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Abstract

We solve the contextual question answering problem, which is an essential part
in many automated question-answering datasets. Recently the SQuAD dataset [1]
was uploaded and there were several deep learning approaches proposed to solve
this. We implement a modified version of one of them, the Dynamic Coattention
model as well as simple baseline.

1 Introduction and Problem Model

Question Answering is one of the important aspects of customer satisfaction in many businesses.
In this project, we use deep learning and NLP techniques to build an automatic question answering
machine which can find the answer of any given question in a given context. We do the training and
experiments on the SQuAD dataset.

The SQuAD dataset consists of a context paragraph, and a question which have been crowdsourced.
The task is to compute the the position of the starting and ending words in the answer based on
reading comprehension. More precisely, a question is is given to the machine which can be modeled
as a sequence of words such as (xQ

1 , · · · , xQ
n ). Also, a context or document is also given which is

a longer sequences of words such as (xD
1 , · · · , xD

m), and the answer is a part of this context. The
machine’s task is to find the answer by identifying its starting and ending position

In this paper, we first describe an implementation of the Dynamic Coattention model [2] which
produced our best results, a comparison with a simple baseline, and conclude with our experimental
results.

2 Dynamic Coattention Model

In this section, we describe the model we used based on [2]

2.1 Encoder

Fig. 1 carries the Encoder that we use. The essential steps are as follows:

1. The m embeddings (we used Glove vectors in this paper) of the context xD
1 , . . . , xD

m are
fed into a Bi-LSTM and the 2l×m dimensional output is called D. We append a trainable
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Figure 1: Attention encoder used.

random sentinel column which is useful for the attention described below. We do not set a
maximum size (perhaps training with long contexts can be discarded to improve results)

2. A similar operation is done with the n question embeddings xQ
1 , . . . , x

Q
n to produce 2l× n

dimensional Q. Again, a trainable random sentinel is added. We differ from the original
paper on two fronts - we first use BiLSTMs (for both the context and the question) to
produce a more expressive function class where words at the end of the question also play
an impact. Secondly, while the original paper uses the same LSTM for both D and Q
and passes the latter through a linear transformation and a tanh filter, we use different Bi-
LSTMs to maximise expressive power.

3. We find the attention between every word of the context and every word of the question.
This follows the original paper and simply does the dot product of DiQj (subscript refers
to columns) to find the attention between context word i and question word j. We then run
a softmax (across both rows and columns) to find probability distributions of the most rele-
vant word for words in the question/context. The sentinel that we append would correspond
to not paying attention to any particular word. In other words L = DTQ ∈ Rm+1×n+1.
AQ = softmax(L), AD = softmax(LT ). Other alternatives that we would have explored
had we had more time would have been more expressive attention models where the atten-
tion is tanh(DT

i FQj).

4. We weight the context words by how relevant they are the question with QAD Similarly,
we also repeat this by using the question weighted by the context (DAQ)AD. We stack
this along with the document embedding to produce [D;QAD;DAQAD] and feed it into a
BiLSTM to obtain our 2l ×m+ 1 dimensional embedding U .

2.2 Decoder

We largely use the dynamic decoder model of the original paper. Fig. 2 carries an overview. The
steps are as follows:
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Figure 2: The iterative dynamic decoder.

1. The decoder is iterative and run a maximum of 4-5 (a hyperparameter) times. This ensures
that we have multiple passes over the document and attention-with-question embeddings.
At each stage t, we have inputs pSt which denotes the probability of the starting word in
the context, pEt denotes the probability of the ending word, and finally ht is the state of the
decoder block.

2. We pass these inputs as well as the encoding U to two Highway Maxout Network (HMN)
blocks to produce as the output pSt+1 and pEt+1.

3. A highway maxout network [3] is described as follows and in Fig. 3:
• First we use pSt and U to produce the expected embedding of the starting word. This

is uS
t = EpS

t
[Uj ]. We differ from the original paper which uses the mode instead of

the mean. This is similarly done for uE
t , the mean embedding of the final word.

• A linearity-tanh block summarises the previous inputs as

r = tanh(WD[ht;u
S
t ;u

E
t ]) ∈ Rl

• A maxout block, like a multilayer neural network can express any arbitrary function
given enough hidden layers. As suggested by the original paper, we use this

m1
i = max{W 1

1 [Ui; r] + b11, . . . ,W
1
p [Ui; r] + b1p} ∈ Rl

m2
i = max{W 2

1m
1
i + b21, . . . ,W

2
pm

1
i + b2p} ∈ Rl

HMN(U, ht, p
S
t , p

E
t )i = max{W 3

1 [m
1
i ;m

2
i ] + b31, . . . ,W

3
p [m

1
i ;m

2
i ] + b3p}

There is a highway connection across a layer. Instead of using a non-linearity like
tanh or sigmoid after a linear transformation, we use the maximum of p linear trans-
formations. This allows for the modeling of a very expressive function class.

4. Finally, [uS
t+1;u

E
t+1] is the input to an LSTM that has ht+1 as the resultant state. Ideally,

we run this iterative procedure for a much larger number of iterations and then allow the
LSTM to learn when to stop. This allows for that to some extent.

5. The loss function is sum of cross-entropy loss for starting word and ending word positions

J =
∑
i∈m

preal,St,i − log pSt,i +
∑
j∈m

preal,Et,j − log pEt,j
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Figure 3: Schematic of the Highway Maxout Network block.

Figure 4: Baseline model.

3 Simple Baseline

We also implemented a simple baseline as described in Fig. 4. This is a basic attention network
which generates the associated hidden states for each of the words in the context and the question,
by running a BI-LSTM, and then passing these to an attention layer followed by a softmax, generates
the probability of each word in the context being the starting or ending position of the answer.
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Figure 5: Experimental results

4 Experimental Results

We ran 10 epochs, batch size 32, hidden layer size 100 everywhere, dropout 0.5. We did not have
time to play with hyper-parameters or train ensembles.

Our results are summarized in Fig. 5. Our implemented dynamic coattention network achieves an
F1 score of 68.04 and an EM of 50 on the validation data set after being trained on 10 epochs.

5 Conclusions

We implemented and modified the Dynamic Coattention model and obtained an F1 score of 68.04
and an EM of 50 on the SQuAD dataset. We find that complex networks with coattention mecha-
nisms, and iterative maxout networks boost performance, especially in the presence of large amounts
of data.
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