
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Estimating High-Dimensional Temporal Distributions
Application to Music & Language Generation

Anonymous Author(s)
Affiliation
Address
email

1 Introduction

Generating polyphonic music is a complex and high dimensional task. At each time step of a
given song, many combinations of notes could potentially be played. Obviously, the distribution of
potential notes evolves over time, depending on the notes that have actually been played. In other
words, music has a fundamentally sequential nature - just like language: at each time step, there is
a certain distribution of notes that could be played. This distribution is unknown - our goal is to
estimate it! - and evolves over time.
The sequential structure of music and language makes music generation very analogous to letter or
word generation.

Therefore, the recent advances in natural language generation - especially RNNs - should lead
to significant improvement in music generation. Interestingly, not much work has been done on
applying the latest architectures and optimizations of NLP to the task of music generation. Our goal
is to implement these improvements - especially LSTMs, attention, ReLu, dropout - to outperform
the music generation models presented in ICML 2012. Then, we apply this model to create fun
demos - e.g. how Bach would complete Beethoven’s song Finally, we tweak our music generation
model to perform a language task - next word estimation in a sentence.

2 Previous work

Previous work on music generation include a ICML 2012 paper. It compares several music genera-
tion models. The most performant models combine neural networks and distribution estimators:
- the distribution estimator models the distribution of notes that could potentially be played at each
time step
- the RNN determines the parameters of these distribution estimators. The RNN is able to model
the evolution over time of the distributions - and captures information about the impact of a given
note on the distributions of future notes.

However, this work was done before the recent improvements in deep learning. Complex RNN
architectures (LSTMs, GRUs, attention...) and recent optimization techniques (dropout) should
improve the existing baselines. Also, previous work has focused on relatively small datasets - a
few hundred songs. Progress in computation power should enable us to run these models on much
larger datasets - hundreds of thousands of songs - in order to make the most out of our models.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

3 Data set

The ICML 2012 paper on music generation runs baselines on 4 music datasets. We decided to focus
on one of them - JSBChorales - containing 382 piano interpretations of Bach’s chorales.
After reproducing and improving the ICML results on the relatively small JSBChorales dataset, we
build a fun demo that combines different musicians: we train the model on 1,200 classical piano
songs from various musicians. Finally, since the model captures information on these datasets fairly
quickly - it starts overfitting after a few thousand iterations - we train it on the largest music dataset
we could find, 150,000 drum tracks.

All songs and tracks are initially MIDI files. We convert them to a Tensorflow readable format by
keeping track of the notes played at each (discrete) time step.

4 Models

The music generation task consists in estimating the distribution of notes that should be played
at a given time-step, based on what was played previously. To do so, we combine a RNN with
distribution estimators - one per time step - as shown in Figure 1. The outputs of the RNN determine
the parameters of the distribution. In other words, the RNN captures and carries information about
the temporal evolution of the distribution of notes.

In the rest of the section, we use the same RNN architecture. Instead of using ICML’s simple RNN,
we use a multi-layer LSTM. Attention captures long time dependencies and dropout improves the
learning. Gradient clipping and learning rate decay help our batch gradient descent converge.

We consider two different distribution estimators. We first consider the simple Bernoulli estimator,
before analyzing the more complex Neural Autoregressive Distribution Estimator (NADE).

There are two distinct phases. At training time, we estimate the distribution of notes that should be
played at time step t - and compare them to the ground-truth notes that are actually being played at
that timestep. At sampling time, we estimate the distribution of notes that should be played at time
step t and generate notes from these distribution.

Figure 1: Baseline of our model

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

4.1 RNN-Bernoulli

In the RNN-Bernoulli model, the outputs of the RNN at time t represent the unnormalized proba-
bilities of the candidate notes of time t+1. Each note is predicted independently from each other.
Because of this simplistic assumption, we do not expect RNN-Bernoulli to reach breakthrough
results. Instead, we wish to reproduce the results of ICML 2012 and focus on another type of
model, which is much more promising: RNN-NADE.

4.2 RNN-NADE

NADE is a distribution estimator that is able to capture complex multi-modal distributions of notes
at each time step. In this model, the vector x0 is the sequence of notes played at time step t.

Figure 2: Illustration of a NADE model. In this example, in the input layer, units with value 0 are
shown in black while units with value 1 are shown in white. The dashed border represents a layer
pre-activation.The outputs xO give predictive probabilities for each dimension of a vector xO, given
elements earlier in some ordering. There is no path of connections between an output and the value
being predicted, or elements of xO later in the ordering. Arrows connected together correspond to
connections with shared (tied) parameters.

From each conditional probability p(~v|~v<i), where ~v<i is the vector of probability of the i-1 first
notes, we compute the probability of observing the sequence of notes x0 by assuming that p(x0) can
be written as:

p(x0) =

D∏
i=1

p(xi|x<i) (1)

4.3 Training procedure of the RNN-NADE

To train our model, we feed the RNN with the sequence of notes played at each time step and
compute the output of the RNN. Then we use a fully connected layer to compute the parameters b(t)
and c(t), for each time step - they determine the NADE estimator at time t. Given a sequence of
notes, the estimator NADE will generate the probability vector corresponding to the input. In other
words, the output of NADE will be a vector in which each component of the probability vector will
represent the conditional probability of playing this note given what was already played.
The model is trained so that the likelihood of the ground-truth notes of time step t+1, under the
estimator NADE of time t, is maximized. Indeed we want NADE of time step t to give a high
likelihood to the next input vector. Thus, we train our parameters to minimize the following loss,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

called negative log-likelihood:

loss(t) = −log(Pr[inputt+1] (2)

Where PR[inputt+1] is obtained by multiplying all the component of the output vector of NADEt
in order to construct Pr[inputt+1] from equation 1.

Then we update our parameters by applying a mini-batch stochastic gradient descent, with 128 songs
per batch.

θnew = θold − α∇θloss (3)

4.4 Sampling procedure from the RNN-NADE

During the sampling part, all the estimators of the distribution of notes have been trained. Now
we would like these estimators to draw samples in order to generate time steps and thus, generate
music. To do so, we sample a time step from the NADE and use this sample as the next input to our
RNN. In doing so, we generate samples that follow the distribution of the notes estimated during the
training phase.

To generate a sample from a NADE, we use the following procedure:

1. Start with a input vector of zeros. This is not unreasonable because NADE only computes con-
ditional probabilities given the notes already played at the current time step, so the model is not
influenced by elements whose index is larger than the note we are trying to predict.

2. Let’s assume that we have already decided which notes were to be played among the first i-1
notes. we are now trying to compute the probability of playing the ith, given what was already
played. In other words, the input vector is already filled with i-1 notes. The input vector of
i-1 notes is used to compute the (conditional) probability of playing the ith note. To determine
whether a note should be played, given this conditional probability, we sample from a Bernoulli
distribution whose parameter is equal to the conditional distribution of playing the ith note given
the previous note. The result of this sample determines whether or not we play the ith note.

3. We iterate the procedure until we have a full sample for the given time step (128 notes for a piano
for example).

Note that performing this sampling many times could lead to many different samples.

5 Evaluating models

To evaluate the performance of our models, we consider the following qualitative metric: how well
does the generated music sound? However, we would much rather have a quantitative metric. Pre-
vious work on music generation focused on two quantitative metrics: next-time step prediction
accuracy and negative log-likelihood of the next time-step under the model.

1. Next time step accuracy: Given the distribution estimator of time step t, we draw multiple
samples, compare each of them to the ground-truth and average their accuracy score. It is
key to generate several samples (instead of 1) since the distribution of notes is likely to be
multi-modal and a single sample could not reflect this.

2. Log-Likelihood: Since we want the estimator at time step t to estimate the distribution of
notes of time step t+1, the next time step in our RNN should be a likely outcome of our
distribution estimator. In other words, the likelihood of the notes of the next time step under
our model should be high. Thus, we minimize the negative log-likelihood of the next-time
step under our model.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

6 Results

All models were trained to minimize the negative log-likelihood metric. We then computed the
accuracy of our models, to compare it to the previous baselines. Demos for each model are available
in this directory

6.1 Dataset JSBChorales

First, we trained our model on the JSBChorales dataset to compare the performance of our model to
the 2012 ICML publication. The following graph shows the evolution of the loss for the training set
and the validation set, for a given set of parameters.

Figure 3: Evolution of the loss on the training set and the validation set

Figure 5 points out that our model overfits after 800 iterations. The loss on the training set keeps
decreasing with the number of iterations, when the loss on the evaluation set starts increasing. For
the rest of this section, all trainings were interrupted when the models start overfitting - ie when the
evaluation loss increases for more than 50 iterations.

Our model presents many tunable hyper parameters. For each set of hyperparameters, we determine
the optimal number of iterations and measure the performance. Figure 4 displays the different
learning curves obtained by changing the size of the hidden layer, the dropout rate, the attention
window length, the initial learning rate and the learning rate decay. Unsurprisingly, the model with
most parameters (purple curve) reaches the best evaluation loss.
Once we have chosen the optimal set of hyper parameters, we evaluate the model on test set and
compare the results to the ICML publication.

In Figure 5, we compare the result of our models to the ICML models on two different metrics:
log-likelihood and accuracy. Since we trained and tuned our model to minimize the log-likelihood
we will primarily focus our attention on this one. First, we can note that our RNN-Bernoulli model
achieves a slightly lower performance than the ICML model. Two reasons might explain this result.
First, the RNN-Bernoulli has a fairly simplistic distribution estimator, that might level the perfor-
mance of the global model in spite of the improvements made to the RNN (e.g.: attention, dropout).
Also, the RNN-Bernoulli model was not fine-tuned. Instead, our goal was achieve similar results
to the ICML publication, and then focus our attention and computation power on more elaborate
models like RNN-NADE.

Samples generated by this model are available here.

As expected, the RNN-NADE with attention and LSTM model outperforms all ICML models on the
log-likelihood metric. This model was fine-tuned as shown on Figure 4. It achieves a log-likelihood
of -2.7, compared to the ICML score of -5.56.

5

https://drive.google.com/drive/folders/0B9mQQYXWBBq1enl0c2hjRVFfSTg?usp=sharing
https://drive.google.com/open?id=0B9mQQYXWBBq1WWdxUHRiRlE3VUE


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 4: Fine tuning: Evolution of the loss on the training set and the validation set, for three sets
of parameters

Figure 5: Performance comparison

Now that we tuned our model to perform well on the JSBChorale dataset (Bach dataset), we
wanted to generate of fun demo. We trained the model on a diverse set of classical piano songs and
fine-tuned it on Bach piano songs. Then, we asked the to complete the first nodes of a Mozart’s
song, by sampling sequences of notes from our estimators - to continue the song ”like” Bach would
do it. From figure 6, we see that our model doesn’t perform well on this task. We analyzed our
error by decomposing it in several contributions. As shown on Figure 8, the number of missed notes
penalizes our model. From a qualitative point of view, the results are definitely not great to listen to,
although some sequences of notes actually respect the melody. Several explanations might explain
this behaviour: the JSBChorales is a relatively small dataset, if we had a bigger dataset for piano,
we could have improved the learning stage and trained estimators that better represent Bach style.

Samples are available here.

6.2 Drum Dataset

As mentioned above, our model suffers from the small size of the JSBChorales dataset. To
overcome this problem, we increased the number of training examples by working with the largest
dataset we could find - a drum dataset. From figure 8, we see that our model is less likely to over-fit
on the drum dataset. We trained our model on this dataset and generated drum samples out of it.
The results are actually quite pleasant to listen to! The model captures well the notion of rhythm.

Link to samples.

6

https://drive.google.com/drive/folders/0B9mQQYXWBBq1enl0c2hjRVFfSTg?usp=sharing
https://drive.google.com/open?id=0B9mQQYXWBBq1VWxBc19rWDlXUnM


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 6: Evaluation of the accuracy of the prediction of our model to complete a song from a unseen
author. Global error (top-left), average of missed notes (top-right), false positive(bottom-left) and
misplaced note(bottom-right)

Figure 7: Evolution of the loss on the drum set

7 From music to language generation

There is a major difference between the task of generating language and music because in the case
of music. In the case of music, input vectors are binary multi hot-vector extracted from midi files.
But in the case of language, the input vectors are continuous vectors. Our RNN-NADE model is
designed to work with binary vector representation and not with continuous vectors ... Nevertheless,
the RNADE [3]has been proposed as an extension of the NADE model. The RNADE relies on
a multi Gaussian distribution to estimate the notes distribution. Each parameters of the Gaussian
(mean, standard deviation), as in the NADE, is computed from the output of the RNN. We obtain
the following learning curve by training our model on the Wikipedia 2 dataset and using GloVes

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

word vectors. unfortunately, because of time constraint reasons, we were not able to decode the
sequence of word vectors generated into human interpretable words. These results in an updated
version of this paper.

Figure 8: Evolution of the training loss with the number of iterations, on the language generation
task

8 Next steps

In addition to the (R)NADE estimators, we are looking to implement RBM estimators. They al-
legedly obtain better results but are intractable... Nevertheless, advanced sampling algorithm, such
as Gibbs sampling, can counter the intractability. To improve sentence generation, one might also
consider converting the word vectors into sparse binary vectors and thus reuse our NADE model.

9 Acknowledgments & Conclusion

Overall, the RNN-NADE model for music generation outperforms previous baselines, on a reference
piano dataset. We then trained this model on a larger piano dataset and created a demo of style
transcription. The model was also trained on a very large drums dataset in order to get the most out
of it. Finally, we adapted the RNN-NADE to a RNN-RNADE model in order to perform language
generation.

We would like to thanks Daniel Richtie and Richard Socher for their amazing help on this project!

References

[1] Hugo Larochelle & Iain Murray The Neural Autoregressive Distribution Estimator.

[2] Benigno Uria & Marc-Alexandre Cote & Karol Gregor & Iain Murray & Hugo Larochelle
(2016) Neural Autoregressive Distribution Estimation.

[3] Nicolas Boulanger-Lewandowski & Yoshua Bengio & Pascal Vincent Modeling Temporal
Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Genera-
tion and Transcription.

8


	Introduction
	Previous work
	Data set
	Models
	RNN-Bernoulli
	RNN-NADE
	Training procedure of the RNN-NADE
	Sampling procedure from the RNN-NADE

	Evaluating models
	Results
	Dataset JSBChorales
	Drum Dataset

	From music to language generation
	Next steps
	Acknowledgments & Conclusion

