

Machine Comprehension for SqUAD dataset

 Vikas Bahirwani Erika Menezes 1
 Microsoft Corporation Microsoft Corporation 2
 vikasb@stanford.edu emenezes@stanford.ed 3

Abstract 4

We focus on predicting the start and end indices of the answers. Our approach explores the 5
effectiveness of RNNs, BiRNNs, LSTMs, BiLSTMs etc. We explore the use of Attention in 6
addressing this problem as well. We also observe that our model is underfitting and our next 7
steps would have been to develop a more complex model to overcome the same. 8

 9

1 Introduction 10
Machine comprehension using Deep Learning models is a growing field in Natural Language 11
Processing. While it possesses immense potential it also presents a lot of challenges - special 12
the challenge to design a neural network to fit the downstream task at hand. 13
 14
In this assignment, we address the reading comprehension task of generating answers from 15
context paragraphs given the questions. Our approach starts with a simple baseline model 16
using RNNs to capture question and context knowledge. 17
 18
We then update our model to use LSTMs - which help us learn longer paragraphs and 19
address the answer generation problem better than RNNs. We focus on predicting the start 20
and end indices of the answers. 21
 22
2 Background/Related Work 23
 24
There have been many deep learning models proposed for machine comprehension. Wang et 25
al.[1] work is based on the assumption that a span in a passage is more likely to be the 26
correct answer if the context of this span is very similar to the question. The novelty in this 27
paper is the Multi-Perspective Context Matching (MPCM) model that identifies the answer 28
span by matching the context of each point in the passage with the question from multiple 29
perspectives. There is also the work by Xiong et al.[2] that focuses on how to recover from 30
local maxima from incorrect answers. The Dynamic Co-attention Network combines the 31
question and the document in order to focus on relevant parts of both. Then a dynamic 32
pointing decoder iterates over potential answer spans. 33

 34
3 Approach 35
 36
3 . 1 D a t a A n a l y s i s 37
To better understand the problem, we visualized the data by printing it from 38
qa_answer.generate_answers(). Once the dataset has been read into a list of tuples of 39
(context, question, question_uuid) we used this and the vocabulary passed as an argument to 40

generate the answer for a given a_s and a_e. We are still working on encoding and decoding 41
in order to generate model predictions. 42
 43
3 . 2 A p p r o a c h 44
 45
Our first approach was to have a simple encoder decoder model as a baseline. This was 46
implemented using an LSTM over the question, and another LSTM for the context by using 47
the initial state as the final state from the question. We then used the final states from the 48
question and paragraph through a 1 layer neural network to predict the start and end of the 49
answer. The following steps capture the approach: 50
 51

1. 1Question -> LSTM ->Q 52
2. Paragraph _> LSTM(initial = Q) -> P 53
3. KRep = [Q,P] 54
4. as = softmax(KRep * W1) + B1 55
5. ae = softmax(KRep * W1) + B1 56

 57
We realise that the biggest drawback of this model is that it does not include attention and 58
in order to fix this we come up with a slightly more complex model that involves the 59
following steps: 60
 61

1. Question -> LSTM -> Q 62
2. Paragraph -> LSTM -> P 63
3. A = softmax(P Q^T) //Compute context vector for Q->P 64
4. C_P = A Q // and mix with P 65
5. P = concat(C_P, P) W + b // Mix it with P (Krep) 66
6. as = softmax(KRep * W1) + B1 67
7. ae = softmax(KRep * W1) + B1 68

 69
The last approach that we tried was to introduce non linearity in the decoder by using a 70
ReLU activation function in the neural network . 71
 72

1. Question -> LSTM -> Q 73
2. Paragraph -> LSTM -> P 74
3. A = softmax(P Q^T) //Compute context vector for Q->P 75
4. C_P = A Q // and mix with P 76
5. P = concat(C_P, P) W + b // Mix it with P (Krep) 77
6. as = softmax(KRep * W1) + B1 78
7. ae = softmax(KRep * W1) + B1 79

 80
4 Experiments 81
 82
We experimented (on all approaches) both locally and on GPU. Locally we used 1000 83
samples (from training) to train the model across 10 epochs (batch size 10). At each epoch, 84
we calculated F1 on 50 validation dataset samples. 85
 86
In addition, we also evaluated the F1 score of the overall model. 87
 88
Here are the loss and F1 scores from the final approach. 89
 90
Epoch 1 out of 10 91
train loss: 9.7127 92
Score 6.181432 , best_score so far 6.181432 93
 94
Epoch 2 out of 10 95

train loss: 9.3238 96
Score 4.153968 , best_score so far 6.181432 97
 98
Epoch 3 out of 10 99
train loss: 8.8529 100
Score 6.735965 , best_score so far 6.735965 101
 102
Epoch 4 out of 10 103
train loss: 8.5121 104
Score 4.476740 , best_score so far 6.735965 105
 106
Epoch 5 out of 10 107
train loss: 8.3757 108
Score 2.268926 , best_score so far 6.735965 109
 110
Epoch 6 out of 10 111
train loss: 8.2868 112
Score 4.464495 , best_score so far 6.735965 113
 114
Epoch 7 out of 10 115
train loss: 8.2392 116
Score 3.814750 , best_score so far 6.735965 117
 118
Epoch 8 out of 10 119
train loss: 8.2109 120
Score 4.473124 , best_score so far 6.735965 121
 122
Epoch 9 out of 10 123
train loss: 8.2412 124
Score 4.029124 , best_score so far 6.735965 125
 126
We noticed that we used our models were underfitting because our loss will not go down. 127
(As opposed to overfitting where loss on train is almost 0 or F1 is very high but on 128
validation set the performance degrades). 129
 130
Furthermore, to confirm that we were not falling into the trap of gradient explosion, we 131
generated the following plot. Essentially it was the same with and without clipping. 132
(GradNorm 5) 133
 134

 135
 136
5 Conclusion 137

Do not change any aspects of the formatting parameters in the style files. In particular, do 138
not modify the width or length of the rectangle that the text should fit into, and do not 139
change font sizes (except perhaps in the References section; see below). Please note that 140
pages should be numbered. 141

R e f e r e n c e s 142
 [1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule 143
extraction. In G. Tesauro, D. S. Touretzky and T.K. Leen (eds.), Advances in Neural Information 144
Processing Systems 7, pp. 609-616. Cambridge, MA: MIT Press. 145
[2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Exploring Realistic Neural Models with 146
the GEneral NEural SImulation System. New York: TELOS/Springer-Verlag. 147
[3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory 148

recurrent synapses and cholinergic modulation in rat hiippocampal region CA3. Journal of 149
Neuroscience 15(7):5249-5262. 150

