
CS 224N: Assignment #1

Due date: 1/25 11:59 PM PST (You are allowed to use three (3) late days maximum for this

assignment)

These questions require thought, but do not require long answers. Please be as concise as possible.

We encourage students to discuss in groups for assignments. However, each student must finish

the problem set and programming assignment individually, and must turn in her/his

assignment. We ask that you abide by the university Honor Code and that of the Computer Science

department, and make sure that all of your submitted work is done by yourself. If you have discussed

the problems with others, please include a statement saying who you discussed problems with. Failure

to follow these instructions will be reported to the Office of Community Standards.

Please review any additional instructions posted on the assignment page at

http://cs224n.stanford.edu/assignment1. When you are ready to submit, please follow the in-

structions on the course website. Make sure you test your code using the provided commands

and do not edit outside of the marked areas. Code that does not run on corn or

incorporates additional libraries will receive no credit.

1 Softmax (10 points)

(a) (5 points) Prove that softmax is invariant to constant offsets in the input, that is, for any input vector

x and any constant c,

softmax(x) = softmax(x+ c)

where x+ c means adding the constant c to every dimension of x. Remember that

softmax(x)i =
exi∑
j e

xj
(1)

Note: In practice, we make use of this property and choose c = −maxi xi when computing softmax

probabilities for numerical stability (i.e., subtracting its maximum element from all elements of x).

(b) (5 points) Given an input matrix of N rows and D columns, compute the softmax prediction for each

row using the optimization in part (a). Write your implementation in q1 softmax.py. You may test

by executing python q1 softmax.py.

Note: The provided tests are not exhaustive. Later parts of the assignment will reference this code so

it is important to have a correct implementation. Your implementation should also be efficient and

vectorized whenever possible (i.e., use numpy matrix operations rather than for loops). A non-vectorized

implementation will not receive full credit!

2 Neural Network Basics (30 points)

(a) (3 points) Derive the gradients of the sigmoid function and show that it can be rewritten as a function

of the function value (i.e., in some expression where only σ(x), but not x, is present). Assume that the

input x is a scalar for this question. Recall, the sigmoid function is

σ(x) =
1

1 + e−x
(2)
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(b) (3 points) Derive the gradient with regard to the inputs of a softmax function when cross entropy loss

is used for evaluation, i.e., find the gradients with respect to the softmax input vector θ, when the

prediction is made by ŷ = softmax(θ). Remember the cross entropy function is

CE(y, ŷ) = −
∑
i

yi log(ŷi) (3)

where y is the one-hot label vector, and ŷ is the predicted probability vector for all classes. (Hint: you

might want to consider the fact many elements of y are zeros, and assume that only the k-th dimension

of y is one.)

(c) (6 points) Derive the gradients with respect to the inputs x to an one-hidden-layer neural network (that

is, find ∂J
∂x where J = CE(y, ŷ) is the cost function for the neural network). The neural network employs

sigmoid activation function for the hidden layer, and softmax for the output layer. Assume the one-hot

label vector is y, and cross entropy cost is used. (Feel free to use σ′(x) as the shorthand for sigmoid

gradient, and feel free to define any variables whenever you see fit.)

x

h

ŷ

Recall that the forward propagation is as follows

h = sigmoid(xW1 + b1) ŷ = softmax(hW2 + b2)

Note that here we’re assuming that the input vector (thus the hidden variables and output probabilities)

is a row vector to be consistent with the programming assignment. When we apply the sigmoid function

to a vector, we are applying it to each of the elements of that vector. Wi and bi (i = 1, 2) are the weights

and biases, respectively, of the two layers.

(d) (2 points) How many parameters are there in this neural network, assuming the input is Dx-dimensional,

the output is Dy-dimensional, and there are H hidden units?

(e) (4 points) Fill in the implementation for the sigmoid activation function and its gradient in q2 sigmoid.py.

Test your implementation using python q2 sigmoid.py. Again, thoroughly test your code as the pro-

vided tests may not be exhaustive.

(f) (4 points) To make debugging easier, we will now implement a gradient checker. Fill in the implementa-

tion for gradcheck naive in q2 gradcheck.py. Test your code using python q2 gradcheck.py.

(g) (8 points) Now, implement the forward and backward passes for a neural network with one sigmoid

hidden layer. Fill in your implementation in q2 neural.py. Sanity check your implementation with

python q2 neural.py.

3 word2vec (40 points + 2 bonus)

(a) (3 points) Assume you are given a “predicted” word vector vc corresponding to the center word c for

Skip-Gram, and word prediction is made with the softmax function found in word2vec models

ŷo = p(o | c) =
exp(u>o vc)∑V

w=1 exp(u>wvc)
(4)
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where uw (w = 1, . . . , V ) are the “output” word vectors for all words in the vocabulary. Assuming

cross entropy cost is applied to this prediction and word o is the expected word (the o-th element of the

one-hot label vector is one), derive the gradients with respect to vc.

Hint: It will be helpful to use notation from question 2. For instance, letting ŷ be the vector of softmax

predictions for every word, y as the expected word vector, and the loss function

Jsoftmax−CE(o,vc,U) = CE(y, ŷ) (5)

where U = [u1,u2, · · · ,uV ] is the matrix of all the output vectors. Make sure you state the orientation

of your vectors and matrices.

(b) (3 points) As in the previous part, derive gradients for the “output” word vectors uk’s (including uo).

(c) (6 points) Repeat part (a) and (b) assuming we are using the negative sampling loss for the predicted

vector vc, and the expected output word index is o. Assume that K negative samples (words) are drawn,

and they are 1, 2, ...,K respectively for simplicity of notation (o /∈ {1, . . . ,K}). Again, for a given word,

o, denote its output vector as uo. The negative sampling loss function in this case is

Jneg−sample(o,vc,U) = − log(σ(u>o vc))−
K∑

k=1

log(σ(−u>k vc)) (6)

where σ(·) is the sigmoid function.

After you’ve done this, describe with one sentence why this cost function is much more efficient to

compute than the softmax-CE loss (you could provide a speed-up ratio, i.e., the runtime of the softmax-

CE loss divided by the runtime of the negative sampling loss).

Note: the cost function here is the negative of what Mikolov et al had in their original paper, because we

are doing a minimization instead of maximization in our code.

(d) (8 points) Suppose the center word is c = wt and the context words are [wt−m, . . ., wt−1, wt, wt+1,

. . ., wt+m], where m is the context size. Derive gradients for all of the word vectors for Skip-Gram and

CBOW given the previous parts.

Hint: feel free to use F (o,vc) (where o is the expected word) as a placeholder for the Jsoftmax−CE(o,vc, ...)

or Jneg−sample(o,vc, ...) cost functions in this part — you’ll see that this is a useful abstraction for the

coding part. That is, your solution may contain terms of the form ∂F (o,vc)
∂... .

Recall that for skip-gram, the cost for a context centered around c is

Jskip-gram(wt−m...t+m) =
∑

−m≤j≤m,j 6=0

F (wt+j ,vc) (7)

where wt+j refers to the word at the j-th index from the center.

CBOW is slightly different. Instead of using vc as the predicted vector, we use v̂ defined below. For (a

simpler variant of) CBOW, we sum up the input word vectors in the context

v̂ =
∑

−m≤j≤m,j 6=0

vwt+j
(8)

then the CBOW cost is

JCBOW(wc−m...c+m) = F (wt, v̂) (9)

Note: To be consistent with the v̂ notation such as for the code portion, for skip-gram v̂ = vc.

Page 3 of 5



CS 224N: Assignment #1

(e) (12 points) In this part you will implement the word2vec models and train your own word vectors

with stochastic gradient descent (SGD). First, write a helper function to normalize rows of a matrix in

q3 word2vec.py. In the same file, fill in the implementation for the softmax and negative sampling cost

and gradient functions. Then, fill in the implementation of the cost and gradient functions for the skip-

gram model. When you are done, test your implementation by running python q3 word2vec.py.

Note: If you choose not to implement CBOW (part h), simply remove the NotImplementedError so that

your tests will complete.

(f) (4 points) Complete the implementation for your SGD optimizer in q3 sgd.py. Test your implemen-

tation by running python q3 sgd.py.

(g) (4 points) Show time! Now we are going to load some real data and train word vectors with everything

you just implemented! We are going to use the Stanford Sentiment Treebank (SST) dataset to train word

vectors, and later apply them to a simple sentiment analysis task. You will need to fetch the datasets

first. To do this, run sh get datasets.sh. There is no additional code to write for this part; just

run python q3 run.py.

Note: The training process may take a long time depending on the efficiency of your implementation

(an efficient implementation takes approximately an hour). Plan accordingly!

When the script finishes, a visualization for your word vectors will appear. It will also be saved as

q3 word vectors.png in your project directory. Include the plot in your homework write up.

Briefly explain in at most three sentences what you see in the plot.

(h) (Extra credit: 2 points) Implement the CBOW model in q3 word2vec.py. Note: This part is optional

but the gradient derivations for CBOW in part (d) are not!.

4 Sentiment Analysis (20 points)

Now, with the word vectors you trained, we are going to perform a simple sentiment analysis. For each

sentence in the Stanford Sentiment Treebank dataset, we are going to use the average of all the word vectors

in that sentence as its feature, and try to predict the sentiment level of the said sentence. The sentiment

level of the phrases are represented as real values in the original dataset, here we’ll just use five classes:

“very negative (−−)”, “negative (−)”, “neutral”, “positive (+)”, “very positive (++)”

which are represented by 0 to 4 in the code, respectively. For this part, you will learn to train a softmax

classifier, and perform train/dev validation to improve generalization.

(a) (2 points) Implement a sentence featurizer. A simple way of representing a sentence is taking the average

of the vectors of the words in the sentence. Fill in the implementation in q4 sentiment.py.

(b) (1 points) Explain in at most two sentences why we want to introduce regularization when doing classi-

fication (in fact, most machine learning tasks).

(c) (2 points) Fill in the hyperparameter selection code in q4 sentiment.py to search for the “op-

timal” regularization parameter. You need to implement both getRegularizationValues and

chooseBestModel. Attach your code for chooseBestModel to your written write-up. You should

be able to attain at least 36.5% accuracy on the dev and test sets using the pretrained vectors in part

(d).

(d) (3 points) Run python q4 sentiment.py --yourvectors to train a model using your word vectors

from q3. Now, run python q4 sentiment.py --pretrained to train a model using pretrained

GloVe vectors (on Wikipedia data). Compare and report the best train, dev, and test accuracies. Why

do you think the pretrained vectors did better? Be specific and justify with 3 distinct reasons.
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(e) (4 points) Plot the classification accuracy on the train and dev set with respect to the regularization

value for the pretrained GloVe vectors, using a logarithmic scale on the x-axis. This should have been

done automatically. Include q4 reg acc.png in your homework write up. Briefly explain in at

most three sentences what you see in the plot.

(f) (4 points) We will now analyze errors that the model makes (with pretrained GloVe vectors). When you

ran python q4 sentiment.py --pretrained, two files should have been generated. Take a look

at q4 dev conf.png and include it in your homework writeup. Interpret the confusion matrix

in at most three sentences.

(g) (4 points) Next, take a look at q4 dev pred.txt. Choose 3 examples where your classifier made errors

and briefly explain the error and what features the classifier would need to classify the example correctly

(1 sentence per example). Try to pick examples with different reasons.

Page 5 of 5


