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Lecture	Plan

1. What	is	Natural	Language	Processing?	The	nature	of	human	
language	(15	mins)

2. What	is	Deep	Learning?	(15	mins)
3. Course	logistics	(15	mins)
4. Why	is	language	understanding	difficult	(10	mins)
5. Intro	to	the	application	of	Deep	Learning	to	NLP	(20	mins)

Buffer: 5	mins
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1.	What	is	Natural	Language	Processing	(NLP)?

• Natural	language	processing	is	a	field	at	the	intersection	of	
• computer	science
• artificial	intelligence
• and	linguistics.	

• Goal: for	computers	to	process	or	“understand”	natural	
language	in	order	to	perform	tasks	that	are	useful,	e.g.,
• Performing	Tasks,	like	making	appointments,	buying	things
• Language	translation
• Question	Answering
• Siri,	Google	Assistant,	Facebook	M,	Cortana	…

• Fully	understanding	and	representing	the	meaning of	language	
(or	even	defining	it)	is	a	difficult	goal.

• Perfect	language	understanding	is	AI-complete	
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NLP	Levels

1/9/184



(A	tiny	sample	of)	NLP	Applications	

Applications	range	from	simple	to	complex:

• Spell	checking,	keyword	search,	finding	synonyms

• Extracting	information	from	websites	such	as	
• product	price,	dates,	location,	people	or	company	names

• Classifying:	reading	level	of	school	texts,	positive/negative	
sentiment	of	longer	documents

• Machine	translation
• Spoken	dialog	systems
• Complex	question	answering
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NLP	in	industry	… is	taking	off

• Search	(written	and	spoken)

• Online	advertisement	matching

• Automated/assisted	translation

• Sentiment	analysis	for	marketing	or	finance/trading

• Speech	recognition

• Chatbots	/	Dialog	agents

• Automating	customer	support

• Controlling	devices

• Ordering	goods
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What’s	special	about	human	language?

A	human	language	is	a	system	specifically	constructed	to	convey	
the	speaker/writer’s	meaning

• Not	just	an	environmental	signal,	it’s	a	deliberate	
communication

• Using	an	encoding	which	little	kids	can	quickly	learn	
(amazingly!)	and	which	changes	

A	human	language	is	mostly	a	discrete/symbolic/categorical	
signaling	system

• rocket	=	🚀;	violin	=	🎻
• Presumably	because	of	greater	signaling	reliability
• Symbols	are	not	just	an	invention	of	logic	/	classical	AI!
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What’s	special	about	human	language?

The	categorical	symbols	of	a	language	can	be	encoded	as	a	signal	
for	communication	in	several	ways:

• Sound
• Gesture
• Writing/Images	

The	symbol	is	invariant	across	different	encodings!

CC	BY	2.0	David	Fulmer	2008 National	Library	of	NZ,	no	known	restrictions
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What’s	special	about	human	language?

A	human	language	is	a	symbolic/categorical	signaling	system

However,	a	brain	encoding	appears	to	be	a	continuous	pattern	of	
activation,	and	the	symbols	are	transmitted	via	continuous	signals	
of	sound/vision

The	large	vocabulary,	symbolic	encoding	of	words	creates	a	
problem	for	machine	learning	– sparsity!

We	will	explore	a	continuous	encoding	pattern	of	thought

lab
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2.	What’s	Deep	Learning	(DL)?

• Deep	learning	is	a	subfield	of	machine	learning

• Most	machine	learning	methods	work	
well	because	of	human-designed	
representations	and	input	features
• For	example:	features	for	finding	
named	entities	like	locations	or	
organization	names	(Finkel et	al.,	2010):

• Machine	learning	becomes	just	optimizing
weights	to	best	make	a	final	prediction

3.3. APPROACH 35

Feature NER TF
Current Word ! !

Previous Word ! !

Next Word ! !

Current Word Character n-gram all length ≤ 6
Current POS Tag !

Surrounding POS Tag Sequence !

Current Word Shape ! !

Surrounding Word Shape Sequence ! !

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two
forms of non-local structure: label consistency in the named entity recognition task, and
template consistency in the template filling task. One could imagine many ways of defining
such models; for simplicity I use the form

PM(y|x)∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation types Λ, and for each violation type λ we
specify a penalty parameter θλ . The exponent #(λ ,s,o) is the count of the number of times
that the violation λ occurs in the state sequence s with respect to the observation sequence
o. This has the effect of assigning sequences with more violations a lower probability.
The particular violation types are defined specifically for each task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do
so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem
for us.
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Machine	Learning	vs.	Deep	Learning

Machine Learning in Practice

Describing your data with 
features a computer can 
understand

Learning 
algorithm

Domain	specific,	requires	Ph.D.	
level	expertise

Optimizing	the	
weights	on	features
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What’s	Deep	Learning	(DL)?

• In	contrast	to	standard	machine	learning,

• Representation	learning	attempts	
to	automatically	learn	good	
features	or	representations

• Deep	learning	algorithms	attempt	to	
learn	(multiple	levels	of)	
representations	(here:	h1,h2,h3)	and	an	
output	(h4)

• From	“raw”	inputs	x	
(e.g.	sound,	pixels,	characters,	or	words)
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On	the	history	of	“Deep	Learning”

• We	will	focus	on	different	kinds	of	neural	networks	
• The	dominant	model	family	inside	deep	learning

• Only	clever	terminology	for	stacked	logistic	regression	units?
• Maybe,	but	interesting	modeling	principles	(end-to-end)	and	
actual	connections	to	neuroscience	in	some	cases.

• Recently:	Differentiable	Programming	– becomes	clear	later

• We	will	not	take	a	historical	approach	but	instead	focus	on	
methods	which	work	well	on	NLP	problems	now

• For	a	long	history	of	deep	learning	models	(starting	~1960s),	
see:	Deep	Learning	in	Neural	Networks:	An	Overview	
by	Jürgen	Schmidhuber
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Reasons	for	Exploring	Deep	Learning

• Manually	designed	features	are	often	over-specified,	
incomplete	and	take	a	long	time	to	design	and	validate

• Learned	Features	are	easy	to	adapt,	fast	to	learn

• Deep	learning	provides	a	very	flexible,	(almost?)	universal,	
learnable	framework	for	representing	world,	visual	and	
linguistic	information.

• Deep	learning	can	learn	unsupervised (from	raw	text)	and	
supervised	(with	specific	labels	like	positive/negative)
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Reasons	for	Exploring	Deep	Learning

• In	~2010	deep learning	techniques	started	outperforming	other	
machine	learning	techniques.	Why	this	decade?

• Large	amounts	of	training	data	favor	deep	learning
• Faster	machines	and	multicore	CPU/GPUs	favor	Deep	Learning
• New	models,	algorithms,	ideas

• Better,	more	flexible	learning	of	intermediate	representations
• Effective	end-to-end	joint	system	learning
• Effective	learning	methods	for	using	contexts	and	transferring	
between	tasks

• Better	regularization	and	optimization	methods
à Improved	performance	(first	in	speech	and	vision,	then	NLP)
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Deep	Learning	for	Speech

• The	first	breakthrough	results	of	
“deep	learning”	on	large	
datasets	happened	in	speech	
recognition

• Context-Dependent	Pre-trained	
Deep	Neural	Networks	for	Large	
Vocabulary	Speech	Recognition	
Dahl	et	al.	(2010)

Phonemes/Words

Acoustic	model
and	WER

RT03S	
FSH

Hub5	
SWB

Traditional	features 27.4 23.6

Deep	Learning 18.5
(−33%)

16.1
(−32%)
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Deep	Learning	for	Computer	Vision

First	major	focus	of	deep	learning	
groups	was	computer	vision

The	breakthrough	DL	paper:	
ImageNet	Classification	with	Deep	
Convolutional	Neural	Networks	by	
Krizhevsky,	Sutskever,	&	Hinton,	
2012,	U.	Toronto.	37%	error	red.

Zeiler and	Fergus	(2013)

8 Olga Russakovsky* et al.
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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3. Course logistics in brief

• Instructor: Richard Socher

• Head TAs: Kevin Clark and Abigail See 

• TAs: Many wonderful people! 

• Time: TuTh 4:30–5:50, Nvidia Aud (à video)

• Other information: see the class webpage

• http://cs224n.stanford.edu/
a.k.a., http://www.stanford.edu/class/cs224n/

• Syllabus, office hours (I will start today, rest 
start next week), “handouts”, TAs, Piazza

• Slides uploaded before each lecture
1/9/1818



Prerequisites

• Proficiency	in	Python
• All	class	assignments	will	be	in	Python.	
• Python	refresh	session:	3:00-4:20pm,	January	19!

• Multivariate	Calculus,	Linear	Algebra	(e.g.,	MATH	51,	CME	100)

• Basic	Probability	and	Statistics	(e.g.	CS	109	or	other	stats	course)

• Fundamentals	of	Machine	Learning (e.g.,	from	CS229	or	CS221)
• loss	functions	
• taking	simple	derivatives	
• performing	optimization	with	gradient	descent.1/9/1819



A	note	on	your	experience	:)

• This	is	a	hard,	advanced,	graduate	level	class
• I	and	all	the	TAs	really	care	about	your	success	in	this	class
• Give	Feedback.	Visit	refresh	sessions.	
• Come	to	office	hours	(early,	often	and	off-cycle)

“Best	class	at	Stanford”
“Changed	my	life”
“Obvious	that	instructors	care”
“Learned	a	ton”
“Hard	but	worth	it”

“Terrible	class”
“Don’t	take	it”
“Instructors	don’t	care”
“Too	much	work”
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What	do	we	hope	to	teach?

1. An	understanding	of	and	ability	to	use	the	effective	modern	
methods	for	deep	learning
• Basics	first,	then	key	methods	used	in	NLP:	Recurrent	
networks,	attention,	etc.

2. Some	big	picture	understanding	of	human	languages	and	the	
difficulties	in	understanding	and	producing	them

3. An	understanding	of	and	ability	to	build	systems	(in	
TensorFlow)	for	some	of	the	major	problems	in	NLP:
• Word	similarities,	parsing,	machine	translation,	entity	
recognition,	question	answering,	sentence	comprehension
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Grading	Policy

• 3	Assignments:	15%	x	3	=	45%	
• Midterm	Exam:	20%	
• Final	Course	Project	or	PSet4	(1–3	people):	35%

• Including	for	final	project	doing:	project	proposal,	milestone,	
interacting	with	mentor

• Final	poster	session	(must be	there:	12:15–3:15	): 2%	of	the	35%
• Late	policy

• 6	free	late	days	– use	as	you	please
• Afterwards,	10%	off	per	day	late
• Assignments	not	accepted	after	3	late	days	per	assignment

• Collaboration	policy:	Read	the	website	and	the	Honor	Code!	
Understand	allowed	‘collaboration’	and	how	to	document	it
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High	Level	Plan	for	Problem	Sets

• Beginning	PSets and	final	project	are	hard	(in	different	ways)

• PSet	1	is	written	work	and	pure	python	code	(numpy etc.)	to	
really	understand	the	basics

• Released	on	January	11	(this	Thursday!)

• PSet 2	&	3	will	be	in	TensorFlow,	a	library	for	putting	together	
neural	network	models	quickly	(à special	lecture)

• Libraries	like	TensorFlow are	becoming	standard	tools
• Also:	PyTorch,	Theano,	Chainer,	CNTK,	Paddle,	MXNet,	Keras,	Caffe,	…
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High	Level	Plan	for	PSet4	and	Final	Project

• You	can	propose	a	final	project	
• Requires	instructor	sign-off
• Or	we	give	you	one:	PSet 4,	

• Earlier	release	(after	PSet 2,	2	weeks	before	project	proposal),	
• Improved,	easier,	a	good	default	for	most
• Open	ended	but	with	an	easier	start

• Can	use	any	language	and/or	deep	learning	framework	for	
project	but	starter	code	for	PSet4	will	be	in	TensorFlow again

• We	encourage	teams	of	2	people	(and	with	exceptions	3)
• Start	finding	a	partner	soon.
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4.	Why	is	NLP	hard?

• Complexity	in	representing,	learning	and	using	
linguistic/situational/contextual/world/visual	knowledge

• But	interpretation	depends	on	these

• Human	languages	are	ambiguous	(unlike	programming	and	
other	formal	languages)

• E.g.	“I	made	her	duck.”
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Why	NLP	is	difficult:
Real	newspaper	headlines/tweets

1. The	Pope’s	baby	steps	on	gays

2. Boy	paralyzed	after	tumor	fights	back	to	gain	black	belt

3. Enraged	cow	injures	farmer	with	axe

4. Juvenile	Court	to	Try	Shooting	Defendant
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5.	Deep	NLP	=	Deep	Learning	+	NLP

Combine	ideas	and	goals	of	NLP	with	using	representation	learning	
and	deep	learning	methods	to	solve	them

Several	big	improvements	in	recent	years	in	NLP
• Linguistic	levels:	(speech),	words,	syntax,	semantics
• Intermediate	tasks/tools:	parts-of-speech,	entities,	parsing
• Full	applications:	sentiment	analysis, question	answering,	
dialogue	agents,	machine	translation
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Word	meaning	as	a	neural	word	vector	– visualization

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect		=
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Nearest	words	to frog:

1.	frogs
2.	toad
3.	litoria
4.	leptodactylidae
5.	rana
6.	lizard
7.	eleutherodactylus

Word	similarities

litoria leptodactylidae

rana eleutherodactylus
http://nlp.stanford.edu/projects/glove/ 1/9/1829



Representations	of	NLP	Levels:	Morphology

• Traditional:	Words		are prefix	 stem	 suffix
made	of	morphemes un	 interest		 ed

• DL:	
• every	morpheme	is	a	vector
• a	neural	network	combines	
two	vectors	into	one	vector

• Luong	et	al.	2013
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Figure 1: Morphological Recursive Neural Net-
work. A vector representation for the word “un-
fortunately” is constructed from morphemic vec-
tors: unpre, fortunatestm, lysuf. Dotted nodes are
computed on-the-fly and not in the lexicon.

3 Morphological RNNs

Our morphological Recursive Neural Network
(morphoRNN) is similar to (Socher et al., 2011b),
but operates at the morpheme level instead of at
the word level. Specifically, morphemes, the mini-
mum meaning-bearing unit in languages, are mod-
eled as real-valued vectors of parameters, and are
used to build up more complex words. We assume
access to a dictionary of morphemic analyses of
words, which will be detailed in Section 4.

Following (Collobert and Weston, 2008), dis-
tinct morphemes are encoded by column vectors
in a morphemic embedding matrix We ∈ Rd×|M|,
where d is the vector dimension and M is an or-
dered set of all morphemes in a language.

As illustrated in Figure 1, vectors of morpho-
logically complex words are gradually built up
from their morphemic representations. At any lo-
cal decision (a dotted node), a new parent word
vector (p) is constructed by combining a stem vec-
tor (xstem) and an affix vector (xaffix) as follow:

p = f(Wm[xstem;xaffix] + bm) (1)

Here, Wm ∈ Rd×2d is a matrix of morphemic pa-
rameters while bm ∈ Rd×1 is an intercept vector.
We denote an element-wise activation function as
f , such as tanh. This forms the basis of our mor-
phoRNN models with θ = {We,Wm, bm} being
the parameters to be learned.

3.1 Context-insensitive Morphological RNN
Our first model examines how well morphoRNNs
could construct word vectors simply from the mor-
phemic representation without referring to any
context information. Input to the model is a refer-
ence embedding matrix, i.e. word vectors trained
by an NLM such as (Collobert and Weston, 2008)

and (Huang et al., 2012). By assuming that these
reference vectors are right, the goal of the model
is to construct new representations for morpholog-
ically complex words from their morphemes that
closely match the corresponding reference ones.

Specifically, the structure of the context-
insensitive morphoRNN (cimRNN) is the same as
the basic morphoRNN. For learning, we first de-
fine a cost function s for each word xi as the
squared Euclidean distance between the newly-
constructed representation pc(xi) and its refer-
ence vector pr(xi): s (xi) = ∥pc(xi)− pr(xi)∥22.

The objective function is then simply the sum of
all individual costs over N training examples, plus
a regularization term, which we try to minimize:

J(θ) =
N∑

i=1

s (xi) +
λ

2
∥θ∥22 (2)

3.2 Context-sensitive Morphological RNN

The cimRNN model, though simple, is interesting
to attest if morphemic semantics could be learned
solely from an embedding. However, it is lim-
ited in several aspects. Firstly, the model has
no chance of improving representations for rare
words which might have been poorly estimated.
For example, “distinctness” and “unconcerned”
are very rare, occurring only 141 and 340 times
in Wikipedia documents, even though their corre-
sponding stems “distinct” and “concern” are very
frequent (35323 and 26080 respectively). Trying
to construct exactly those poorly-estimated word
vectors might result in a bad model with parame-
ters being pushed in wrong directions.

Secondly, though word embeddings learned
from an NLM could, in general, blend well both
the semantic and syntactic information, it would
be useful to explicitly model another kind of syn-
tactic information, the word structure, as we train
our embeddings. Motivated by these limitations,
we propose a context-sensitive morphoRNN (csm-
RNN) which integrates RNN structures into NLM
training, allowing for contextual information be-
ing taken into account in learning morphemic
compositionality. Specifically, we adopt the NLM
training approach proposed in (Collobert et al.,
2011) to learn word embeddings, but build rep-
resentations for complex words from their mor-
phemes. During learning, updates at the top level
of the neural network will be back-propagated all
the way till the morphemic layer.
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NLP	Tools:	Parsing	for	sentence	structure

• Neural	networks	can	accurately	determine	the	grammatical	
structure	of	sentences

• This	supports	interpretation	and	may	help	in	disambiguation	

1/9/1831



Representations	of	NLP	Levels:	Semantics

• Traditional:	Lambda	calculus
• Carefully	engineered	functions
• Take	as	inputs	specific	other
functions

• No	notion	of	similarity	or
fuzziness	of	language

• DL:	
• Every	word	and	every	phrase
and	every	logical	expression	
is	a	vector

• a	neural	network	combines	
two	vectors	into	one	vector

• Bowman	et	al.	2014

Much of the theoretical work on natural lan-
guage inference (and some successful imple-
mented models; MacCartney and Manning 2009;
Watanabe et al. 2012) involves natural logics,
which are formal systems that define rules of in-
ference between natural language words, phrases,
and sentences without the need of intermediate
representations in an artificial logical language.
In our first three experiments, we test our mod-
els’ ability to learn the foundations of natural lan-
guage inference by training them to reproduce the
behavior of the natural logic of MacCartney and
Manning (2009) on artificial data. This logic de-
fines seven mutually-exclusive relations of syn-
onymy, entailment, contradiction, and mutual con-
sistency, as summarized in Table 1, and it pro-
vides rules of semantic combination for project-
ing these relations from the lexicon up to com-
plex phrases. The formal properties of this sys-
tem are now well-understood (Icard and Moss,
2013a; Icard and Moss, 2013b). The first exper-
iment using this logic covers reasoning with the
bare logical relations (§3), the second extends this
to reasoning with statements constructed compo-
sitionally from recursive functions (§4), and the
third covers the additional complexity that results
from quantification (§5). Though the performance
of the plain TreeRNN model is somewhat poor
in our first experiment, we find that the stronger
TreeRNTN model generalizes well in every case,
suggesting that it has learned to simulate our target
logical concepts.

The experiments with simulated data provide a
convincing demonstration of the ability of neural
networks to learn to build and use semantic repre-
sentations for complex natural language sentences
from reasonably-sized training sets. However, we
are also interested in the more practical question of
whether they can learn these representations from
naturalistic text. To address this question, we ap-
ply our models to the SICK entailment challenge
data in §6. The small size of this corpus puts data-
hungry NN models like ours at a disadvantage,
but we are nonetheless able to achieve competi-
tive performance on it, surpassing several submit-
ted models with significant hand-engineered task-
specific features and our own NN baseline. This
suggests that the representational abilities that we
observe in the previous sections are not limited to
carefully circumscribed tasks. We conclude that
TreeRNTN models are adequate for typical cases

P (@) = 0.8

all reptiles walk vs. some turtles move

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N
layers

Pre-trained or randomly initialized learned word vectors
all reptiles

all reptiles walk

all reptiles walk

some turtles

some turtles move

some turtles move

Figure 1: In our model, two separate tree-
structured networks build up vector representa-
tions for each of two sentences using either NN
or NTN layer functions. A comparison layer then
uses the resulting vectors to produce features for a
classifier.

of natural language inference, and that there is not
yet any clear level of inferential complexity for
which other approaches work and NN models fail.

2 Tree-structured neural networks

We limit the scope of our experiments in this paper
to neural network models that adhere to the lin-
guistic principle of compositionality, which says
that the meanings for complex expressions are de-
rived from the meanings of their parts via specific
composition functions (Partee, 1984; Janssen,
1997). In our distributed setting, word meanings
are embedding vectors of dimension n. A learned
composition function maps pairs of them to single
phrase vectors of dimension n, which can then be
merged again to represent more complex phrases,
forming a tree structure. Once the entire sentence-
level representation has been derived at the top of
the tree, it serves as a fixed-dimensional input for
some subsequent layer function.

To apply these recursive models to our task, we
propose the tree pair model architecture depicted
in Fig. 1. In it, the two phrases being compared are
processed separately using a pair of tree-structured
networks that share a single set of parameters. The
resulting vectors are fed into a separate compari-
son layer that is meant to generate a feature vec-
tor capturing the relation between the two phrases.
The output of this layer is then given to a softmax
classifier, which produces a distribution over the
seven relations represented in Table 1.

For the sentence embedding portions of the net-
work, we evaluate both TreeRNN models with the
standard NN layer function (1) and those with the
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NLP	Applications:	Sentiment	Analysis

• Traditional:	Treat	sentence	as	a	bag-of-words	(ignore	word	order);	
consult	a	curated	list	of	"positive"	and	"negative"	words	to	
determine	sentiment	of	sentence.	Need	hand-designed	features	to	
capture	negation!	-->	Ain’t gonna capture	everything

• Same	deep	learning	model	that	could	be	used	for	morphology,	
syntax	and	logical	semantics	à RecursiveNN (aka	TreeRNNs)
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Question	Answering

• Traditional:	A	lot	of	feature	engineering	to	capture	world	and	
other	knowledge,		e.g.,	regular	expressions,	Berant et	al.	(2014)

• DL:	Again,	a	deep	learning	architecture	can	be	used!
• Facts	are	stored	in	vectors

Type Example # (%)
Dependency Q: What can the splitting of water lead to? 407 (69.57%)

a: Light absorption
b: Transfer of ions

Temporal Q: What is the correct order of events? 57 (9.74%)
a: PDGF binds to tyrosine kinases, then cells divide, then wound healing
b: Cells divide, then PDGF binds to tyrosine kinases, then wound healing

True-False Q: Cdk associates with MPF to become cyclin 121 (20.68%)
a: True
b: False

Table 3: Examples and statistics for each of the three coarse types of questions.

Is main verb trigger?

Condition Regular Exp.
Wh- word subjective? AGENT
Wh- word object? THEME

Condition Regular Exp.
default (ENABLE|SUPER)+
DIRECT (ENABLE|SUPER)
PREVENT (ENABLE|SUPER)⇤PREVENT(ENABLE|SUPER)⇤

Yes No

Figure 3: Rules for determining the regular expressions for queries concerning two triggers. In each table, the condition
column decides the regular expression to be chosen. In the left table, we make the choice based on the path from the root to
the Wh- word in the question. In the right table, if the word directly modifies the main trigger, the DIRECT regular expression
is chosen. If the main verb in the question is in the synset of prevent, inhibit, stop or prohibit, we select the PREVENT regular
expression. Otherwise, the default one is chosen. We omit the relation label SAME from the expressions, but allow going
through any number of edges labeled by SAME when matching expressions to the structure.

that we expand using WordNet.

The final step in constructing the query is to
identify the regular expression for the path con-
necting the source and the target. Due to paucity
of data, we do not map a question and an answer
to arbitrary regular expressions. Instead, we con-
struct a small set of regular expressions, and build
a rule-based system that selects one. We used the
training set to construct the regular expressions
and we found that they answer most questions (see
Section 6.4). We determine the regular expression
based on whether the main verb in the sentence is
a trigger and whether the source and target of the
path are triggers or arguments. Figure 3 shows the
possible regular expressions and the procedure for
choosing one when both the source and target are
triggers. If either of them are argument nodes, we
append the appropriate semantic role to the regu-
lar expression, based on whether the argument is
the source or the target of the path (or both).

True-false questions are treated similarly, ex-
cept that both source and target are chosen from
the question. For temporal questions, we seek to
identify the ordering of events in the answers. We
use the keywords first, then, or simultaneously to
identify the implied order in the answer. We use
the regular expression SUPER+ for questions ask-
ing about simultaneous events and ENABLE+ for
those asking about sequential events.

5.3 Answering Questions

We match the query of an answer to the process
structure to identify the answer. In case of a match,
the corresponding answer is chosen. The matching
path can be thought of as a proof for the answer.

If neither query matches the graph (or both do),
we check if either answer contradicts the struc-
ture. To do so, we find an undirected path from
the source to the target. In the event of a match, if
the matching path traverses any ENABLE edge in
the incorrect direction, we treat this as a refutation
for the corresponding answer and select the other
one. In our running example, in addition to the
valid path for the second query, for the first query
we see that there is an undirected path from split
to absorb through transfer that matches the first
query. This tells us that light absorption cannot
be the answer because it is not along a causal path
from split.

Finally, if none of the queries results in a match,
we look for any unlabeled path between the source
and the target, before backing off to a dependency-
based proximity baseline described in Section 6.
When there are multiple aligning nodes in the
question and answer, we look for any proof or
refutation before backing off to the baselines.
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Dialogue	agents	/	Response	Generation

• A	simple,	successful	example	is	the	auto-replies	
available	in	the	Google	Inbox	app

• An	application	of	the	powerful,	general	technique	of	
Neural	Language	Models,	which	are	an	instance	of	
Recurrent	Neural	Networks
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Machine	Translation

• Many	levels	of	translation	
have	been	tried	in	the	past:

• Traditional	MT	systems	are	
very	large	complex	systems	

• What	do	you	think	is	the	interlingua	for	the	DL	approach	to	
translation?
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Die					 Proteste				waren am		Wochenende	eskaliert <EOS>		 The						protests			escalated			over								the					weekend
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The						protests		escalated				over									the						weekend			<EOS>

Neural	Machine	Translation
Source	sentence	is	mapped	to	vector,	then	output	sentence	generated	
[Sutskever	et	al.	2014,	Bahdanau	et	al.	2014,	Luong	and	Manning	2016]

Sentence	
meaning	
is	built	up

Source	
sentence

Translation	
generated

Feeding	in	
last	word

Now	live	for	some	languages	in	Google	
Translate	(etc.),	with	big	error	reductions!1/9/1837



Conclusion:	Representation	for	all	levels? Vectors

We	will	study	in	the	next	lecture	how	we	can	learn	vector	
representations	for	words	and	what	they	actually	represent.

Next	week:	how	neural	networks	work	and	how	they	can	use	these	
vectors	for	all	NLP	levels	and	many	different	applications
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