
Beating Atari with Natural Language
Guided Reinforcement Learning

Russell Kaplan, Christopher Sauer, Alexander Sosa
Department of Computer Science

Stanford University
Stanford, CA 94305

{rjkaplan, cpsauer, aasosa}@cs.stanford.edu

Abstract

We introduce the first deep reinforcement learning agent that learns to beat Atari
games with the aid of natural language instructions. The agent uses a mul-
timodal embedding between environment observations and natural language to
self-monitor progress through a list of English instructions, granting itself addi-
tional reward for completing instructions in addition to increasing the game score.
Our agent significantly outperforms Deep-Q Networks, Asynchronous Advantage
Actor-Critic (A3C) agents, and the best agents posted to OpenAI Gym [4] on
what is often considered the hardest Atari 2600 environment [2]: MONTEZUMA’S
REVENGE.

Videos of Trained MONTEZUMA’S REVENGE Agents:
Our Best Current Model. Score 3500.
Best Model Currently on OpenAI Gym. Score 2500.
Standard A3C Agent Fails to Learn. Score 0.

Figure 1: Left: an agent exploring the first room of MONTEZUMA’S REVENGE. Right: an example
list of natural language instructions one might give the agent. The agent grants itself an additional
reward after completing the current instruction. “Completion” is learned by training a generalized
multimodal embedding between game images and text.

1

https://drive.google.com/file/d/0B2ZTvWzKa5PHSkJvQVlsb0FLYzQ/view?usp=sharing
https://drive.google.com/file/d/0B2ZTvWzKa5PHUmxuVEZmaWpSa1U/view?usp=sharing
https://drive.google.com/file/d/0B2ZTvWzKa5PHNFJkWmo2LUx4Y0k/view?usp=sharing

1 Introduction

Humans do not live in typically learn to interact with the world in a vacuum, devoid of interaction
with others, nor do we live in the stateless, single-example world of supervised learning.

Instead, we live in a wonderfully complex and stateful world, where past actions influence present
outcomes. In our learning, we benefit from the guidance of others, receiving arbitrarily high-level
instruction in natural language and learning to fill in the gaps between those instructions, as we
navigate a world with varying sources of reward, both intrinsic and extrinsic.

Building truly intelligent artificial agents will require that they be capable of acting in stateful worlds
such as ours. They will also need to capable of learning from and following instructions given by hu-
mans. Further, these instructions will need to be at whatever high-level specification is convenient—
not just the low-level, completely specified instructions given in current programs.

Inspired by the dream of instructing artificial agents with the power of natural language, we set out
to create an agent capable of learning from high-level English instruction as it learns to act in the
stateful model-world of Atari games.

We do so by combining techniques from natural language processing and deep reinforcement learn-
ing in two stages: In the first stage, the agent learns the meaning of English commands and how
they map onto observations of game state. In the second stage, the agent explores the environment,
progressing through the commands it has learned to understand, and learning what actions are re-
quired to satisfy a given command. Intuitively, the first step corresponds to agreeing upon terms
with the human providing instruction. The second step corresponds to learning to best fill in the
implementation of those instructions.

2 Background

DeepMind shocked the deep and reinforcement learning communities in 2013 with the introduction
of deep-Q learning. For the first time, reinforcement learning agents were learning from high-
dimensional, visual input using convolutional neural networks [10]. With just screen pixels as input,
and the score as reward, their agents achieved superhuman performance on roughly half of Atari
2600 console games, most famously with on Breakout.

Figure 2: Deep-Q Network performance on all Atari 2600 games, normalized against a human
expert. The bottom-most game is MONTEZUMA’S REVENGE. After playing it for 200 hours, DQN
does no better than a random agent and scores no points. [11]

2

The resulting models play impressively well; however, learning completely fails in games with
extended times to rewards, like MONTEZUMA’S REVENGE and the model requires extensive explo-
ration time to find good strategies, even for simpler games like Breakout [11, 7].

Since then, reinforcement learning methods have been increasingly successful in a wide variety of
tasks, particularly as a bridge to learn non-differentiable, stateful action. The range of applica-
tions extends far from the original paper, from early attention mechanisms to productive dialogue
generation [15, 8]. There have also been significant improvements in the underlying learning archi-
tecture. In particular, there has been a shift away from the original deep-Q formulation toward the
Asynchronous Advantage Actor-Critic because of improved learning speed and stability [9]. The
difference between deep-Q and Asynchronous Advantage Actor-Critic will be discussed more in the
next section.

Unfortunately, reinforcement learning agents still struggle to learn in environments with sparse re-
wards. MONTEZUMA’S REVENGE has become the a key testing ground for potential improvements
to the sparse reward problem, and a very active area of research at DeepMind. Efforts to improve
performance in the past few months have focused on adding additional rewards, e.g. curiosity, at
various levels or adding additional model capabilities, e.g. memory [12, 13, 6, 3]. To the best of our
knowledge, no one has previously tried guiding learning with natural language instructions.

2.1 Approaches to Reinforcement Learning

Reinforcement learning is a broad, conceptual framework that encapsulates what it means to learn
to interact in a stateful, uncertain, and unknown world. In reinforcement learning, an agent observes
some state from its environment at each time step and decides upon an action. The agent subse-
quently observes the updated state—affected both by the agent’s actions and by external factors—
and the agent may receive some reward. This cycle repeats until a termination condition is met. A
successful reinforcement learning agent learns from its experience in its environment to improve its
acquisition of time-discounted reward in future runs.

Figure 3: Reinforcement learning cycle.

For all reinforcement learners there is the notion of the value of a state or action. The objective is
to maximize an exponentially time discounted sum of future rewards. That is, there is some time
discounting factor 0 < γ ≤ 1, and the value a state or action–depending on the formulation–is the
sum over future rewards of γ∆tr∆t where ∆t is the time until the reward r∆t is earned. The time
discounting combats value exploding to infinity over time and encourages faster pursuit of reward.

Despite this common framework, in practice there are two well-known but very different approaches
for agent learning. We describe each below.

2.1.1 Deep Q-Learning: The Action-Value Formulation

DeepMind’s original Atari paper used an approach which they termed deep Q-learning, based off
the older idea of Q-learning [10]. Q-learning agents learn a function Q, which takes the current
state as input and discounted value estimate for the rest of the game for each possible action. At test
time, the Q-learning agent simply picks the action with the highest estimated value for that state.
At training time, it balances exploiting what it believes to be the best action with exploring other
actions.

The function Q is parameterized as a convolutional neural network and is trained to match the
observed value of taking actions in a given state through standard backpropagation and gradient
descent on a saved history of observed values. Of course, the value of a given action changes as the
agent learns to play better in the future time steps , so this training is a moving target as the agent
learns.

3

2.1.2 Policy Iteration and A3C: The Action-Distribution Formulation

While deep-Q networks are famous from the original DeepMind Atari paper, policy based ap-
proaches, in particular the Asynchronous Advantage Actor-Critic (A3C) now dominate most leader-
boards on OpenAI Gym, a source of standardized reinforcement learning environments [4].

Instead of trying to assess action value, policy networks skip to directly learning policy, a function
π that maps a state to a distribution of actions. Policy networks train maximize the expected, dis-
counted reward of following that policy, which it can be shown equates to gradient descent with
step size proportional to the discounted reward, R ,times the log of the probability π assigned to
the action. Compared to deep-Q networks, learning can benefit from Thompson sampling, or other
techniques that leverage the degree of the network’s uncertainty about the best next action. A popu-
lar variant, A3C, learns from many games in parallel, increases stability by subtracting an estimated
state value, V (s) from the reward multiplier R in updates, and converges faster than other available
options [9, 13].

3 Approach and Experiments

3.1 Overview of Approach

Figure 4: The overall architecture of our natural language instructed agent at reinforcement learning
time–described as step two above. The agent’s input state at a given frame is shown on the left,
which consists of four recent frames–the last two frames and the 5th and 9th prior frames–and the
current natural language instruction. As in a standard deep reinforcement learning agent, the state
is run through a convolutional neural network and then fully-connected policy and value networks–
shown in blue–to produce an action and update. The multimodal embedding between frame pairs
and instructions–trained in step 1 and shown in green–are used to determine if a natural language
instruction has been satisfied by the past two frames. Satisfying an instruction moves the agent onto
the next and leads to the agent giving itself a small additional reward. The frame and instruction
sentence embedding are also passed as additional features to the network learning the policy and
value. Intuitively, this equates to telling the agent: (1) what is next expected of it rather than leaving
it to have to explore blindly for the next reward and (2) how its progress is being measured against
that command. Together these allow it to better generalize which actions are required to satisfy a
given command.

3.2 Baseline Models

Being new to reinforcement learning, our first step was to train a robust baseline model on Atari
Breakout. For this we used a standard Deep-Q network based on an implementation in TensorFlow
[1] from [5]. However, after 30 hours of training the agent failed to converge to one that could
beat the game. Unable to reproduce DeepMind’s results with DQN without weeks of training, we
instead trained a stronger baseline using a model that is state-of-the-art for many RL environments,
including Breakout: Asynchronous Advantage Actor-Critic (A3C). We based the model on an im-
plementation from [14] and relied on OpenAI’s Gym framework for training reinforcement learning

4

agents [4]. After training overnight, A3C successfully converged to a perfect Breakout score within
30 million frames of training.

3.3 Viability of Sub-task Rewards

Equipped with this more promising baseline, and caught up on our understanding of the state of
the art, we set out to run a proof of concept on the usefulness of additional instruction to reinforce-
ment learning agents by injecting an additional reward signal to the agent whenever in state that
we determined was beneficial for its learning. As Instead of having this additional reward based on
completing a natural language instruction, we initially simply rewarded the agent for arriving at a
game state where the ball’s position was directly above the paddle’s position. To accomplish this, we
wrote a template matching library for Breakout to return the positions of the ball and paddle within
the environment. This turned out to be nontrivial given that the paddle in the Breakout environment
gets smaller as the game progresses and can overlap with the walls and the ball in certain scenarios
and that the ball changes colors based on y position, to name a few complications. One develops a
special appreciation for conv nets when forced, essentially, to hard code one.

With this additional template-matching reward for the agent obtaining the state of having the paddle
under the ball, we saw a significant improvement in the rate of learning for early steps of the game.
We saw even more improvement by also providing a negative reward whenever the agent lost a life
(this reward signal is not provided by the environment directly). The additional reward signals for
following our two hard-coded instruction helped the agent score more than 120 points after only
12,000 iterations (128 frames are played per iteration), more than three times better than ordenary
A3C after the same amount of training time.

While these results for early training were promising, the additional reward signal nevertheless be-
comes less important as the agent progresses further through the environment. The additionally-
rewarded agent converges with the baseline A3C Breakout model after 36,000 iterations, and after
100,000 iterations it actually performs worse. We attribute this to both a) the fact that simply keep-
ing the paddle under the ball is not as useful of a strategy for later rounds when the ball moves more
quickly than the paddle can, and b) that the baseline A3C agent learns so rapidly without additional
reward signal because the reward is dense in the Breakout environment. The Breakout environment
has such dense reward because every time a brick is broken, the agent is given a reward for the
actions that led it to do so. Because the baseline A3C algorithm left little room for improvement
for our additional reward signals, we decided to move on to the significantly harder MONTEZUMAS
REVENGE.

Figure 5: Injecting additional reward in Breakout for keeping the paddle under the ball speeds initial
learning greatly (left); however, once the agent masters the instructions, which describe only basic
game play, the instructions cease to speed up learning (right). Having mastered Breakout, a more
difficult environment–MONTEZUMAS REVENGE–is required for further reinforcement learning in-
sight.

5

3.4 Experiments in Multimodal Embeddings

The aim of our initial experiments on Breakout was to use the simpler environment to refine and
fully understand the sub-components of our natural-language instructed model before we assembled
them to tackle MONTEZUMA’S REVENGE. Having experimented and debugged the reinforcement
(A3C) and reward augmentation sub-components, the final component of our model we had not yet
proven was the multimodal embedding mapping natural language descriptions and frames into a
single embedding space where we could determine whether the description applied to the frame.

We first generated a dataset of several thousand frames by running the A3C model we had just
trained for Breakout and using our template matching code to give relational descriptions of entities
in the frame. For example, some of the possible frame descriptions included “The ball is to the right
of the paddle.” and “The paddle is to the right of the ball.”

To correctly identify commands that are satisfied by a series of consecutive frames, and to pass fixed
size vectors describing those commands and frames to our learning agent, we need a multi-modal
embedding between frames and sentences. The overall setup is shown in the green portion of Figure
4. Our network takes a pair of sequential frames and a sentence captured as a vector of words which
may or may not describe that image. Frame pairs are taken to an embedding by a convolutional
neural network (CNN). Instructions are taken to an embedding of the same size by a variety of
techniques such as an LSTM, GRU, BiLSTM, BiGRU, and bag of words, described and compared
in Figure 6.

Figure 6: Results from training the Breakout multimodal embedding network with different process-
ing strategies for natural language input. The network is trained as a multi-label binary classifier
that tries to answer, independently for each of the 23 Breakout natural-language instructions our the
dataset, “Does this instruction correspond to these frames?”. It predicts “yes” if the dot product be-
tween the frame embedding and that sentence’s embedding is positive, and “no” if this dot product
is negative. The straight line is what the test error would be if predictions are made based solely
on the priors (i.e. ignoring the frames completely, and just saying ”yes” to each instruction if that
instruction is labeled positively in more than half of the training examples.) The bottom curve is
what results from feeding the binary feature vector that was used to generate the natural-language
sentence in our dataset-generation stage directly into the multimodal network. We see that a simple
bag-of-words approach barely does better than the priors; this is because in almost every sentence in
the dataset, word order matters: “The ball is to the right of the paddle” means something very differ-
ent than “The paddle is to the right of the ball”, but the BOW representations are identical. LSTM,
GRU, Bi-LSTM, Bi-GRU, and BOW with unique-word sentences (e.g. transforming “paddle” to
“paddle2” whenever it was at the start of the sentence, so that all sentences had unique words) all
perform equally well, with roughly 4% validation error.

The network aims to maximize the dot product between an embedding of the frames generated and
the sentence embeddings for all sentences which accurately describe a series of frames and minimize
the dot product with those sentence embeddings for sentences which do not apply to the frames. We
choose a dot product between the frame and sentence embeddings over, for example, cosine distance
because many sentences may match a single frame. We want the embedding to be able to measure

6

whether an frame pair expresses one meaning component–the one given by the sentence vector–
without penalizing its score for expressing another meaning component, as would occur with the
normalization terms in cosine similarity.

3.5 MONTEZUMA’S REVENGE

Unlike Breakout, the MONTEZUMA’S REVENGE environment has very sparse reward signal. Refer
to Figure 1 to get an idea: even after the seven listed instructions are followed, the agent still has zero
reward. Only after reaching the key is any reward received, and walking off any of the intermediary
platforms or touching the skull on the way to the key results in death. It’s no surprise that given
these challenges, DQN and A3C both struggle to learn anything.

We ran the baseline A3C algorithm on MONTEZUMA’S REVENGE, and found that after 72 hours of
gameplay and more than 200,000,000 observed frames, the agent achieved a consistent score of 0
in the environment. The actions the trained agent would choose tended to result in near-immediate
death. With this much less impressive baseline model, we repeated the experiment of matched
rewards that we ran on the Breakout environment. We wrote a new template matching library for
MONTEZUMA’S REVENGE and formulated a new series of commands which we devised would
be both useful to the agent to escape the first room, but also generalizable across different rooms
present in the level. Please see Appendix A for the full list. Like Breakout, we started with an easier
experiment: rather than learn to use these natural language commands directly, we first rewarded
the agent for simply reaching different manually-specified locations of the room shown in Figure 1.
With this approach, we were able to achieve a mean score of 400 before exhausting our instructions,
and consistently have the agent make it out of the first room. These results were promising to our
eventual end-goal, as they confirmed that some source of informative auxiliary reward helps the
agent reach farther.

3.6 Dataset generation

Having shown that subtask-rewards were very promising for an RL agent learning to play MON-
TEZUMA’S REVENGE, we were next tasked with generating a dataset to learn mappings between
natural language descriptions of state and raw pixels from the environment. No such dataset existed,
however, so we created our own mappings of game state to natural language descriptions which they
satisfied. To do so, we played fully through the game several different times, saving frames of game
state for each run-through. Utilizing the template-matching code, we could generate lists of chosen
commands that were satisfied by a given series of consecutive frames. After several playthroughs,
we amassed 15,000 training frames, and held out another 3,000 frames–a full separate playthrough–
for validation.

3.7 Learning Frame-Command Mappings with Bimodal Network

As with Breakout, the first phase of training constituted creating a multimodal embedding between
frame pairs depicting Joe’s motion and command statements in Appendix A. The embedding was
trained such that when commands were satisfied by the frames there was positive dot product be-
tween the frame and command embeddings. When the commands were not satisfied, the dot product
was trained to be negative. We used a LSTM with word-level embeddings to extract command em-
beddings and a convolutional neural network running over pairs of frames stacked on the channel
dimension for the frame embeddings.

3.7.1 Evidence of Generalization

Given the complexity of the bimodal embedding model and its access to a training dataset containing
all the rooms for the first level, we wanted to demonstrate that the bimodal was actually learning to
generalize the meaning of the commands, not just requiring that the agent be in the exact same
position as in the training data to classify a command as complete.

Of course, by checking against the the unseen playthrough as validation–which contains many
frames that differ from those in the training set, we were already testing for generalization within a
room. However, we hoped that the command-frame embeddings might be able to generalize across

7

to unseen rooms. To test this, we retrained our bimodal embeddings, this time removing access to
all training data for the second room, but still including frames from the se. The game elements seen
in the second room are still present individually in other rooms, so this tests whether the embedding
can understand them in their new configuration when tested on the unseen second room.

Validation Error Type Full Training Set Training Set Excluding Room 2

Overall validation error percentage 0.0019713 0.0012545
Climb down the ladder 0 0

Climb up the ladder 0.066667 0.066667
Get the coin 0 0
Get the key 0 0

Get the sword 0 0
Get the torch 0 0

Go between the lasers 0 0
Go to the bottom of the room 0 0

Go to the bottom room 0 0
Go to the center of the room 0 0

Go to the left room 0 0
Go to the left side of the room 0.066667 0

Go to the right room 0 0
Go to the right side of the room 0 0

Go to the top of the room 0 0.066667
Go to the top room 0 0
Jump to the rope 0 0

Use the key 0 0

Table 1: Multimodal embedding error rates after training for 100 epochs. Note that holding out
room 2 in the training set has little effect on the embedding accuracy, even through the validation
set contains room 2.

The embedding scheme seems to maintain its extremely low error rate even when tested on a room
it did not observe during training time. This provides some evidence that the embedding generalizes
to some degree across rooms as opposed to just behavior within a room.

It is neat that the embeddings appear to learn to have captured common meaning across rooms, and
further that a relatively simple set of commands gives us as human instructors enough expressiveness
to write instructions through the whole first level. Further, the agent can then learn to use this
common representation as a basis for generalizing its actions across rooms given a command. For
example, if told to go to the right room, the agent might apply the knowledge gained in first figuring
out that instruction’s meaning to choose the right actions on its second appearance in a different
room. Indeed, we see this behavior qualitatively as we watch the agent train. Climbing down the
first ladder takes considerable effort, as the agent needs to discover it must hold the same arrow key
for the duration. On subsequent encounters, the agent often completes the command on the first try,
but learning to go up a ladder for the first time takes longer to learn.

3.8 Run-Time Learning from Natural Language Reward Using Multimodal Embedding

With training of the multimodal embedding complete, we then move to the RL learning stage. For
each A3C worker, we load the embedding weights weights and a list of commands for the agent for
sequentially complete. We calculate whether a command was completed by using our pretrained
bimodal embeddings, passing the current observed state and the current command to accomplish
through the network and marking the command as completed if the dot product between the resulting
frame and command embeddings is positive. If we note that a command has completed, we give our
RL agent an additional reward for successfully completing the task, and continue on to the next
command, also feeding the embeddings into the learning agent as additional features, as described
in Figure 4.

8

Algorithm Score (environment reward)

Nature DQN 0.0
A3C 0.1

MFEC 76.4
NEC 42.1

Prioritised Replay 0.0
Q*(lambda) 0.4

Retrace(lambda) 2.6
Instructed Reinforcement Learner (ours) 500.0

Table 2: Results on MONTEZUMA’S REVENGE after training for 10 million frames. All scores
besides ours are pulled from [12], and all of the reported scores in [12] are included here. These are
all the reported scores we could find for MONTEZUMA’S REVENGE agents trained for 10 million
frames.

Algorithm Score (environment reward)

Itsukara’s algorithm, #2 on Gym leaderboard 1284.0
Pkumusic’s algorithm, #1 on Gym leaderboard 2500.0

Instructed Reinforcement Learner (ours) 3500.0

Table 3: Comparison of results on MONTEZUMA’S REVENGE between our agent and the OpenAI
Gym leaderboard, with no limit on the number of frames trained on. Gym’s leaderboard does not
specify the number of frames agents were trained on. Our agent in this table learned for 60 million
frames.

3.9 Final Results

Table 1 shows a comparison of different reinforcement learning algorithms and ours after 10 million
frames of training. Table 2 compares our results to the leaderboard on OpenAI’s Gym. Our agent is
the clear and compelling winner of both comparisons.

It’s important to note that these tables do not represent an apples-to-apples comparison. Our agent’s
“environment” for MONTEZUMA’S REVENGE is different from all others’: We include a helpful
natural language instruction in addition to the visible frames. Clearly, this makes learning easier than
with no language guidance, but that is entirely the point. We think our results are significant because
the type of supervision our agent received from the language has both (1) shown to generalize to
new states–the agent is able to use language assist navigation through frames that it has never seen
before and that were not included in the training set of the multimodal embedding, so it is not
merely memorizing; and (2) the type of language supervision given to our agent is exactly the type
of supervision that is reasonable to expect an agent would be able to receive in the real world.

There are other, orthogonal ways of adding extra reward to the training process that achieve strong
results on MONTEZUMA’S REVENGE as well. In [2], which uses Intrinsic Motivation as a source
of bonus reward, the authors report that their best run achieved a score of 6600 after 100 million
training frames (this remains the highest reported score for a Reinforcement Learning agent on
MONTEZUMA’S REVENGE). It’s important to note that the Intrinsic Motivation agent explores up to
the same depth of rooms as ours when both are trained for 10 million training frames (unfortunately
they do not report the score after 10 million frames of training, just the rooms explored). We were
not able to train for 100 million frames to provide a more direct comparison with their final results,
due to limited computational budget.

4 Conclusion

We present a novel framework for training reinforcement learning agents that allows the agent to
learn from instruction in natural language. It is a promising start to cooperation between reinforce-
ment learning agents and their human trainers; the agent achieves impressive scores in relatively few

9

frames where traditional agents fail. We think this approach will be even more fruitful when applied
to RL in the real world, for example in robotics. This is because extremely rich, labeled datasets
already exist for real-world images, allowing a much more sophisticated multimodal embedding
between image and language to be learned than what is achievable with our synthetic dataset. And
many tasks in robotics also suffer from the sparse-reward problem, which our approach is specifi-
cally designed to address. We imagine it would be quite useful to have an intelligent robot that can
be instructed by any human, not just an expert programmer, to quickly learn new tasks.

We hope to explore these ideas in future work. We also think it would be interesting to combine
our additional reward mechanism with other sources of auxiliary reward, like Intrinsic Motivation,
which could quite feasibly achieve state-of-the-art results on many challenging environments due to
their complementary and orthogonal nature.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-based
exploration and intrinsic motivation. Advances in Neural Information Processing Systems, 30, 2016.

[3] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-based
exploration and intrinsic motivation. CoRR, abs/1606.01868, 2016.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym, 2016.

[5] DevSisters. Dqn tensorflow. https://github.com/devsisters/DQN-tensorflow, 2017.
[6] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Rein-

forcement learning with unsupervised auxiliary tasks. CoRR, abs/1611.05397, 2016.
[7] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. B. Tenenbaum. Hierarchical deep reinforcement learn-

ing: Integrating temporal abstraction and intrinsic motivation. CoRR, abs/1604.06057, 2016.
[8] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky. Deep reinforcement learning for dialogue

generation. CoRR, abs/1606.01541, 2016.
[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.

Asynchronous methods for deep reinforcement learning. CoRR, abs/1602.01783, 2016.
[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Playing

atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.
[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,

A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 02 2015.

[12] A. Pritzel, B. Uria, S. Srinivasan, A. Puigdomnech, O. Vinyals, D. Hassabis, D. Wierstra, and C. Blundell.
Neural episodic control. 2017.

[13] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu. Feudal
networks for hierarchical reinforcement learning. 2017.

[14] Y. Wu. Tensorpack. https://github.com/ppwwyyxx/tensorpack, 2017.
[15] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show,

attend and tell: Neural image caption generation with visual attention. CoRR, abs/1502.03044, 2015.

Appendix A: Full List of Commands Usable for MONTEZUMA’S REVENGE

Climb down the ladder
Climb up the ladder
Get the key
Use the key
Get the sword
Get the torch
Get the coin
Jump to the rope

10

https://github.com/devsisters/DQN-tensorflow
https://github.com/ppwwyyxx/tensorpack

Go to the left side of the room
Go to the right side of the room
Go to the bottom of the room
Go to the top of the room
Go to the center of the room
Go to the bottom room
Go to the left room
Go to the right room
Go to the top room
Go between the lasers

Final architectures for MONTEZUMA’S REVENGE:

Multimodal embedding network:

Frame head:
Conv[5x5, 32 filters]
ReLU
MaxPool[2x2]
Conv[5x5, 32 filters]
ReLU
MaxPool[2x2]
Conv[4x4, 64 filters]
ReLU
MaxPool[2x2]
Conv[3x3, 64 filters]
FullyConnected[Output dimension 10]
PReLU
FullyConnected[Output dimension 10]

Sentence head:
Word vectors of size 12 ->
LSTM with hidden state size 10

RL policy and value network:

Conv[5x5, 32 filters]
ReLU
MaxPool[2x2]
Conv[5x5, 32 filters]
ReLU
MaxPool[2x2]
Conv[4x4, 64 filters]
ReLU
MaxPool[2x2]
Conv[3x3, 64 filters]
FullyConnected[Output dimension 10]
PReLU
-> (Policy) FullyConnected[Output dimension 10]
-> (Value) FullyConnected[Output dimension 1]

Full list of instructions given to the agent.

Level 1
Room 1

Climb down the ladder
Jump to the rope
Go to the right side of the room

11

Climb down the ladder
Go to the bottom of the room
Go to the center of the room
Go to the left side of the room
Climb up the ladder
Get the key
Climb down the ladder
Go to the bottom of the room
Go to the center of the room
Go to the right side of the room
Climb up the ladder
Jump to the rope
Go to the center of the room
Climb up the ladder
Go to the top of the room
Go to the right side of the room
Use the key
Go to the right room

Room 2
Go to the center of the room
Climb down the ladder
Go to the bottom of the room
Go to the bottom room

Room 3
Go to the left side of the room
Get the sword
Go to the center of the room
Go to the right side of the room
Go to the right room

Room 4
Go between the lasers
Go to the center of the room
Get the key
Go between the lasers
Go to the center of the room
Climb down the ladder
Go to the bottom of the room
Go to the bottom room

Room 5
Go to the left side of the room
Go to the left room

Room 6
Go between the lasers
Go to the center of the room
Go between the lasers
Go to the left side of the room
Go to the left room

Room 7
Go to the center of the room
Climb up the ladder
Go to the top room

Room 8 (torch room) 709

12

Use the key
Jump to the rope
Go to the center of the room
Jump to the rope
Go to the top of the room
Go to the center of the room
Get the torch
Jump to the rope
Go to the center of the room
Jump to the rope
Go to the bottom of the room
Go to the bottom room

13

	Introduction
	Background
	Approaches to Reinforcement Learning
	Deep Q-Learning: The Action-Value Formulation
	Policy Iteration and A3C: The Action-Distribution Formulation

	Approach and Experiments
	Overview of Approach
	Baseline Models
	Viability of Sub-task Rewards
	Experiments in Multimodal Embeddings
	Montezuma's Revenge
	Dataset generation
	Learning Frame-Command Mappings with Bimodal Network
	Evidence of Generalization

	Run-Time Learning from Natural Language Reward Using Multimodal Embedding
	Final Results

	Conclusion

