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Abstract 4 

We focus on predicting the start and end indices of the answers. Our approach explores the 5 
effectiveness of RNNs, BiRNNs, LSTMs, BiLSTMs etc. We explore the use of Attention in 6 
addressing this problem as well. We also observe that our model is underfitting and our next 7 
steps would have been to develop a more complex model to overcome the same. 8 

 9 

1 Introduction  10 
Machine comprehension using Deep Learning models is a growing field in Natural Language 11 
Processing. While it possesses immense potential it also presents a lot of challenges - special 12 
the challenge to design a neural network to fit the downstream task at hand. 13 
 14 
In this assignment, we address the reading comprehension task of generating answers from 15 
context paragraphs given the questions. Our approach starts with a simple baseline model 16 
using RNNs to capture question and context knowledge. 17 
 18 
We then update our model to use LSTMs - which help us learn longer paragraphs and 19 
address the answer generation problem better than RNNs. We focus on predicting the start 20 
and end indices of the answers. 21 
 22 
2 Background/Related Work 23 
 24 
There have been many deep learning models proposed for machine comprehension. Wang et 25 
al.[1] work is based on the assumption that a span in a passage is more likely to be the 26 
correct answer if the context of this span is very similar to the question. The novelty in this 27 
paper is the Multi-Perspective Context Matching (MPCM) model that identifies the answer 28 
span by matching the context of each point in the passage with the question from multiple 29 
perspectives. There is also the work by Xiong et al.[2] that focuses on how to recover from 30 
local maxima from incorrect answers. The Dynamic Co-attention Network combines the 31 
question and the document in order to focus on relevant parts of both. Then a dynamic 32 
pointing decoder iterates over potential answer spans. 33 

 34 
3 Approach 35 
 36 
3 . 1  D a t a  A n a l y s i s  37 
To better understand the problem, we visualized the data by printing it from 38 
qa_answer.generate_answers(). Once the dataset has been read into a list of tuples of 39 
(context, question, question_uuid) we used this and the vocabulary passed as an argument to 40 



generate the answer for a given a_s and a_e. We are still working on encoding and decoding 41 
in order to generate model predictions. 42 
 43 
3 . 2  A p p r o a c h  44 
 45 
Our first approach was to have a simple encoder decoder model as a baseline. This was 46 
implemented using an LSTM over the question, and another LSTM for the context by using 47 
the initial state as the final state from the question. We then used the final states from the 48 
question and paragraph through a 1 layer neural network to predict the start and end of the 49 
answer. The following steps capture the approach: 50 
 51 

1. 1Question -> LSTM ->Q 52 
2. Paragraph _> LSTM(initial = Q) -> P 53 
3. KRep = [Q,P] 54 
4. as = softmax(KRep * W1) + B1 55 
5. ae = softmax(KRep * W1) + B1 56 

 57 
We realise that  the biggest drawback of this model is that it does not include attention and 58 
in order to fix this we come up with a slightly more complex model that involves the 59 
following steps: 60 
 61 

1. Question -> LSTM -> Q 62 
2. Paragraph -> LSTM -> P 63 
3. A = softmax(P Q^T) //Compute context vector for Q->P 64 
4. C_P = A Q // and mix with P 65 
5. P = concat(C_P, P) W + b // Mix it with P (Krep) 66 
6. as = softmax(KRep * W1) + B1 67 
7. ae = softmax(KRep * W1) + B1 68 

 69 
The last approach that we tried was to introduce  non linearity in the decoder by using a 70 
ReLU activation function in the neural network . 71 
 72 

1. Question -> LSTM -> Q 73 
2. Paragraph -> LSTM -> P 74 
3. A = softmax(P Q^T) //Compute context vector for Q->P 75 
4. C_P = A Q // and mix with P 76 
5. P = concat(C_P, P) W + b // Mix it with P (Krep) 77 
6. as = softmax(KRep * W1) + B1 78 
7. ae = softmax(KRep * W1) + B1 79 

 80 
4 Experiments  81 
 82 
We experimented (on all approaches) both locally and on GPU. Locally we used 1000 83 
samples (from training) to train the model across 10 epochs (batch size 10). At each epoch, 84 
we calculated F1 on 50 validation dataset samples.  85 
 86 
In addition, we also evaluated the F1 score of the overall model.  87 
 88 
Here are the loss and F1 scores from the final approach.  89 
 90 
Epoch 1 out of 10 91 
train loss: 9.7127       92 
Score 6.181432 , best_score so far 6.181432 93 
 94 
Epoch 2 out of 10 95 



train loss: 9.3238      96 
Score 4.153968 , best_score so far 6.181432 97 
 98 
Epoch 3 out of 10 99 
train loss: 8.8529      100 
Score 6.735965 , best_score so far 6.735965 101 
 102 
Epoch 4 out of 10 103 
train loss: 8.5121      104 
Score 4.476740 , best_score so far 6.735965 105 
 106 
Epoch 5 out of 10 107 
train loss: 8.3757      108 
Score 2.268926 , best_score so far 6.735965 109 
 110 
Epoch 6 out of 10 111 
train loss: 8.2868      112 
Score 4.464495 , best_score so far 6.735965 113 
 114 
Epoch 7 out of 10 115 
train loss: 8.2392      116 
Score 3.814750 , best_score so far 6.735965 117 
 118 
Epoch 8 out of 10 119 
train loss: 8.2109      120 
Score 4.473124 , best_score so far 6.735965 121 
 122 
Epoch 9 out of 10 123 
train loss: 8.2412      124 
Score 4.029124 , best_score so far 6.735965 125 
 126 
We noticed that we used our models were underfitting because our loss will not go down. 127 
(As opposed to overfitting where loss on train is almost 0 or F1 is very high but on 128 
validation set the performance degrades).  129 
 130 
Furthermore, to confirm that we were not falling into the trap of gradient explosion, we 131 
generated the following plot. Essentially it was the same with and without clipping. 132 
(GradNorm 5) 133 
 134 



 135 
 136 
5 Conclusion 137 

Do not change any aspects of the formatting parameters in the style files. In particular, do 138 
not modify the width or length of the rectangle that the text should fit into, and do not 139 
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pages should be numbered. 141 
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