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Abstract

Abstractive text summarization offers the potential to generate human-like sum-
maries because of its ability to select words from a general vocabulary, rather
than being limited to the input text like other automatic summarization methods.
However, due to the larger vocabulary, a common difficulty with abstractive sum-
marization is choosing the right words to focus on when generating the summary.
In this work, we explore the effects of explicitly incorporating a notion of word
importance into our seq2seq network at encoding time. We introduce importance
in two ways: (i) through tf-idf scores concatenated to our input vectors, and (ii)
by modifying our attention scoring mechanism with learned weights during the
encoding step.

1 Introduction

Machine text summarization can be performed in two ways: extractively or abstractively. Extractive
summarization creates a condensed version of the input text by only using words from the source
text to create the summary. Abstractive summarization, on the other hand, is not limited to words
from the input and instead generates a summary based on semantic understanding of the source text.
It has the ability to paraphrase, compress, and generalize. Currently, the majority of computer text
summarization using deep learning is extractive, but this approach is fundamentally limited by the
vocabulary of the input text. Abstractive summarization has the ability to create richer summaries
due to the lack of constraints, but for this reason poses a more difficult challenge. Our work ex-
plores abstractive summarization and expands upon its current techniques by taking into account the
inherent importance of each word when generating summaries.

The intuition is that non-stop words and infrequent words, such as proper nouns, are more likely to be
important and should therefore appear in the summary. To incorporate this idea, we experiment with
two methods: tf-idf scores concatenated to word feature vectors and encoder-generated importance
scores multiplied to the attention mechanism scores. Both of these modifications affect the encoding
step, the reasoning being that even before the network begins to decode, it should have an idea of
which words should receive greater consideration when generating text.

2 Related Work

Sequence-to-sequence neural networks map a source text sequence to a target text sequence. Recent
successful applications of this model follow an encoder-decoder framework and have been applied
to tasks such as neural machine translation [1][3][10] and speech recognition [1]. Following this
work, Rush et al. [9] introduced the idea of using this model for the task of abstractive summariza-
tion. Prior to Rush et al.’s work, methods included summarization with a statistical noisy-channel
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model [2]; syntactic transformation of parsed texts [3]; and grammatical usage of context-free and
dependency parsing [11].

The attention-based encoder-decoder model used by Bahdanau et al. [1] for machine translation
guided the work of Rush et al. Networks used for abstractive summarization have evolved from
feed-forward neural network language models [9] to convolutional recurrent neural networks [4].
In most work, the neural network utilizes LSTM or GRU cells and a beam-search decoder [4][9],
but Nallapati et al. [7] also expands further upon current models with a bidirectional encoder and a
switching generator-pointer decoder to model rare words.

3 Approach

The overarching task for text summarization is to create a conditional language model that gives
us the distribution p(yi+1|x, yC ; θ), where x is our input and yC is a window of size C of the
words preceding yi+1. With neural language models, we’re able to learn this distribution directly, as
opposed to computing

argmax
y
p(y|x) = argmax

y
p(x|y)p(y)

indirectly by learning p(x|y) and p(y).

Given this architecture, we can expand more upon our conditional language model. The input text
to the model is represented as x = [x1, ..., xM ], and each word xi can be found in the vocabulary
V . The target text is represented as y = [y1, ..., yN ]. Because this is a summarization task, N < M .
Furthermore, we want to find the values of the vector ŷ, which represents a summary of N words,
that will maximize the conditional probability P (ŷ|x; θ), given our parameters θ. This conditional
probability can be expanded as follows:

P (ŷ|x; θ) =
N∏
t=1

p(yt|{y1, ..., yt−1}, x; θ)

3.1 Models

3.1.1 Baseline: Attentive Bidirectional RNN with LSTM Cells

For our baseline, we began with the Google Brain Tensorflow textsum model [8]. It is a sequence-
to-sequence model made up of two neural networks: an encoder and a decoder.

Encoder Architecture

The encoder’s task is to read in tokens from the input sequence and to generate a fixed-dimension
vector C that encapsulates the entire sequence. Because condensing sequences of different lengths
to the same fixed-dimensional vector is a difficult task, we use multiple layers of LSTM cells. The
decoder will use the hidden states from the topmost layer for its attention mechanism in order to
construct context vectors ci at each decoding timestep i.

Another problem is that a regular seq2seq model only considers the words that precede the current
timestep, but we want to take into account dependencies in both directions. Therefore, we use a
bidirectional RNN. This means that for each cell, the output for time step t is a concatenated vector
of the forward and backward vectors [o(f)t ; o

(b)
t ].

Decoder Architecture

The decoder’s task is represented by the language model described above. It must be able to keep
track of the words it has generated and of the input sequence in order to generate the output sequence.
The first hidden state of our single-layer decoder is initialized with the last hidden state from the
topmost layer of our encoder, thereby taking the input sequence into account. The decoder maintains
what it has generated by feeding each generated word back into the LSTM unit at the following
timestep. Furthermore, we employ an attention mechanism to generate a context vector ci−1 to be
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used at each timestep i during decoding. The context vector is generated as follows:

ci =

M∑
j=1

αi,jhj

where

αi,j =
exp(ei,j)∑M
k=1 exp(ei,k)

Here, hj is the topmost hidden state of the encoder at timestep j, and ei,j is the score generated by
the attention mechanism. In the tensorflow seq2seq library, ei,j is implemented as:

ei,j = softmax(V (e)T ◦ tanh(hTj W
(e) + hTi U

(e)))

Following the creation of the output sequence, the final objective is to minimize the sampled-softmax
loss of our model on the training set.

L = −
S∑
i=1

M∑
t=1

logp(y
(i)
t |{y

(i)
1 , ..., y

(i)
t−1}, x(i); θ)

where S is the size of the training set.

Beam Search

To generate our summaries, we use the most commonly used technique in neural machine translation
and text summarization: beam search. The beam search implementation in the decoder maintains
the top K candidates at each time step. In order to proceed to the next time step, the decoder finds
the top K next steps for each candidate, and then selects the top K candidates from the K ∗ K
potential candidates it considered.

Model Optimizations

The existing Tensorflow textsummodel uses a gradient descent optimizer with a linearly decaying
learning rate. Following material learned in class, we switched the gradient descent optimizer to
Adam optimizer to adapt learning rate to word frequency. In addition, we introduced dropout in
between layers of our bidirectional RNN and added L2 regularization on the matrices of our models
(but not biases) to prevent overfitting.

3.1.2 Extension 1: Tf-idf Scores Concatenated to Word Feature Vectors

Tf-idf scores are a commonly used NLP statistic to indicate how important a word is. Therefore,
we compute a tf-idf score for each word and concatenate it to the embedded word vectors. To
compute the tf-idf scores, we precalculated inverse document frequency values for each word in the
vocabulary using the training data. Then, we feed in these values to our model and multiply it with
the term frequencies, which are computed in real-time. For words not found in our vocabulary, we
assign it a high idf score to account for its infrequency.

3.1.3 Extension 2: Encoder-generated Importance Scores Multiplied to Attention Scores

To generate an importance score from our encoder, we applied an output layer to the hidden states
in the topmost encoding layer. Each hidden state is multiplied by a weighted row vector, summed
with a bias term, and then fed through a ReLU. We use ReLU since β doesn’t need to be squished
between 0 and 1, or -1 and 1, and so ReLU will prevent us from saturating the output layer.

β = relu(hTj W
(β) + V (β))

With our importance score β, we now multiply it back to the hidden state at each time step in
our topmost encoding layer. This modified hidden state is then incorporated in the same attention
mechanism as stated above. We call the new attention score e′i,j :

e′i,j = softmax(V (e)T ◦ tanh(βhTj W
(e) + hTi U

(e)))
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Again, hj is the hidden state of the topmost layer of our encoder at timestep j, and hi is the hidden
state of our decoder at decoding timestep i. β allows us to scale the encoding state according to
our learned importance of the word and impacts the score computed by the attention decoder when
determining the context vector ci−1.

Furthermore, to accurately evaluate our models, our model with the third extension (encoder-
generated importance scores) also had the second extension (tf-idf scores concatenated to the word
feature vectors). Although seemingly counterintuitive, we must do so because of the natural im-
plementation of the extensions. Tf-idf scores are concatenated to word feature vectors, and the
encoder-generated importance scores are multiplied to the attention scores. In order to directly com-
pare the tf-idf extension with the encoder-generated importance score extension, we would have to
apply them at the same part of the model.

Figure 1: Representation of our model with tf-idf scores concatenated to the word feature vectors
and encoder-generated importance scores multiplied to attention scores.

4 Experiments

4.1 Data

We used the annotated Gigaword corpus [6], which is maintained by the Linguistic Data Consortium
at UPenn and contains 10 million article-headline pairs from seven different news sources like the
New York Times and the Washington Post. Following the practice seen in Rush et al. [9] and
Chopra et al. [4], we limited the input to the first sentence of each article due to complexity and time
constraints. The underlying assumption is that these popular news sources oftentimes begin their
articles with a descriptive first sentence that pertains to the entire article. The reference output is the
headline of the article. Building on top of the script used by Rush et al., we extracted headline-article
pairs from the Gigaword dataset and then split our data into training, validation, and test sets, having
4.7 million, 400K, and 400K pairs respectively.

In our preprocessing, we discarded all headline-article pairs that were either too short (fewer than
2 words) or too long (over 30 words for the headline or 120 words for the article). Pairs where
the headline and article didn’t have any non-stopwords in common were also removed. Digits were
replaced with the # character. Subsequently, we used the training set to build a vocabulary list, and
words seen fewer than five times were replaced with <unk>.
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Lastly, because our model takes in articles in batches and since articles are not of the same length,
we pad each article with a special <PAD> token until they are the max length allowed. At train time,
we use a mask to prevent these tokens from contributing to the loss.

4.2 Hyperparameter Search

Our baseline model had many hyperparameters, so we began by conducting a search across possible
hyperparameter configurations. In order to test our different hyperparameter settings quickly, we
reduced our dataset from 4.7 million training pairs down to 50K.

Hyperparameters that we modified were learning rate (η), epsilon value for Adam optimizer (ε),
dropout rate, L2 regularization weight, batch size, number of encoding layers, number of hidden
units, size of word embeddings, and max gradient norm. Due to the large number of hyperparame-
ters, it wasn’t feasible to use grid search. Therefore, we randomly selected from reasonable values
to create 10 different sets of hyperparameters.

Table 1: Values of randomized hyperparameters for a hyperparameter tuning search.

ID ηηη εεε DROPOUT L2 BATCH LAYERS UNITS EMB NORM
1 0.15 0.1 0.9 0.01 16 4 256 256 8
2 0.15 0.1 0.9 0.001 16 4 128 256 2
3 0.15 1.0 0.5 0.1 16 2 128 128 5
4 0.15 0.1 0.7 0.001 64 4 128 128 8
5 0.05 0.01 0.9 0.1 16 4 128 256 8
6 0.1 1.0 0.5 0.01 64 4 256 256 5
7 0.2 0.01 0.7 0.001 128 4 128 128 10
8 0.15 0.1 0.5 0.01 64 4 256 256 8
9 0.15 0.1 0.9 0.01 32 4 256 256 8

10 0.15 0.1 0.7 0.001 128 4 256 256 8

Figure 2: Training loss graphs for models 5, 6, 7, 8 (clockwise from top left).
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Ultimately, following our hyperparameter search, we chose the set of parameters that produced the
lowest perplexity on the validation data. The hyperparameter values are displayed in Table 2.

Table 2: Optimal hyperparameter values.

ηηη εεε DROPOUT L2 BATCH LAYERS UNITS EMB NORM
0.15 0.1 0.5 0.001 16 4 256 256 8

4.3 Training

After choosing an optimal configuration of our hyperparameters, we scaled up our training set and
trained each of our three models. However, we quickly realized that we would not be able to feasibly
train and iterate on a dataset of 4.7 million samples, so instead we randomly selected 200K samples
for our training set. We observed similar training times across our 3 models running on the Tesla
M60 GPU, each taking about 90 minutes per epoch. With a batch size of 64, we ran each model for
about 15K steps in order to train for 5 epochs. This took 7 to 8 hours per model.

We tracked our evaluation loss by running the model on our validation set every 1K steps.

Figure 3: Training vs evaluation loss for our baseline++ model (train = purple, eval = blue)

4.4 Evaluation

In order to evaluate our model, we ran our generated summaries against the reference summaries
using ROUGE, or Recall-Oriented Understudy for Gisting Evaluation. Specifically, we used the
ROUGE-1 and ROUGE-2 metrics, which calculate precision, recall, and F1 scores for unigrams and
bigrams, respectively.

Table 3: ROUGE-1 and ROUGE-2 scores on the baseline, extension 1, and extension 2 models on
the test set.

ROUGE-1 ROUGE-2
BASELINE 13.71 4.73

BASELINE+ 14.68 4.84
BASELINE++ 14.49 4.67
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From our results, we’re unable to properly evaluate the impact of our extensions, since the baseline
performance did not come close to state-of-the-art.

Article: the wall street journal , the asian edition of the us-based business daily , has appointed
a new managing director , former hachette<unk> executive christine brendel , a statement said
tuesday .
Headline: wall street journal asia names new managing director
Generated headline: <unk> of asia calls for new statement

Article: <unk> their families and supporters mounted a massive demonstration friday in the
<unk> valley to defend the region ’s industrial heart and soul .
Headline: ##,### demonstrate with human chain to defend german coal industry
Generated headline: demonstrations of german guards against enemies

5 Discussion

From both our development set loss and our final ROUGE-1 and ROUGE-2 scores, we see that
our model performed sub-optimally compared to published work in abstractive summarization, with
typical ROUGE-1 and ROUGE-2 scores being above 30 and 20, respectively. While our model
overfits, despite the use of dropout and L2 regularization, we believe the deviation in train and test
results is better attributed to the lack of words in our vocabulary.

We generated our vocabulary from all the words seen in the training set, which for a training set
of 200K samples, consisted of 73K tokens. Additionally, a large part of abstractive summarization
is developing the language model, which requires not only a token existing in the vocabulary, but
also fully learning embeddings for each word. Our vocabulary was significantly smaller than the
ones used in Rush et al. and Chopra et al. which were truncated at 200K tokens. Our motivation
for explicitly using importance scores was to raise the likelihood of using a non-stop word in our
generated summary. The 127K tokens not in our vocabulary (assuming our vocabulary of 73K tokens
is a subset of the 200K vocabulary used in papers) are likely to be non-stop words, and so would be
words that we were looking to raise the importance of in the first place. Thus, while overfitting was
likely an issue, we believe the underlying problem was having a reduced vocabulary, and therefore
not being able to handle many new words seen at test time.

If we had more time, the first thing to do would be to train our models on the full 4.7 million training
pairs. Earlier, our model took 90 mins per epoch for a training set of 200K samples, so for the full
training set, our model would take about 36 hours per epoch. Training on the full dataset would allow
our model to cover a larger vocabulary, and thus allow us to extend better to unseen article-headline
pairs.

Another way we could attempt to get around the limited vocabulary problem is to start with pre-
trained GloVe word embeddings. However, it’s uncertain how useful these would be since many of
the words in our articles were proper nouns, which are not covered very well by available GloVe
embeddings.

6 Conclusion

We attempted to explicitly incorporate the inherent importance of words through two mechanisms
on top of an attentive, bidirectional multilayer LSTM. First, we concatenated tf-idf scores of words
to their embeddings and fed the modified inputs into the encoder. Additionally, we added an output
layer on top of our topmost encoding hidden layer to learn a weight for a word, and then incorporate
that weight into the context vector ci−1 while decoding at timestep i. We trained on a reduced
version of the Gigaword dataset to compare our three models, but our results do not clearly indicate
if our two extensions offer improvements to the baseline. Given more time, we would train on the
full Gigaword dataset, which would allow us to have more conclusive results about the efficacy of
our models.
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