designs. Toward this end, we often went back and forth on decisions such as how to mix and match
various components, or to tune hyperparameters. Often these decisions were made on the basis of
observed performance over a small amount of data, but, frequently, performance was difficult to
attribute to a particular decision given the large number of interaction effects. If given additional
time to extend this work, we would focus our efforts on being more methodical and rigorous in
testing: selectively removing parts and carefully measuring its impact on model performance.

6 Contributions

We have submitted descriptions of each of our contributions via the provided Google Form. In
general, each of us contributed significantly and equally to the final product, and enjoyed working
together as a team!

References
Caiming Xiong, V. Z. and Socher, R. (2016). Dynamic coattention networks for question answering.

arXiv preprint arXiv:1611.01604.
Lee, K., Salant, S., Kwiatkowksi, T., Parikh, A., Das, D., and Berant, J. (2016). Learning recurent

span representations for extractive question answering. arXiv preprint arXiv:1611.01436.
Oriol Vinyals, M. F. and Jaitly, N. (2015). Pointer networks. Advances in Neural Information

Processing Systems, page 2692–2700.
Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+ questions for machine

comprehension of text. arXiv preprint arXiv:1606.05250.
Seo, M., Kembhavi, A., Farhadi, A., and Hajishirzi, H. (2016). Bi-directional attention flow for

machine comprehension. arXiv preprint arXiv:1611.01603.
Wang, S. and Jiang, J. (2016). Machine comprehension using match-lstm and answer pointer. arXiv

preprint arXiv:1608.07905.
Wang, Z., Haitao Mi, W. H., and Florian, R. (2016). Multi-Perspective Context Matching for Ma-

chine Comprehension. Quarterly Journal of Economics, page 488–500.
Yang, Z., Dhingra, B., Yuan, Y., Hu, J., Cohen, W. W., and Salakhutdinov, R. (2016). Words or

characters? fine-grained gating for reading comprehension. arXiv preprint arXiv:1611.01724.

6



Yu, Y., Zhang, W., Hasan, K., Yu, M., Xiang, B., and Zhou, B. (2016). End-to-end answer chunk
extraction and ranking for reading comprehension. arXiv preprint arXiv:1610.09996.

Acknowledgments

Thank you to the countless hours that the CS224N staff has put into this class. We appreciate your
work!

7


	Introduction
	Preprocessing
	Problem Statement

	Model
	High-Level Architecture
	Encoding
	Using BiLSTMs
	Attention

	Decoding
	Interpreting the Decoder's Output
	Loss
	Dropout and Regularization
	Hyperparameter Tuning

	Experiment
	Performance and Loss

	Related Literature
	Conclusion
	Contributions

