Natural Language Processing with Deep Learning CS224N/Ling284

Lecture 10:
Machine Translation,
Sequence-to-sequence and Attention

Abigail See

Announcements

- Honor code issues: Assignment 2
- Assignment 3 released
- Azure credits released
- <u>Default final project</u> update:
 - New handout released
 - Submission instructions released
- <u>Custom final project:</u> you should receive feedback on your proposal this week
- Midterm grades: released after lecture

2/15/18

Happy Valentines Day!

RNN-generated candy hearts

Source: http://aiweirdness.com/post/170820844947/more-candy-hearts-by-neural-network

Welcome to the second half of the course!

- Remaining lectures are mostly geared towards projects
- We'll bring you to the cutting-edge of NLP+DL research
- Lectures will be more high-level
 - No more gradient computations!
 - Sometimes we'll sketch an overview if you're interested in a topic, you can read more after class

 However: today's lecture will cover two core NLP Deep Learning techniques

Overview

Today we will:

Introduce a <u>new task</u>: Machine Translation

is the primary use-case of

Introduce a <u>new neural architecture</u>: sequence-to-sequence

is improved by

• Introduce a <u>new neural technique</u>: attention

Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

1950s: Early Machine Translation

Machine Translation research began in the early 1950s.

 Mostly Russian → English (motivated by the Cold War!)

Source: https://youtu.be/K-HfpsHPmvw

- Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts
 - A cool by-product: Quicksort!

2/15/18

- Core idea: Learn a probabilistic model from data
- Suppose we're translating French → English.
- We want to find best English sentence y, given French sentence x

$$\operatorname{argmax}_{y} P(y|x)$$

 Use Bayes Rule to break this down into two components to be learnt separately:

$$= \operatorname{argmax}_{y} P(x|y) P(y)$$

Translation Model

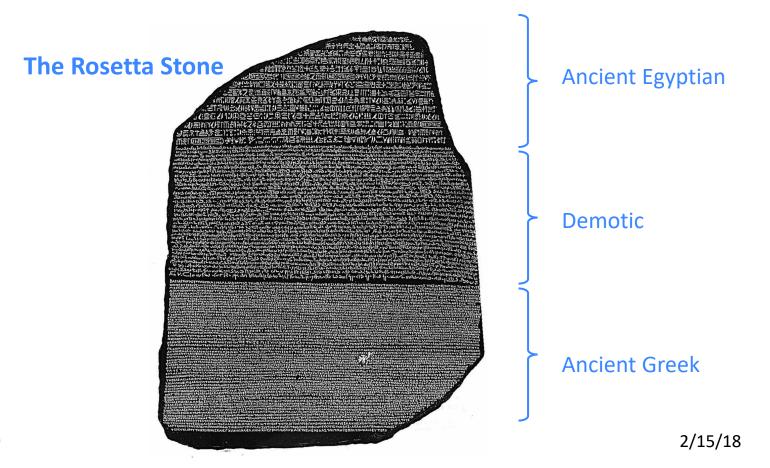
Models how words and phrases should be translated.

Learnt from parallel data.

Language Model

Models how to write good English. Learnt from monolingual data.

- Question: How to learn translation model P(x|y) ?
- First, need large amount of parallel data (e.g. pairs of human-translated French/English sentences)



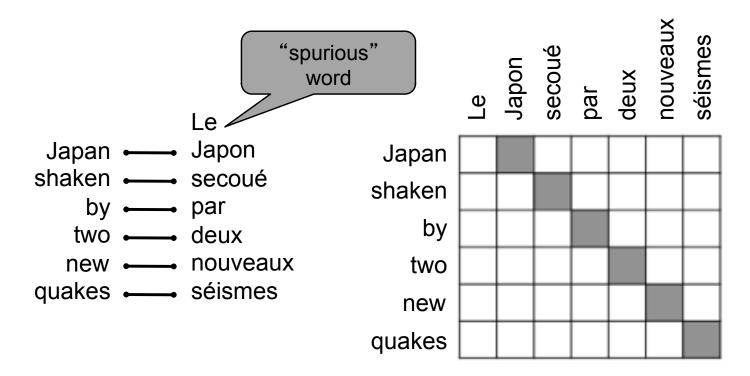
- Question: How to learn translation model P(x|y) ?
- First, need large amount of parallel data
 (e.g. pairs of human-translated French/English sentences)
- Break it down further: we actually want to consider

where a is the alignment, i.e. word-level correspondence between French sentence x and English sentence y

What is alignment?

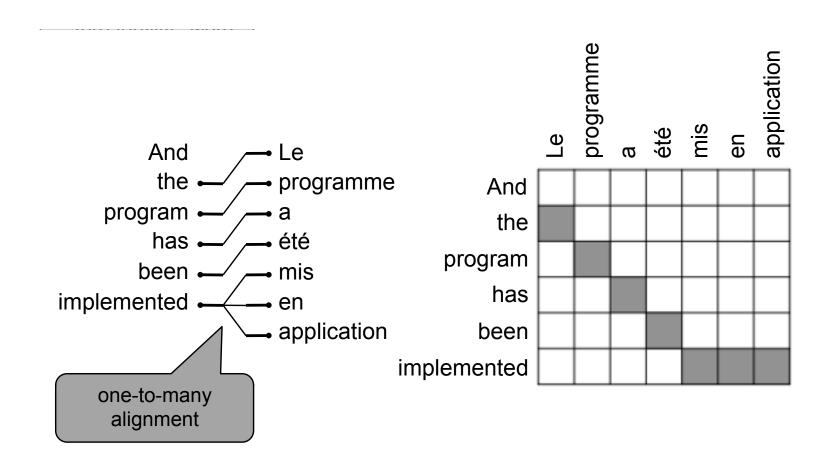
Alignment is the correspondence between particular words in the translated sentence pair.

Note: Some words have no counterpart



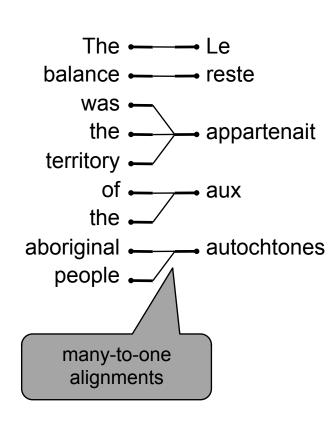
Alignment is complex

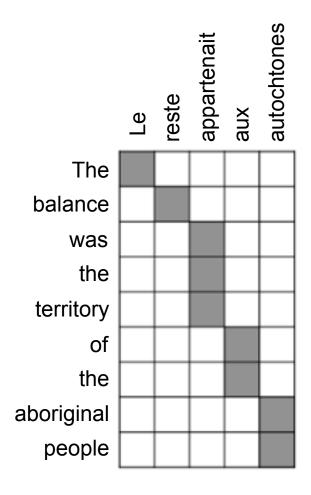
Alignment can be one-to-many (these are "fertile" words)



Alignment is complex

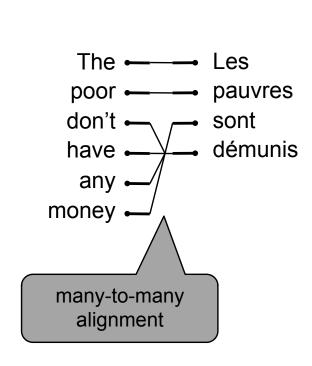
Alignment can be many-to-one

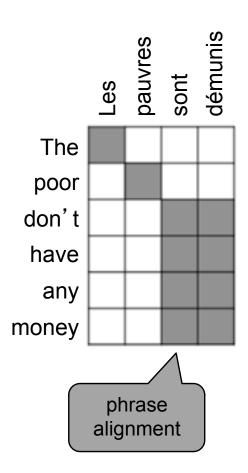




Alignment is complex

Alignment can be many-to-many (phrase-level)



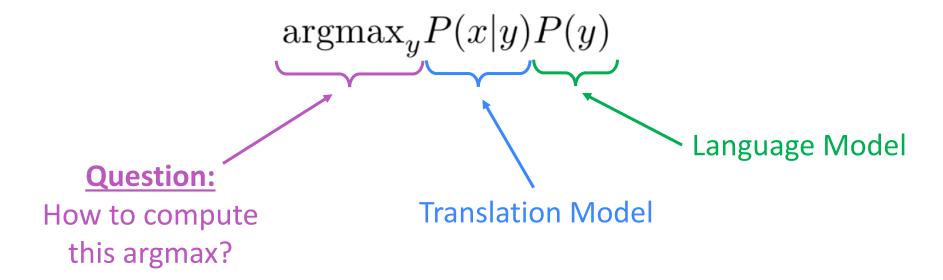


- Question: How to learn translation model P(x|y) ?
- First, need large amount of parallel data
 (e.g. pairs of human-translated French/English sentences)
- Break it down further: we actually want to consider

where a is the alignment, i.e. word-level correspondence between French sentence x and English sentence y

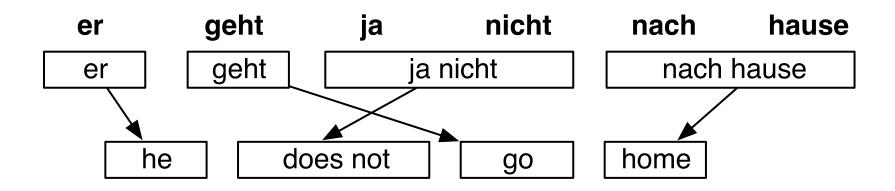
- We learn P(x, a|y) as a combination of many factors, including:
 - Probability of particular words aligning
 - Also depends on position in sentence
 - Probability of particular words having particular fertility

• Etc. 2/15/18

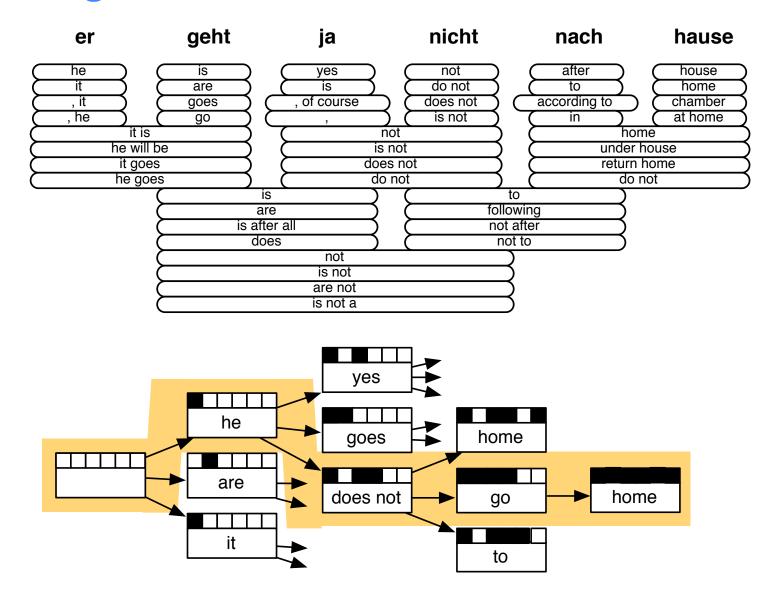


- We could enumerate every possible y and calculate the probability? → Too expensive!
- Answer: Use a heuristic search algorithm to gradually build up the the translation, discarding hypotheses that are too lowprobability

Searching for the best translation

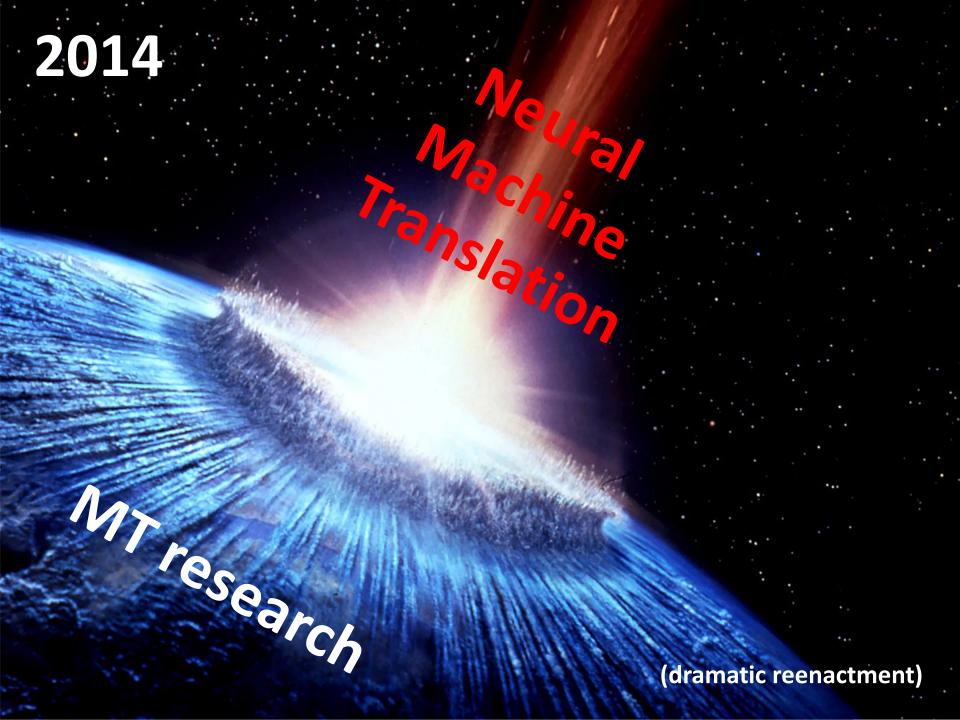


Searching for the best translation



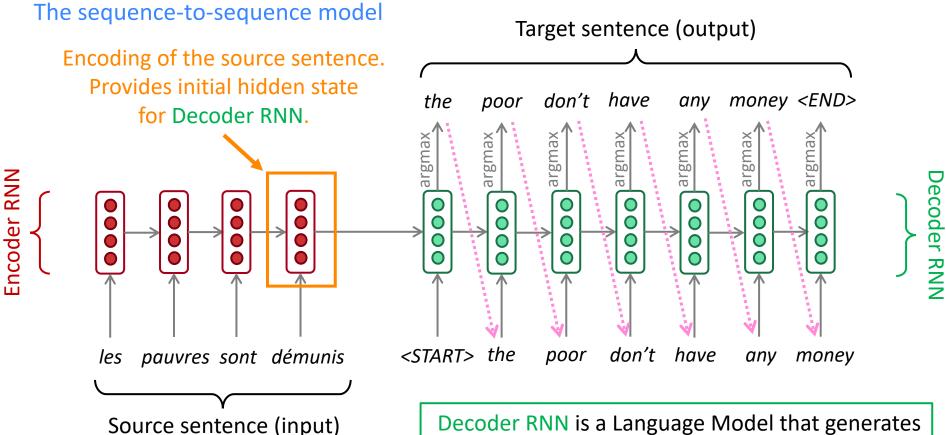
- SMT is a huge research field
- The best systems are extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems have many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

2014



What is Neural Machine Translation?

- Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.



Encoder RNN produces an encoding of the source sentence.

Decoder RNN is a Language Model that generates target sentence conditioned on encoding.

Note: This diagram shows **test time** behavior: decoder output is fed in as next step's input

Neural Machine Translation (NMT)

- The sequence-to-sequence model is an example of a Conditional Language Model.
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditional because its predictions are also conditioned on the source sentence x
- NMT directly calculates P(y|x):

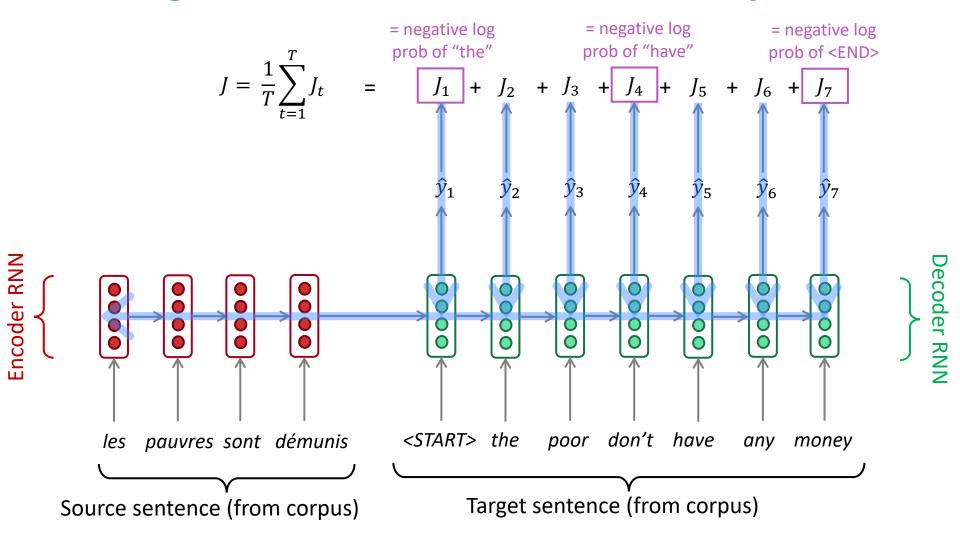
$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given target words so far and source sentence *x*

- Question: How to train a NMT system?
- Answer: Get a big parallel corpus...

2/15/18

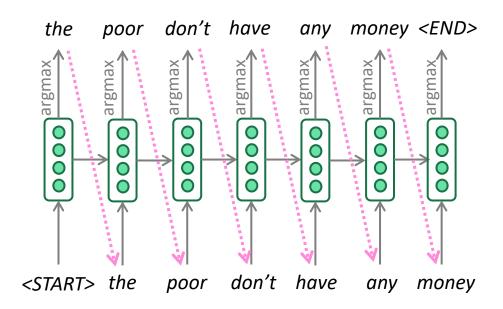
Training a Neural Machine Translation system



Seq2seq is optimized as a <u>single system.</u> Backpropagation operates "end to end".

Better-than-greedy decoding?

 We showed how to generate (or "decode") the target sentence by taking argmax on each step of the decoder



- This is greedy decoding (take most probable word on each step)
- Problems?

Better-than-greedy decoding?

- Greedy decoding has no way to undo decisions!
 - les pauvres sont démunis (the poor don't have any money)
 - → the ____
 - → the poor _____
 - → the poor are _____

 Better option: use beam search (a search algorithm) to explore several hypotheses and select the best one

Beam search decoding

Ideally we want to find y that maximizes

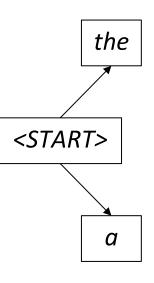
$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

- We could try enumerating all $y \rightarrow$ too expensive!
 - Complexity $O(V^T)$ where V is vocab size and T is target sequence length
- Beam search: On each step of decoder, keep track of the k most probable partial translations
 - k is the beam size (in practice around 5 to 10)
 - Not guaranteed to find optimal solution
 - But much more efficient!

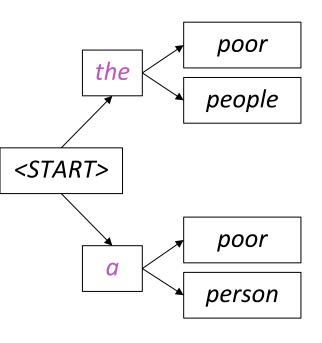
Beam size = 2

<START>

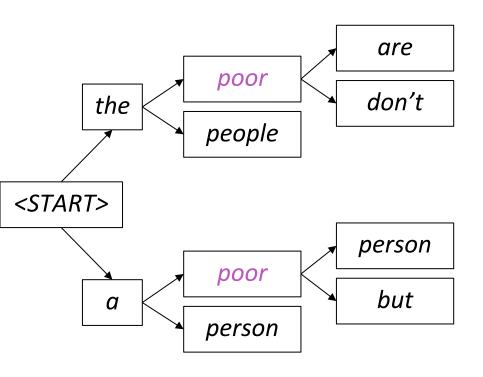
Beam size = 2

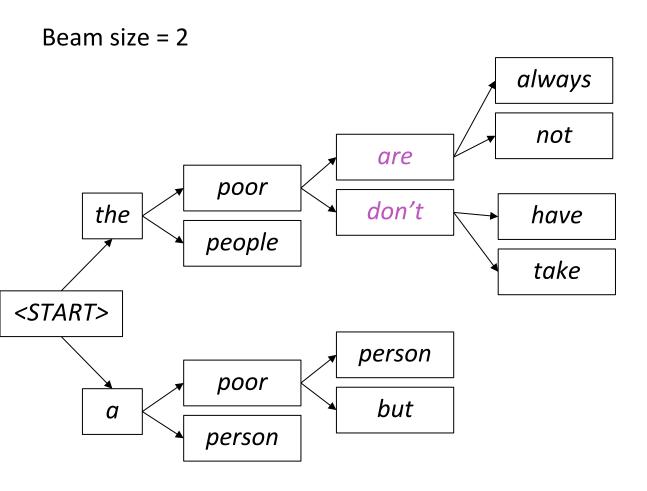


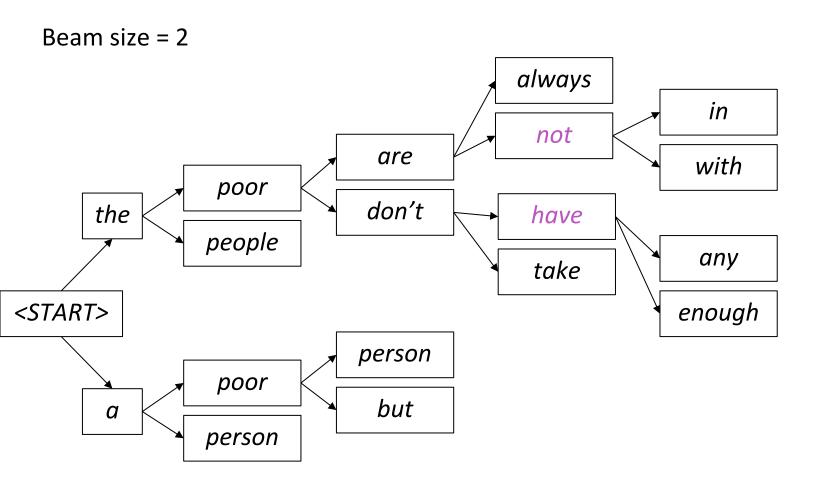
Beam size = 2

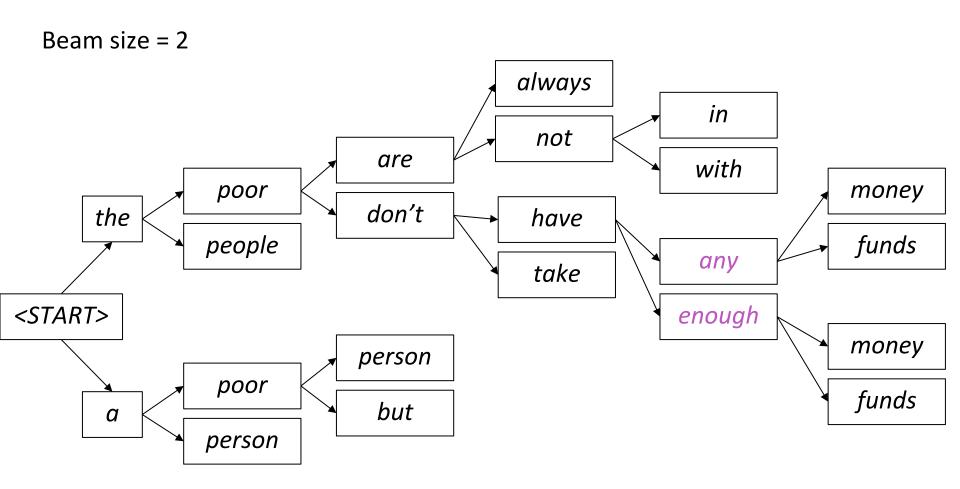


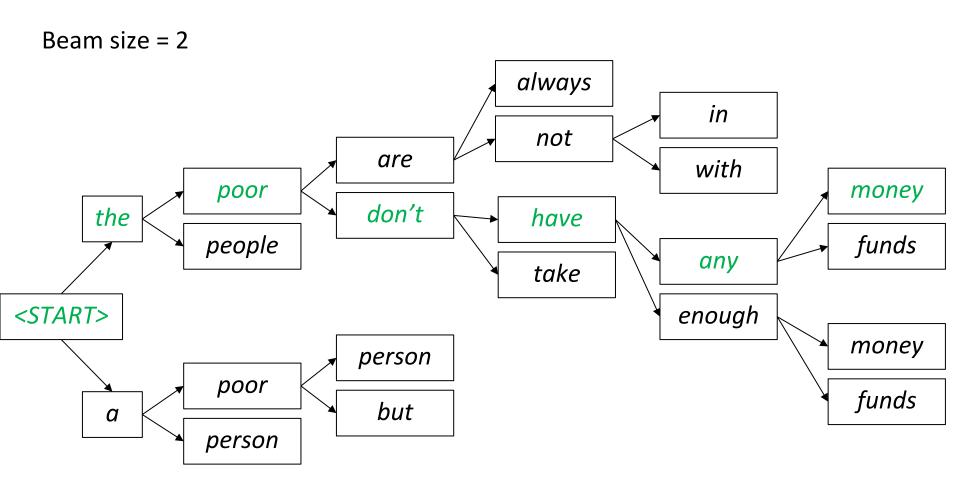
Beam size = 2











Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

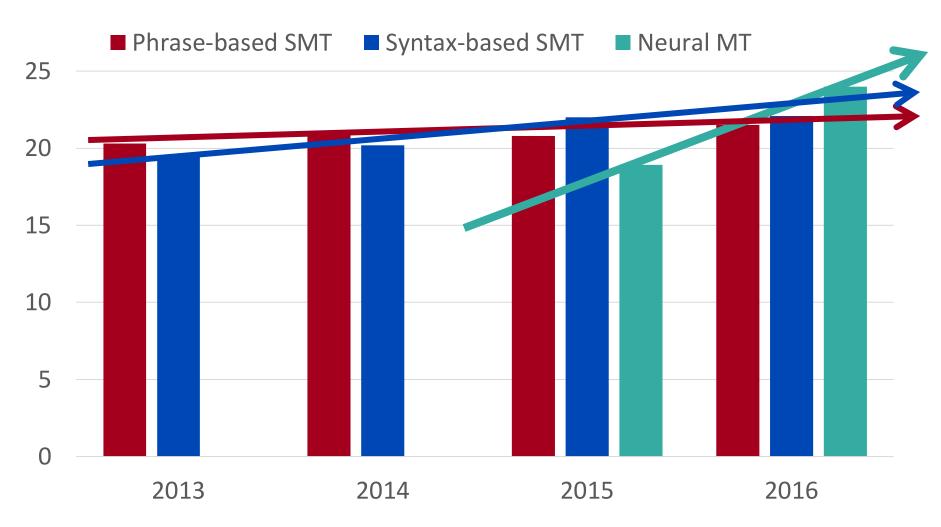
How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the <u>machine-written translation</u> to one or several <u>human-written translation</u>(s), and computes a similarity score based on:
 - n-gram precision (usually up to 3 or 4-grams)
 - Penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation ☺

MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]



Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

NMT: the biggest success story of NLP Deep Learning

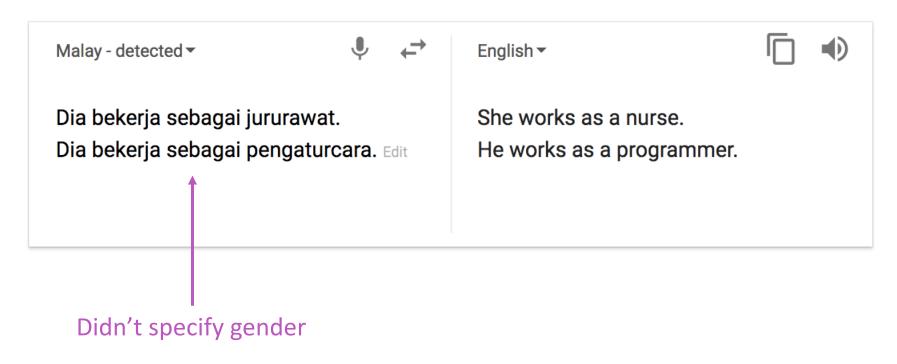
Neural Machine Translation went from a fringe research activity in **2014** to the leading standard method in **2016**

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT
- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

- Nope!
- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

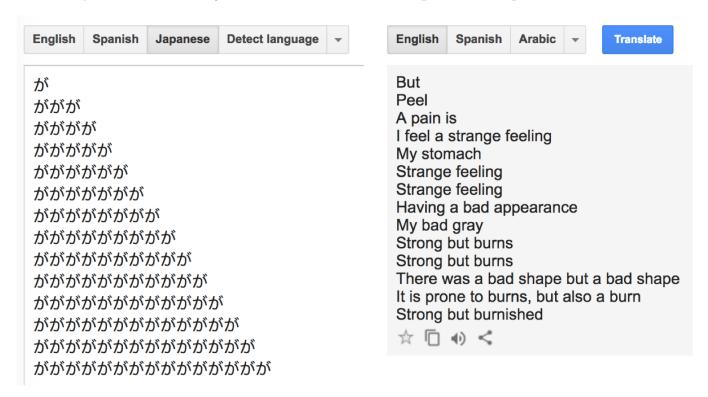
- Nope!
- Using common sense is still hard

- Nope!
- NMT picks up biases in training data



Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

- Nope!
- Uninterpretable systems do strange things



Source: http://languagelog.ldc.upenn.edu/nll/?p=35120#more-35120

NMT research continues

NMT is the **flagship task** for NLP Deep Learning

- NMT research has pioneered many of the recent innovations of NLP Deep Learning
- In 2018: NMT research continues to thrive
 - Researchers have found many, many improvements to the "vanilla" seq2seq NMT system we've presented today
 - But one improvement is so integral that it is the new vanilla...

ATTENTION

Sequence-to-sequence: the bottleneck problem

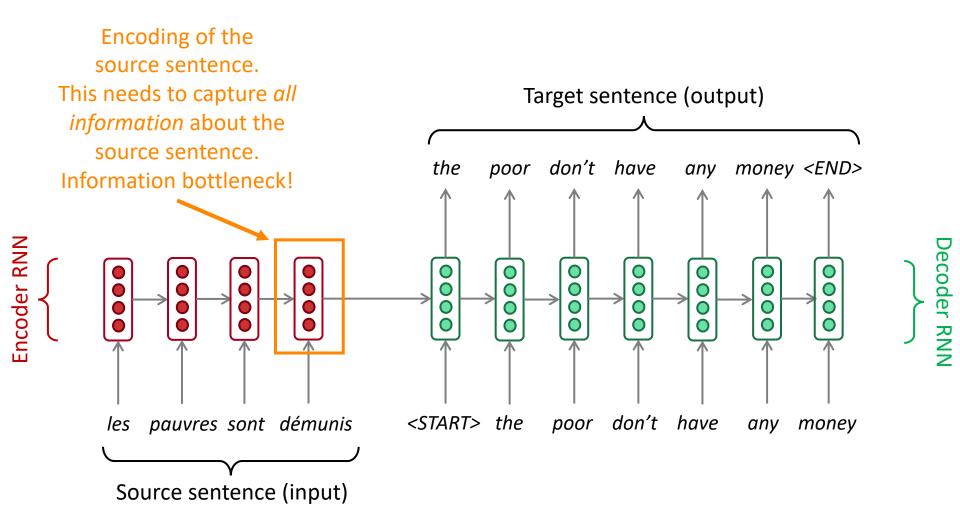
Encoding of the source sentence. Target sentence (output) don't have the money <END> poor any **Encoder RNN** don't have pauvres sont démunis <START> the poor any money Source sentence (input)

Problems with this architecture?

47 2/15/18

Decoder RNN

Sequence-to-sequence: the bottleneck problem

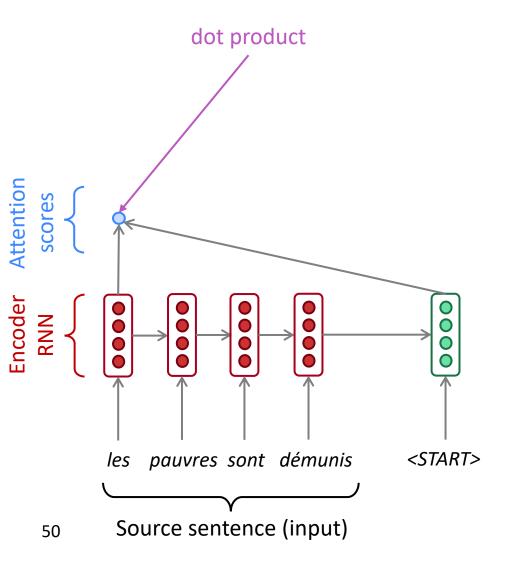


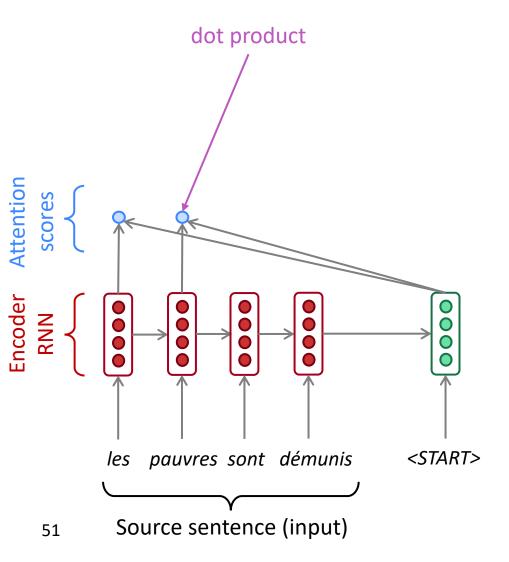
Attention

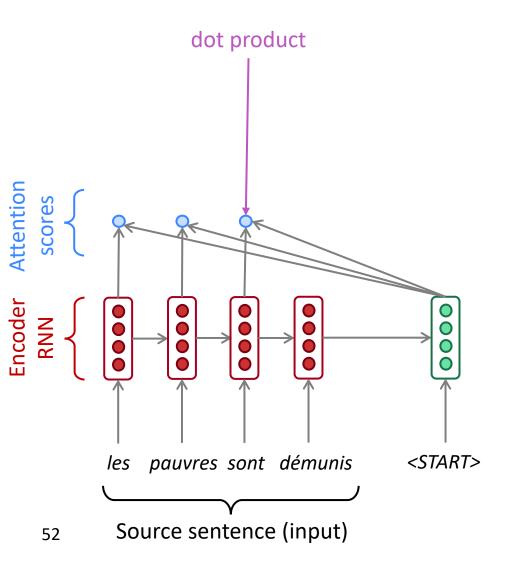
Attention provides a solution to the bottleneck problem.

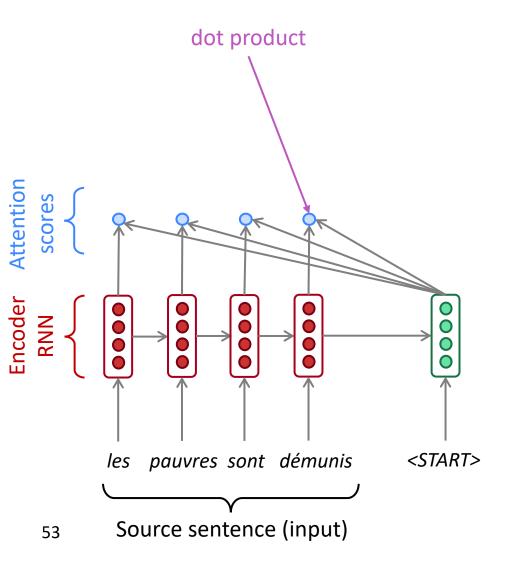
 <u>Core idea</u>: on each step of the decoder, focus on a particular part of the source sequence

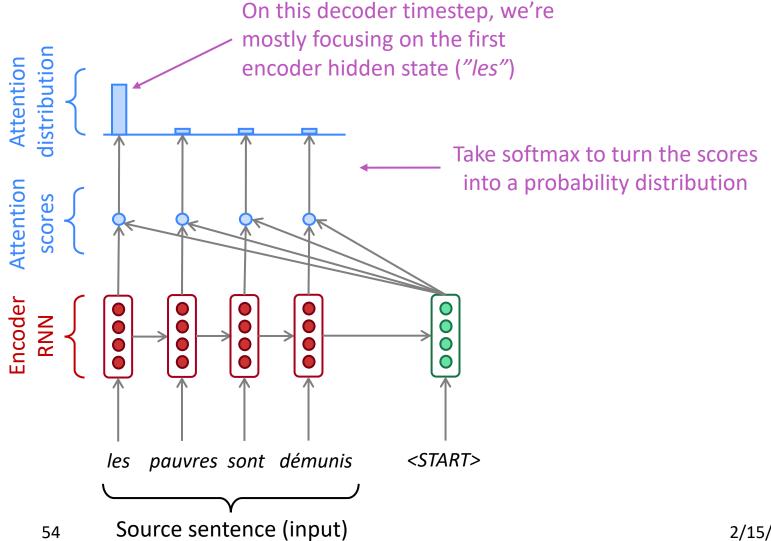
 First we will show via diagram (no equations), then we will show with equations



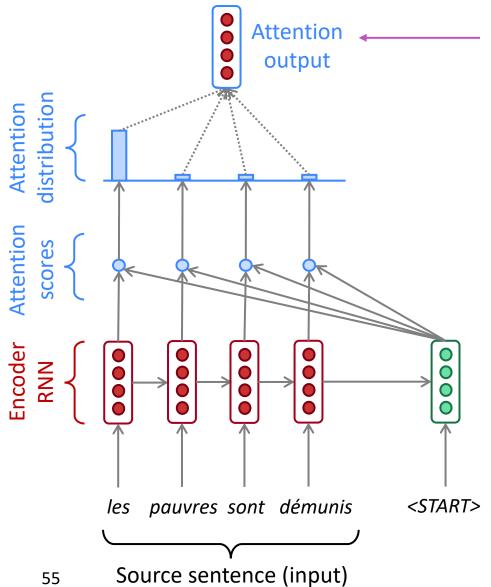






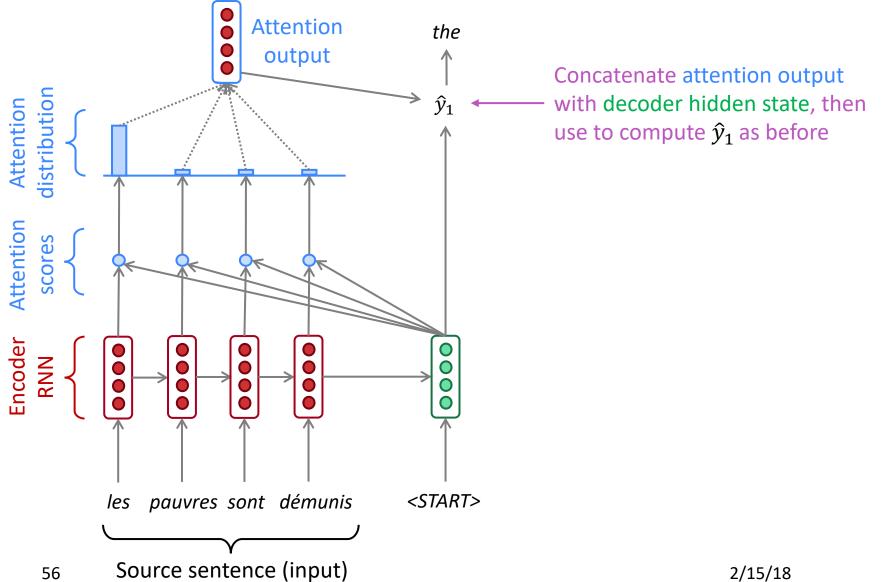


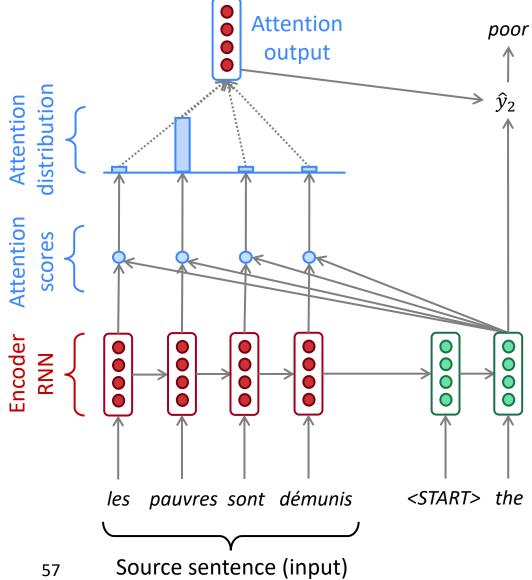
Sequence-to-sequence with attention

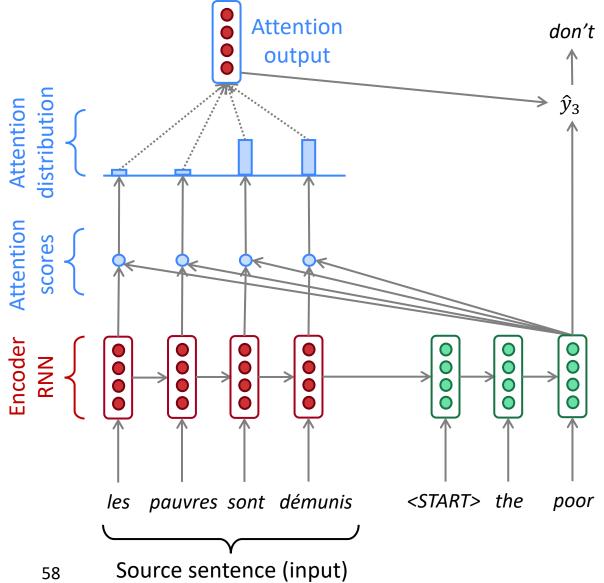


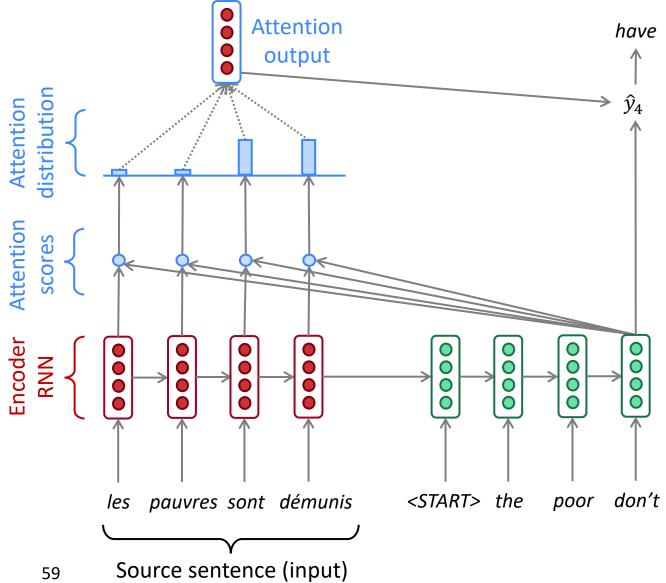
Use the attention distribution to take a weighted sum of the encoder hidden states.

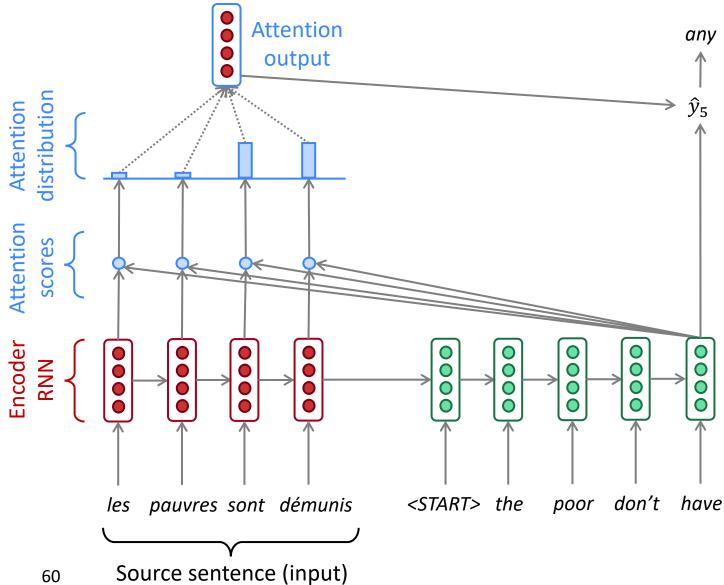
The attention output mostly contains information the hidden states that received high attention.

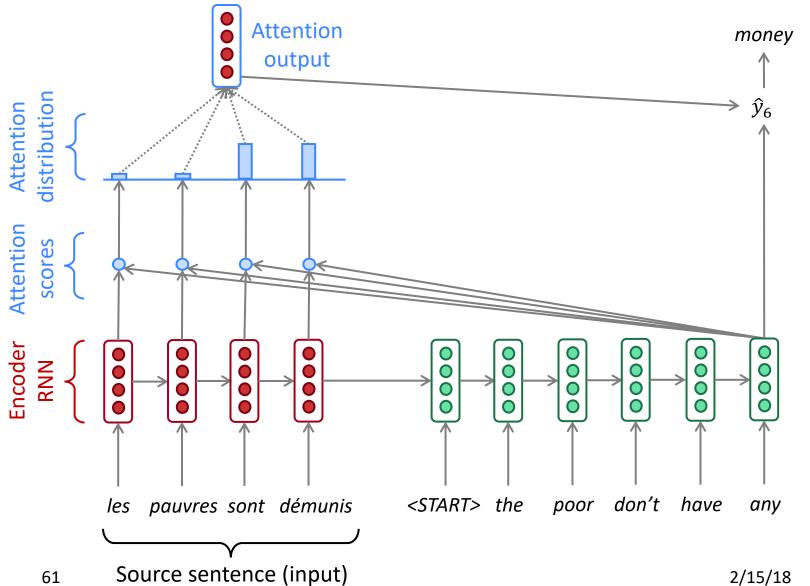












Attention: in equations

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution $lpha^t$ for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use $lpha^t$ to take a weighted sum of the encoder hidden states to get the attention output $m{a}_t$

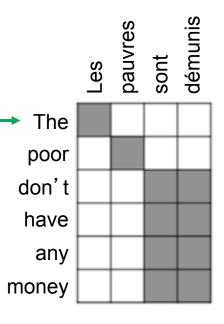
$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself



63

Recap

- We learned the history of Machine Translation (MT)
- Since 2014, Neural MT rapidly replaced intricate Statistical MT

 Sequence-to-sequence is the architecture for NMT (uses 2 RNNs)

- Attention is a way to focus on particular parts of the input
 - Improves sequence-to-sequence a lot!

Sequence-to-sequence is versatile!

- Sequence-to-sequence is useful for more than just MT
- Many NLP tasks can be phrased as sequence-to-sequence:
 - Summarization (long text → short text)
 - Dialogue (previous utterances → next utterance)
 - Parsing (input text → output parse as sequence)
 - Code generation (natural language → Python code)

Next time

More types of attention

More uses for attention

More advanced sequence-to-sequence techniques