# Natural Language Processing with Deep Learning CS224N/Ling284



#### Richard Socher Lecture 1: Introduction



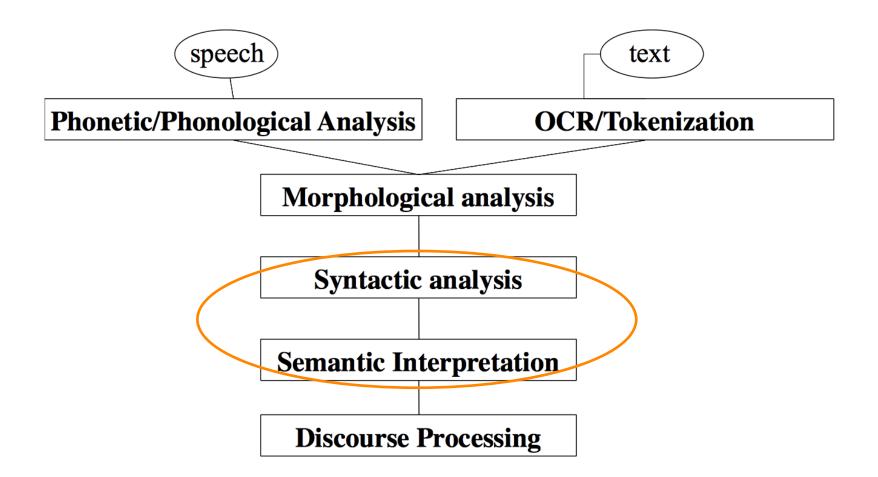
- What is Natural Language Processing? The nature of human language (15 mins)
- 2. What is Deep Learning? (15 mins)
- 3. Course logistics (15 mins)
- 4. Why is language understanding difficult (10 mins)
- 5. Intro to the application of Deep Learning to NLP (20 mins)

Buffer: 5 mins

### 1. What is Natural Language Processing (NLP)?

- Natural language processing is a field at the intersection of
  - computer science
  - artificial intelligence
  - and linguistics.
- **Goal:** for computers to process or "understand" natural language in order to perform tasks that are useful, e.g.,
  - Performing Tasks, like making appointments, buying things
  - Language translation
  - Question Answering
    - Siri, Google Assistant, Facebook M, Cortana ...
- Fully **understanding and representing** the **meaning** of language (or even defining it) is a difficult goal.
- Perfect language understanding is Al-complete

#### **NLP Levels**



# (A tiny sample of) NLP Applications

Applications range from simple to complex:

- Spell checking, keyword search, finding synonyms
- Extracting information from websites such as
  - product price, dates, location, people or company names
- Classifying: reading level of school texts, positive/negative sentiment of longer documents
- Machine translation
- Spoken dialog systems
- Complex question answering

#### NLP in industry ... is taking off

- Search (written and spoken)
- Online advertisement matching
- Automated/assisted translation
- Sentiment analysis for marketing or finance/trading
- Speech recognition
- Chatbots / Dialog agents
  - Automating customer support
  - Controlling devices
  - Ordering goods



# What's special about human language?

A human language is a system **specifically constructed to convey the speaker/writer's meaning** 

- Not just an environmental signal, it's a deliberate communication
- Using an encoding which little kids can quickly learn (amazingly!) and which changes

A human language is mostly a **discrete/symbolic/categorical signaling system** 

- rocket = 🚀; violin = 🔾
- Presumably because of greater signaling reliability
- Symbols are not just an invention of logic / classical AI!



# What's special about human language?

The categorical symbols of a language can be encoded as a signal for communication in several ways:

- Sound
- Gesture
- Writing/Images

#### The symbol is invariant across different encodings!





CC BY 2.0 David Fulmer 2008

unam Surtutie tue emittet The en hon Dhare in motio unnucoz tuoz caun pzincipia m die Surtutie tue in felentozib; fangtozu so utero anteluciferum genui te unaut Dhe et non pemtebit cui tu ce faceroe Inctions fecundum ozome melebifetet, inctions fecundum ozome melebifetet, uce fue oznea undicabit in natioib;

National Library of NZ, no known restrictions 1/9/18



# What's special about human language?

A human language is a **symbolic/categorical signaling system** 

However, a brain encoding appears to be a **continuous pattern of activation**, and the symbols are transmitted via **continuous signals** of sound/vision

The large vocabulary, symbolic encoding of words creates a problem for machine learning – sparsity!

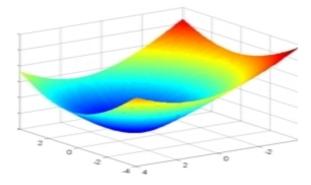
We will explore a continuous encoding pattern of thought



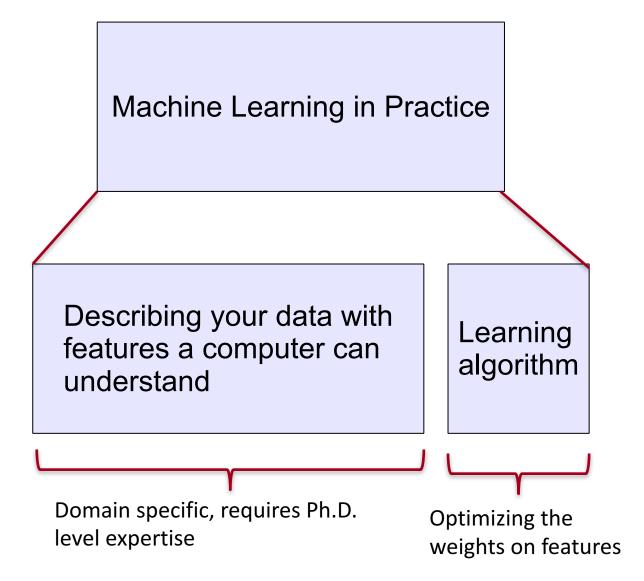
### 2. What's Deep Learning (DL)?

- **Deep learning** is a subfield of **machine learning**
- Most machine learning methods work well because of human-designed representations and input features
  - For example: features for finding named entities like locations or organization names (Finkel et al., 2010):
- Machine learning becomes just optimizing weights to best make a final prediction

| Feature                          | NER          |
|----------------------------------|--------------|
| Current Word                     | $\checkmark$ |
| Previous Word                    | $\checkmark$ |
| Next Word                        | $\checkmark$ |
| Current Word Character n-gram    | all          |
| Current POS Tag                  | $\checkmark$ |
| Surrounding POS Tag Sequence     | $\checkmark$ |
| Current Word Shape               | $\checkmark$ |
| Surrounding Word Shape Sequence  | $\checkmark$ |
| Presence of Word in Left Window  | size 4       |
| Presence of Word in Right Window | size 4       |



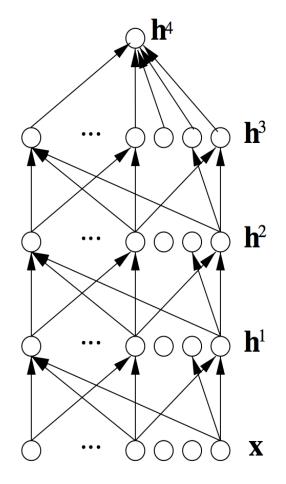
#### **Machine Learning vs. Deep Learning**



## What's Deep Learning (DL)?

- In contrast to standard machine learning,
- Representation learning attempts to automatically learn good features or representations
- Deep learning algorithms attempt to learn (multiple levels of) representations (here: h<sup>1</sup>,h<sup>2</sup>,h<sup>3</sup>) and an output (h<sup>4</sup>)
- From "raw" inputs x

   (e.g. sound, pixels, characters, or words)



#### On the history of "Deep Learning"

- We will focus on different kinds of **neural networks**
- The dominant model family inside deep learning
- Only clever terminology for stacked logistic regression units?
  - Maybe, but interesting modeling principles (end-to-end) and actual connections to neuroscience in some cases.
  - Recently: Differentiable Programming becomes clear later
- We will not take a historical approach but instead focus on methods which work well on NLP problems now
- For a long history of deep learning models (starting ~1960s), see: <u>Deep Learning in Neural Networks: An Overview</u> by Jürgen Schmidhuber

#### **Reasons for Exploring Deep Learning**

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- Deep learning can learn unsupervised (from raw text) and supervised (with specific labels like positive/negative)

#### **Reasons for Exploring Deep Learning**

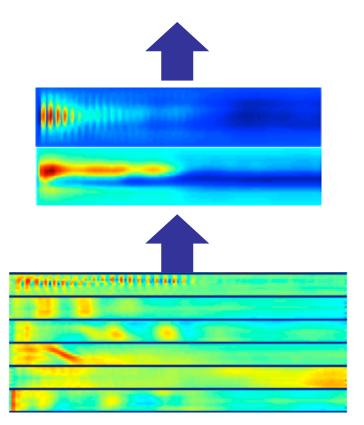
- In ~2010 deep learning techniques started outperforming other machine learning techniques. Why this decade?
- Large amounts of training data favor deep learning
- Faster machines and multicore CPU/GPUs favor Deep Learning
- New models, algorithms, ideas
  - Better, more flexible learning of intermediate representations
  - Effective end-to-end joint system learning
  - Effective learning methods for using contexts and transferring between tasks
  - Better regularization and optimization methods
- → Improved performance (first in speech and vision, then NLP)

### **Deep Learning for Speech**

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition Dahl et al. (2010)

| Acoustic model<br>and WER | RT03S<br>FSH          | Hub5<br>SWB           |
|---------------------------|-----------------------|-----------------------|
| Traditional features      | 27.4                  | 23.6                  |
| Deep Learning             | <b>18.5</b><br>(-33%) | <b>16.1</b><br>(-32%) |

#### Phonemes/Words



#### **Deep Learning for Computer Vision**

First major focus of deep learning groups was computer vision

The breakthrough DL paper: ImageNet Classification with Deep **Convolutional Neural Networks by** Krizhevsky, Sutskever, & Hinton, 2012, U. Toronto. 37% error red.











quail

tabbv

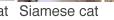














partridge

lvnx



Zeiler and Fergus (2013) 1/9/18

17



# **3. Course logistics in brief**

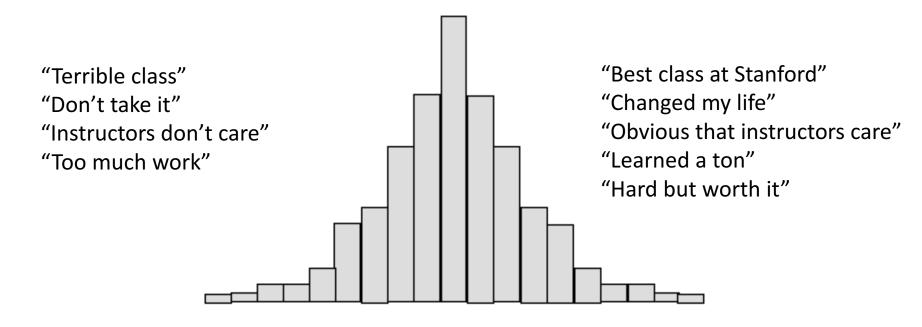
- Instructor: Richard Socher
- Head TAs: Kevin Clark and Abigail See
- TAs: Many wonderful people!
- Time: TuTh 4:30–5:50, Nvidia Aud ( $\rightarrow$  video)
- Other information: see the class webpage
  - <u>http://cs224n.stanford.edu/</u> a.k.a., <u>http://www.stanford.edu/class/cs224n/</u>
  - Syllabus, **office hours** (I will start today, rest start next week), "handouts", TAs, Piazza
  - Slides uploaded before each lecture



- Proficiency in Python
  - All class assignments will be in Python.
  - Python refresh session: 3:00-4:20pm, January 19!
- Multivariate Calculus, Linear Algebra (e.g., MATH 51, CME 100)
- Basic Probability and Statistics (e.g. CS 109 or other stats course)
- Fundamentals of Machine Learning (e.g., from CS229 or CS221)
  - loss functions
  - taking simple derivatives
- performing optimization with gradient descent.<sub>1/9/18</sub>



#### A note on your experience :)



- This is a hard, advanced, graduate level class
- I and all the TAs really care about your success in this class
- Give Feedback. Visit refresh sessions.
- **Come to office hours (early, often and off-cycle)** 1/9/18



# What do we hope to teach?

- An understanding of and ability to use the effective modern methods for deep learning
  - Basics first, then key methods used in NLP: Recurrent networks, attention, etc.
- 2. Some big picture understanding of human languages and the difficulties in understanding and producing them
- **3**. An understanding of and ability to build systems (in TensorFlow) for some of the major problems in NLP:
  - Word similarities, parsing, machine translation, entity recognition, question answering, sentence comprehension

#### **Grading Policy**

- 3 Assignments: 15% x 3 = 45%
- Midterm Exam: 20%
- Final Course Project or PSet4 (1–3 people): 35%
  - Including for final project doing: project proposal, milestone, interacting with mentor
- Final poster session (**must** be there: 12:15–3:15 ): 2% of the 35%
- Late policy
  - 6 free late days use as you please
  - Afterwards, 10% off per day late
  - Assignments not accepted after 3 late days per assignment
- Collaboration policy: Read the website and the Honor Code! Understand allowed 'collaboration' and how to document it

#### **High Level Plan for Problem Sets**

- Beginning PSets and final project are hard (in different ways)
- PSet 1 is written work and pure python code (numpy etc.) to really understand the basics
- Released on January 11 (this Thursday!)
- PSet 2 & 3 will be in TensorFlow, a library for putting together neural network models quickly (→ special lecture)
- Libraries like TensorFlow are becoming standard tools
  - Also: PyTorch, Theano, Chainer, CNTK, Paddle, MXNet, Keras, Caffe, ...

#### **High Level Plan for PSet4 and Final Project**

- You can propose a final project
- Requires instructor sign-off
- Or we give you one: PSet 4,
  - Earlier release (after PSet 2, 2 weeks before project proposal),
  - Improved, easier, a good default for most
  - Open ended but with an easier start
- Can use any language and/or deep learning framework for project but starter code for PSet4 will be in TensorFlow again
- We encourage teams of 2 people (and with exceptions 3)
  - Start finding a partner soon.

#### 4. Why is NLP hard?

- Complexity in representing, learning and using linguistic/situational/contextual/world/visual knowledge
- But interpretation depends on these

- Human languages are ambiguous (unlike programming and other formal languages)
- E.g. "I made her duck."



#### Why NLP is difficult:

**Real newspaper headlines/tweets** 

- 1. The Pope's baby steps on gays
- 2. Boy paralyzed after tumor fights back to gain black belt
- 3. Enraged cow injures farmer with axe
- 4. Juvenile Court to Try Shooting Defendant

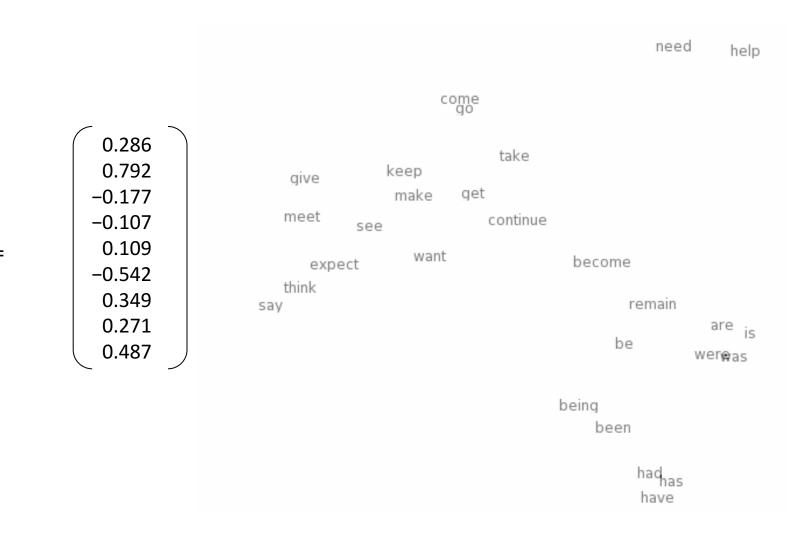
#### 5. Deep NLP = Deep Learning + NLP

Combine ideas and goals of NLP with using representation learning and deep learning methods to solve them

Several big improvements in recent years in NLP

- Linguistic levels: (speech), words, syntax, semantics
- Intermediate tasks/tools: parts-of-speech, entities, parsing
- Full applications: sentiment analysis, question answering, dialogue agents, machine translation

#### Word meaning as a neural word vector – visualization



1/9/18

#### expect =

#### **Word similarities**

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus



litoria



leptodactylidae





rana

eleutherodactylus

Physical stanford.edu/projects/glove/

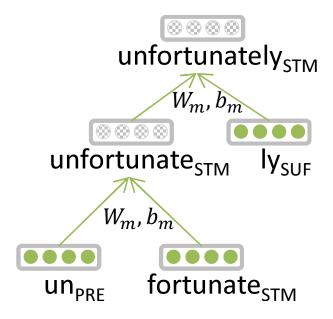
1/9/18

#### **Representations of NLP Levels: Morphology**

 Traditional: Words are made of morphemes prefix stem suffix un interest ed

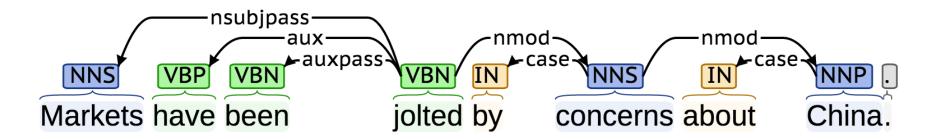
#### • DL:

- every morpheme is a vector
- a neural network combines two vectors into one vector
- Luong et al. 2013



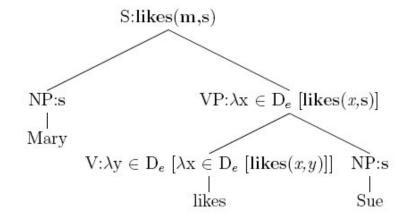
#### **NLP Tools: Parsing for sentence structure**

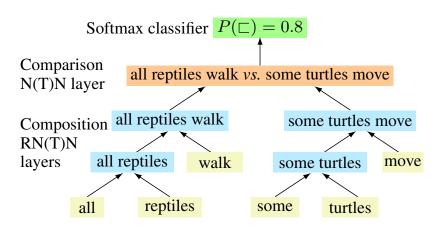
- Neural networks can accurately determine the grammatical structure of sentences
- This supports interpretation and may help in disambiguation



#### **Representations of NLP Levels: Semantics**

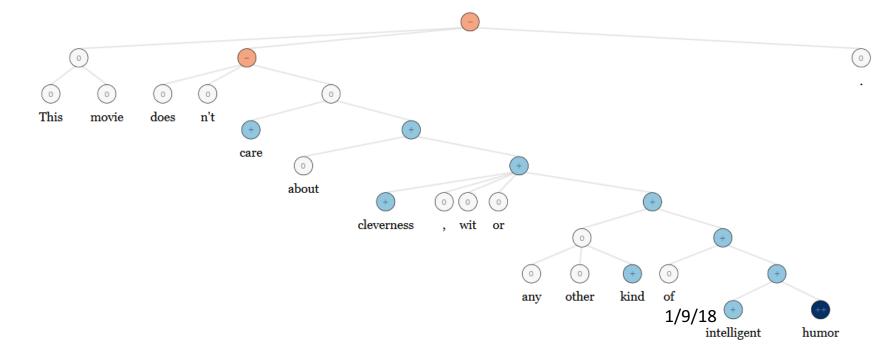
- Traditional: Lambda calculus
  - Carefully engineered functions
  - Take as inputs specific other functions
  - No notion of similarity or fuzziness of language
- DL:
  - Every word and every phrase and every logical expression is a vector
  - a neural network combines two vectors into one vector
  - Bowman et al. 2014





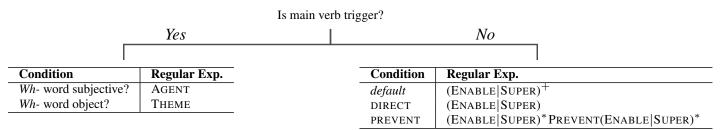
#### **NLP Applications: Sentiment Analysis**

- Traditional: Treat sentence as a bag-of-words (ignore word order); consult a curated list of "positive" and "negative" words to determine sentiment of sentence. Need hand-designed features to capture negation! --> Ain't gonna capture everything
- Same deep learning model that could be used for morphology, syntax and logical semantics → RecursiveNN (aka TreeRNNs)

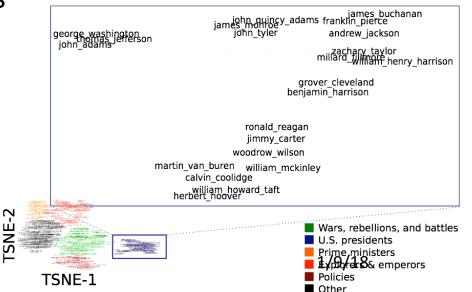


#### **Question Answering**

 Traditional: A lot of feature engineering to capture world and other knowledge, e.g., regular expressions, Berant et al. (2014)

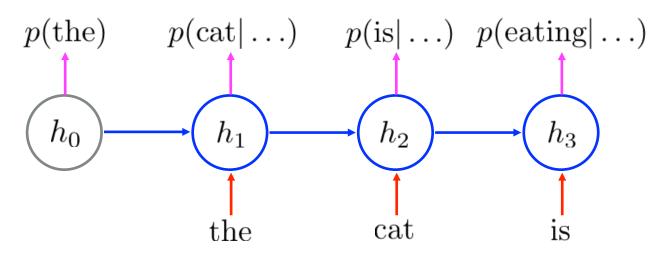


- DL: Again, a deep learning architecture can be used!
- Facts are stored in vectors



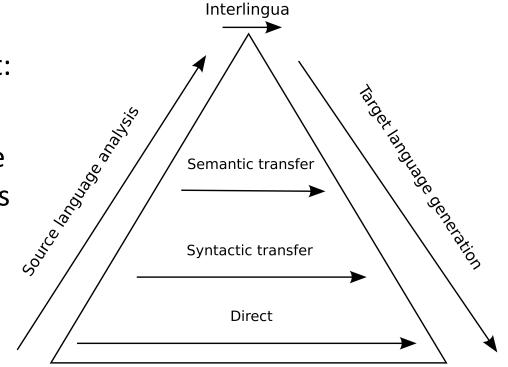
#### **Dialogue agents / Response Generation**

- A simple, successful example is the auto-replies available in the Google Inbox app
- An application of the powerful, general technique of Neural Language Models, which are an instance of Recurrent Neural Networks



#### **Machine Translation**

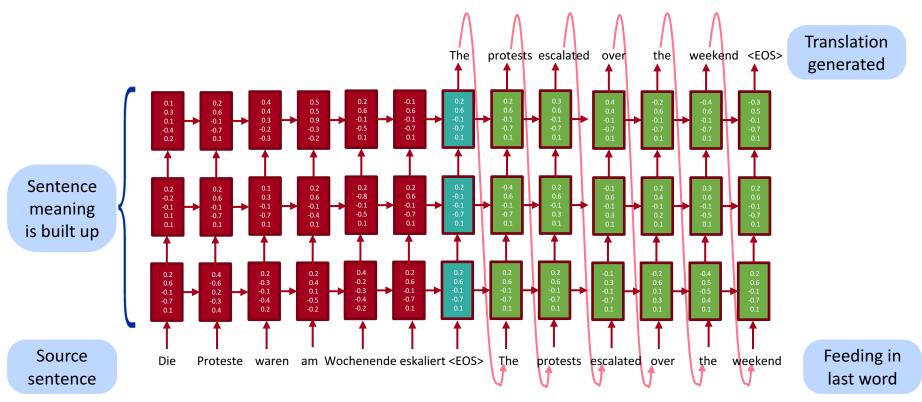
- Many levels of translation have been tried in the past:
- Traditional MT systems are very large complex systems



• What do you think is the interlingua for the DL approach to translation?

#### **Neural Machine Translation**

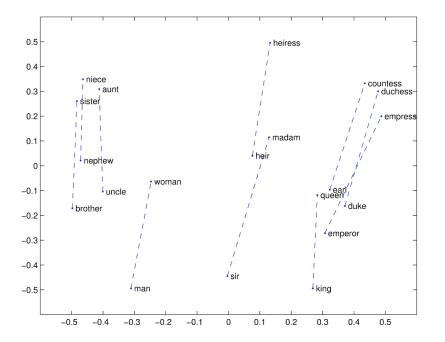
Source sentence is mapped to **vector**, then output sentence generated [Sutskever et al. 2014, Bahdanau et al. 2014, Luong and Manning 2016]



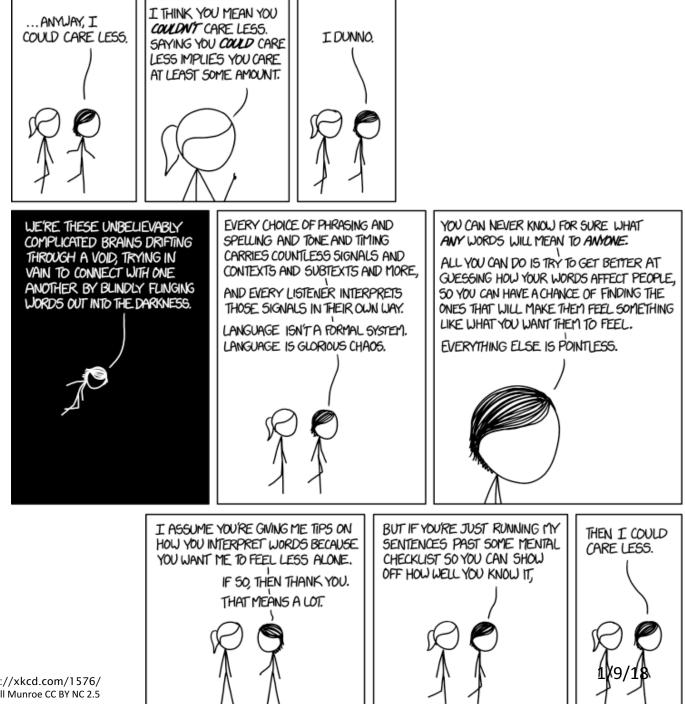
Now live for some languages in Google Translate (etc.), with big error reductions!

#### **Conclusion: Representation for all levels? Vectors**

We will study in the next lecture how we can learn vector representations for words and what they actually **represent**.



Next week: how neural networks work and how they can use these vectors for all NLP levels and many different applications



https://xkcd.com/1576/ Randall Munroe CC BY NC 2.5