Using Neural Networks to Predict Emoji Usage from
Twitter Data

Luda Zhao Connie Zeng
Stanford University Stanford University
ludazhao@cs.stanford.edu czeng2@cs.stanford.edu
Abstract

As emojis have emerged as an increasingly important and standardized part of
modern textual inputs, analyzing their usage patterns are becoming of great inter-
est to any modern text system. We frame this investigation as a text classification
problem, mapping input text to their most likely accompanying emoji, utilizing
1.5 million scraped Twitter tweets for our training set. Both our LSTM-RNN
model and our CNN model outperform our baseline, although the CNN model
surprisingly achieves much better accuracy and F1 results. We conclude the paper
by proposing future works in this area.

1 Introduction

With the rise of mobile devices and chat apps, emojis have become an increasingly important part
of written language. The ‘Face with Tears of Joy’ (&) emoji was even selected as the Oxford Dic-
tionaries Word of the Year in 2015[1]]. To keep up with the evolution of language, we should be able
to model emoji usage based on trends seen on Twitter, Reddit, and other online Social Networks. In
addition, the standardization of emojis in the Unicode Standard has ushered in more standardized
usage patterns in the different social networks, which makes modeling usage patterns a significantly
more tractable problem.

As one of the largest social network platforms, Twitter has had a long history with emojis, and
currently, around 19.6% of all generic tweets on Twitter contains emoji[2]. The high frequency of
emoji usage and the diversity of topics makes Twitter an ideal data source for building a model for
€moji usage.

More concretely, we frame our investigation as a multi-class classification problem. Given a input
tweet with sequence of words wy, wo, ..., w;, where [is the length of the tweet, we aim to predict an
emoji class é from the set of K emojis. In training, the input tweet is constructed by removing an
emoji from the raw tweet, with removed emoji assigned as the label(more in ”Data” section). We
will then evaluate our model on a separate validation set and calculate various standard classification
metrics such as accuracy and F1 score for evaluation.

As the dominant deep learning model for sequential data, Recurrent Neural Networks(RNN) with
Long-Term Short Memory(LSTM) has proven to be very effective in various other closely related
tasks, including sentiment classification[6]] and language modelling[7]. For our task, we will be
building a LSTM RNN network and evaluating its performance with a baseline. In addition, we will
also build a Convolutional Neural Networks(CNN) for this task, which have shown to be surprisingly
effective in various text classification tasks settings[8]].

Zipf Plot of Emoji Distribution

Frequency
& 8 & 8

5

100 -

10°
10° 10 10 10° 10

Rank

Figure 1: Emoji relative frequencies, ranked by most freq. to least

&= 276387

98296
@ 93216
¥ 69305
* 56708
“ 48797
2 33334
v 33023

Figure 2: Top emojis in dataset, raw counts

2 Prior Work

There has been prior work on predicting emoji usage. Barbieri et al.[4] use a skip-gram model
to create embeddings for words and emoji, which are then used in similarity-matching process to
produce predictions. A team at Dango extends this work, building an ”emoji assistant” that provides
real-time suggestions for emoji to include in a chat message, based on the written content. It uses an
RNN to convert sentences and emoji to embeddings, and then finds the emoji with the highest cosine
similarity to each sentence[3l]. Similar work was done in Cappallo et. al.[?] These investigations
establishes the feasibility of the task, and we follows similar paths in building our RNN network.

3 Data

We obtained a set of tweets dating from June 2016 from the Internet Archives[2]. The tweets were
obtained by the Twitter Stream API and were not filtered in any way. Thus, we performed a series
of filtering steps to select tweets for our data. First, we selected only tweets containing at least one
emoji. Here, we explicitly define our set of emoji as the 1624 emojis defined by the Unicode v6.0
Standard[1]. Roughly 20% of the tweets are selected by this criteria. We then filtered our tweets
using a language heuristic, to select only English tweets. This resulted in our raw dataset of 1.5
million tweets. The distribution of the frequencies of emojis within our is shown here [I] The top
emojis by raw count is shown here 2}

We then performed a series of preprocessing on the dataset, which included punctuation stripping,
misspelled word correction, the removal of re-tweet symbols, and the removal of URLs and other

input layer wait - n’t rent it

embeddings D:I] D]] | ‘ l ‘ ‘ | ‘ ‘

| | |
nasentaver (]|] —> - — [1] — [1]— 1]

softmax output INEEEEEEENEE

Figure 3: LSTM schematic

non-standard elements. We removed rare words by replacing every word with a total word count of
less than 5 to the <UNK> token. After these steps, we were able to obtain the final vocabulary size
of 23045.

Around 38.32% of the tweets contains more than one emojis. To create our training labels of one
emoji per tweet, we used the following simple heuristic: We use the emoji that occurs the latest in
the tweet. Our hypothesis is that the last-occurring emoji has the best chance of ”summarizing” the
tweet. After extracting the last emoji as the label, we filter all emojis of the same type for the given
tweet.

As we were in the process of building our model, we decided to simplify the classification task by
only predicting from the top 50 emojis by frequency. Thus, we took a subset of our dataset which
only contains at least 1 emoji from the 50 top emojis. This reduces our dataset to 1032831 tweets.

4 Approach

4.1 Baseline Classifier

As a simple baseline, we trained a logistic regression classifier. Tweets were featurized as TF-IDF
vectors, with sublinear TF scaling due to the unbalanced distribution of the emojis. The classifier
was trained with a one-vs-all strategy.

4.2 LSTM Classifier

The main network architecture we worked on was a recurrent neural network (RNN) with one or
more Long-Short Term Memory (LSTM) hidden layer and softmax output layer. The LSTM unit
performs the following calculations

it =Wz + Uy + b))
fo=o(WW Dz, + UDhy_y +by)
0 = U(W(O)It +U©h + bo)
& = tanh(W @z, + U@hy_; +b,)
¢ = froci1+it0¢
ht = o; o tanh(c;)

and the overall network can be represented as Figure[3]

To feed into the network, each word was represented as a trainable 50-dimensional embedding
vector. Tweets were input in batch sizes of 32 and either truncated or padded to a length of 120
words(the maximum tweets length), with full back-propagation through the entire tweet. Dropout
regularization was included during training to prevent over-fitting.

Three versions of the LSTM were compared:

(a) Single-Layer, Random Embeddings:
The initial model was a single-layer LSTM with randomly initialized word embeddings.

(b) Single-Layer, Pretrained Twitter Glove Embeddings:
Embeddings were instead initialized with GloVe Twitter word embeddings [9] to provide a
more informative starting point.

(c) Double-Layer, Pretrained Twitter Glove Embeddings:
A second LSTM hidden layer was added, to potentially capture deeper or more complex
dependencies.

4.3 CNN classifier

A convolutional neural network (CNN) was implemented based on Kim et. al 2012 [8]. see Figure
[Similarly to the RNN, we utilize word embeddings for each word in the vocabulary, but in this
configuration, we reshape each sentence into a 2-D matrix of word embeddings. Let z; € R* be
the k-dimensional word embeddings corresponding to the i-th word in the tweet. The input can be
represented as:

Ty =201 DT2D .. By
where n is the length of the tweet.

We then use 64 filters of size ha50 (where 50 is the size of the embedding) to slide over the embed-
dings and output features c;.

¢i = fw*a;i4p—1+0b)

We use h of size 3, 4, and 5.

The features c; are concatenated, and a max_pool is applied per individual filter horizontal slides to
obtain ¢ = maz{c}

Then, these features passed to a fully connected softmax layer whose output is the probability dis-
tribution over the emojis.

Dropout is also performed for regularization purposes. The static vs. dynamic word channels men-
tioned in Kim et. al. are not implemented here for simplicity[8].

4.4 Evaluation Metrics

We evaluated our models against our baseline using standard metrics of accuracy and multi-class
weighted F1 score.

wait
for
the
video
and
do
n't
rent
it

nx k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 4: CNN schematic

5 Results

The classification statistics from all models are compared in Table[I] Some example predictions are
shown in

Baseline 1-layer LSTM, 1-layer LSTM, 2-layer LSTM, CNN

random embed GloVe GloVe
Accuracy 0.271 0.370 0.378 0.353 0.403
F1 score* 0.170 0.315 0.327 0.294 0.458
Precision* 0.380 0.441 0.433 0.409 0.645
Recall* 0.270 0.370 0.378 0.353 0.403

Table 1: Comparison of different models. Summaries of the overall accuracy, F1 score, precision,
and recall for classification on the top 50 emoji. The multiclass metrics (*) are weighted by support.

Table 2: Example Predictions

Text Input Predicted Emoji

Im tired but I cant sleep 2
Get into a relationship with someone whos gonna rep you right. ¥

Il be lying if I said I wasnt missing you,Love you Brah 2)

The baseline model achieved an accuracy of 0.271 and a F1 score of only 0.17. It almost always pre-
dicted the most common emoji label (‘Face with Tears of Joy’(&)), which drove down the precision
for that class while losing recall on the remaining classes.

The LSTM networks provided some improvement, with an accuracy of 0.378 and a F1 scores of
about 0.3.

Incorporating the GloVe vectors offered a small boost in performance, but did not have as much of
an impact as expected. This could be a result of using different Twitter datasets, or it might indicate
that emojis are less nicely correlated with word occurrences.

The CNN achieved the best score out of all the models, with an accuracy of 0.403 and F1 score of
0.45.

The confusion matrix for the top 50 emojis is shown in Figure[5} The density along the diagonal of
the matrix indicates that most predictions were aligned to the correct class, but still the predictions
were still biased toward the more common classes. Taking a closer look at the top 10 emojis in
Figure [6] we can make sense of some of the incorrect predictions. For instance, the 'Red Heart’
emoji is most commonly confused with “Two Hearts’(4¥), ’Face Blowing a Kiss’(#3), and ‘Smiling
Face With Heart-eyes’(@») which are all somewhat related and similar in meaning. The ’Loudly
Crying Face’ () is also frequently predicted as *Face with Tears of Joy’ (&), and although the two
emojis were designed with opposite sentiments, they can be confused by users and are commonly
used in similar contexts.

6 Conclusion/Future Work

Although our initial work is promising, the models investigated still have significant room to im-
prove. One major part of the difficulty in this task was working with a noisy dataset. Tweets can be
quite unstructured, especially with emojis being used much more loosely than real words. People
have different interpretations of emojis, and often combine multiple emojis without much organi-
zation. Cleaning up the dataset to remove nonsensical tweets may help improve the classification
performance. Secondly, since people can use emojis for different purposes other than summarization
of a tweets(for example, to remove key verbs such as "heart” for ’love”), there are some inherent
limitations to the setup of using whole tweets to predicts emojis. Training a language-model like
model which does word-by-word prediction would overcome some of these limitations. Lastly, it is
worth considering different selection heuristics for determining the true label from multiple emojis
in a tweet, such as selecting the first emoji or the most frequent emoji within a tweet.

PECNEERETE

-

Beovoarwnmo

Si=32iN

Fe0 @ ®)

@)

|} .

IIII IIII Ilil I!II

3 |
s n
i : ol
° 24883 399522
Figure 5: Confusion matrix of top 50 emojis Figure 6: Confusion matrix of top 10 emojis
References

[1] http://time.com/4114886/oxford-word-of-the-year-2015-emoji/
[2] https://archive.org/details/twitterstream

[3] Snelgrove, Xavier. "Dango - Your Emoji Assistant.” Dango - Emoji & GIF Assistant App.
Whirlscope Inc., n.d. Web. 09 Feb. 2017.

[4] Barbieri, Francesco, Francesco Ronzano, and Horacio Saggion. ”What does this Emoji Mean?
A Vector Space Skip-Gram Model for Twitter Emojis.” Language Resources and Evaluation
conference, LREC, Portoroz, Slovenia. 2016.

[5] Cappallo, Spencer, Thomas Mensink, and Cees GM Snoek. “Image2emoji: Zero-shot emoji

prediction for visual media.” Proceedings of the 23rd ACM international conference on Multi-
media. ACM, 2015.

[6] Socher, Richard, et al. ”Recursive deep models for semantic compositionality over a sentiment
treebank.” Proceedings of the conference on empirical methods in natural language processing
(EMNLP). Vol. 1631. 2013.

[7] Sundermeyer, Martin, Ralf Schliiter, and Hermann Ney. ”"LSTM Neural Networks for Language
Modeling.” Interspeech. 2012.

[8] Kim, Yoon. "Convolutional neural networks for sentence classification.” arXiv preprint
arXiv:1408.5882 (2014).

[9] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors
for Word Representation

	Introduction
	Prior Work
	Data
	Approach
	Baseline Classifier
	LSTM Classifier
	CNN classifier
	Evaluation Metrics

	Results
	Conclusion/Future Work

