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Thanks	for	your	Feedback!

What	do	you	most	want	to	learn	about	in	the	remaining	lectures?

• “More	cutting	edge	research	topics	in	NLP	&	DL.”
• “Solutions/approaches	to	core	NLP	problems,	variations	in	the	

the	techniques	used”
• “More	state	of	the	art	neural	networks”
• “More	neural	tricks”
• “More	state	of	the	art	techniques.“
• “State-of-the-art	neural	network	architectures”

See	Piazza	for	feedback	form	– continued	feedback	welcome!
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Congrats

• The	basic/theoretical/mathematical	part	of	the	class	is	over
• Now,	we	can	have	fun	with	recent,	state-of-the-art	ideas

• You	can	start	hacking	up	real	stuff	now

• Today,	we	will	cover	more	attention	details	and	tips	and	tricks	
to	make	bigger models	and	systems	work	
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Overview

• More	types	and	uses	of	attention
• Refresh	and	math
• Pointer-sentinel	model
• Self-attention/intra-detention	for	summarization

• Practical	tricks	on	how	to	deal	with	large	output	vocabularies	in	
neural	machine	translation	(and	other	tasks)
• UNKs
• Vocab	reduction
• Subword Units
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Sequence-to-sequence	with	attention
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Recap:	Basic	Attention	equations

• We	have	encoder	hidden	states	
• On	timestep t,	we	have	decoder	hidden	state	
• We	get	the	attention	scores									for	this	step:

• We	take	softmax to	get	the	attention	distribution								for	this	step	(this	is	a	
probability	distribution	and	sums	to	1)

• We	use								to	take	a	weighted	sum	of	the	encoder	hidden	states	to	get	the	
attention	output	

• Finally	we	concatenate	the	attention	output								with	the	decoder	hidden	
state						and	proceed	as	in	the	non-attention	seq2seq	model
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Recap:	Attention	is	great

• Attention	significantly	improves	NMT	performance
• It’s	very	useful	to	allow	decoder	to	focus	on	certain	parts	of	the	source

• Attention	solves	the	bottleneck	problem
• Attention	allows	decoder	to	look	directly	at	source;	bypass	bottleneck

• Attention	helps	with	vanishing	gradient	problem
• Provides	shortcut	to	faraway	states

• Attention	provides	some	interpretability
• By	inspecting	attention	distribution,	we	can	see	
what	the	decoder	was	focusing	on

• We	get	alignment	for	free!
• This	is	cool	because	we	never	explicitly	trained
an	alignment	system

• The	network	just	learned	alignment	by	itself

2/20/1815
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Attention	is	a	general	Deep	Learning	technique

• Last	time:	We	saw	that	attention	is	a	great	way	to	improve	the	
sequence-to-sequence	model	for	Machine	Translation.

• However:	Today	we’ll	see	attention	is	applied	to	many	
architectures	(not	just	seq2seq)	and	many	tasks (not	just	MT)

• More	general	definition	of	attention:
• Given	a	set	of	vector	values,	and	a	vector	query,	attention is	a	
technique	to	compute	a	weighted	sum	of	the	values,	
dependent	on	the	query.*

• We	sometimes	say	that	the	query	attends	to	the	values.
• For	example,	in	the	seq2seq	+	attention	model,	each	decoder	

hidden	state	attends	to	the	encoder	hidden	states.

16
*	Note:	This	is	slightly	different	to	the	terminology	in	the	
default	final	project	code.	See	Piazza	post	for	more	details.



Attention	is	a	general	Deep	Learning	technique

More	general	definition	of	attention:
Given	a	set	of	vector	values,	and	a	vector	query,	attention is	a	
technique	to	compute	a	weighted	sum	of	the	values,	dependent	on	
the	query.

• Intuition:
• The	weighted	sum	is	a	selective	summary of	the	information	
contained	in	the	values,	where	the	query	determines	which	
values	to	focus	on.

• Attention	is	a	way	to	obtain	a	fixed-size	representation	of	an	
arbitrary	set	of	representations	(the	values),	dependent	on	
some	other	representation	(the	query).

17



There	are	several attention	variants

• We	have	some	values and	a	query

• Attention	always	involves	computing	the	attention	output	
(sometimes	called	the	context	vector)	from	the	attention	scores		

(or	attention	logits)	like	so:

• However,	there	are	several	ways	you	can	compute																

18
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Attention	variants

There	are	several	ways	you	can	compute																from																																			
and																:

• Basic	dot-product	attention:
• Note:	this	assumes
• This	is	the	version	we	saw	earlier

• Multiplicative	attention:
• Where																							is	a	weight	matrix

• Additive	attention:
• Where																																																	are	weight	matrices	and
is	a	weight	vector

19

More	information: http://ruder.io/deep-learning-nlp-best-practices/index.html#attention



Attention	application:	
Pointing	to	words	for	language	modeling

• Idea:	Mixture	Model	of	softmax and	pointers:

• Pointer	Sentinel	Mixture	Models	by
Stephen	Merity,	Caiming Xiong,	James	Bradbury,	Richard	
Socher

Pointer Sentinel Mixture Models

Stephen Merity SMERITY@SALESFORCE.COM
Caiming Xiong CXIONG@SALESFORCE.COM
James Bradbury JAMES.BRADBURY@SALESFORCE.COM
Richard Socher RSOCHER@SALESFORCE.COM

MetaMind - A Salesforce Company, Palo Alto, CA, USA

Abstract

Recent neural network sequence models with
softmax classifiers have achieved their best lan-
guage modeling performance only with very
large hidden states and large vocabularies. Even
then they struggle to predict rare or unseen words
even if the context makes the prediction un-
ambiguous. We introduce the pointer sentinel
mixture architecture for neural sequence models
which has the ability to either reproduce a word
from the recent context or produce a word from a
standard softmax classifier. Our pointer sentinel-
LSTM model achieves state of the art language
modeling performance on the Penn Treebank
(70.9 perplexity) while using far fewer parame-
ters than a standard softmax LSTM. In order to
evaluate how well language models can exploit
longer contexts and deal with more realistic vo-
cabularies and larger corpora we also introduce
the freely available WikiText corpus.1

1. Introduction

A major difficulty in language modeling is learning when
to predict specific words from the immediate context. For
instance, imagine a new person is introduced and two para-
graphs later the context would allow one to very accurately
predict this person’s name as the next word. For standard
neural sequence models to predict this name, they would
have to encode the name, store it for many time steps in
their hidden state, and then decode it when appropriate. As
the hidden state is limited in capacity and the optimization
of such models suffer from the vanishing gradient prob-
lem, this is a lossy operation when performed over many
timesteps. This is especially true for rare words.

Models with soft attention or memory components have
been proposed to help deal with this challenge, aiming to
allow for the retrieval and use of relevant previous hidden

1Available for download at the WikiText dataset site
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Figure 1. Illustration of the pointer sentinel-RNN mixture model.
g is the mixture gate which uses the sentinel to dictate how much
probability mass to give to the vocabulary.

states, in effect increasing hidden state capacity and pro-
viding a path for gradients not tied to timesteps. Even with
attention, the standard softmax classifier that is being used
in these models often struggles to correctly predict rare or
previously unknown words.

Pointer networks (Vinyals et al., 2015) provide one poten-
tial solution for rare and out of vocabulary (OoV) words as
a pointer network uses attention to select an element from
the input as output. This allows it to produce previously
unseen input tokens. While pointer networks improve per-
formance on rare words and long-term dependencies they
are unable to select words that do not exist in the input.

We introduce a mixture model, illustrated in Fig. 1, that
combines the advantages of standard softmax classifiers
with those of a pointer component for effective and effi-
cient language modeling. Rather than relying on the RNN
hidden state to decide when to use the pointer, as in the re-
cent work of Gülçehre et al. (2016), we allow the pointer
component itself to decide when to use the softmax vocab-
ulary through a sentinel. The model improves the state of
the art perplexity on the Penn Treebank. Since this com-
monly used dataset is small and no other freely available
alternative exists that allows for learning long range depen-
dencies, we also introduce a new benchmark dataset for
language modeling called WikiText.
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Pointer-Sentinel	Model	- Details
Pointer Sentinel Mixture Models

· · ·

 Sentinel

x

RNN Distribution
pvocab(yN |w1, . . . , wN�1)pvocab(yN |w1, . . . , wN�1)

Pointer Distribution
pptr(yN |w1, . . . , wN�1)pptr(yN |w1, . . . , wN�1)

Output Distribution
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· · ·
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Figure 2. Visualization of the pointer sentinel-RNN mixture model. The query, produced from applying an MLP to the last output of the
RNN, is used by the pointer network to identify likely matching words from the past. The � nodes are inner products between the query
and the RNN hidden states. If the pointer component is not confident, probability mass can be directed to the RNN by increasing the
value of the mixture gate g via the sentinel, seen in grey. If g = 1 then only the RNN is used. If g = 0 then only the pointer is used.

2. The Pointer Sentinel for Language

Modeling

Given a sequence of words w1, . . . , wN�1, our task is to
predict the next word wN .

2.1. The softmax-RNN Component

Recurrent neural networks (RNNs) have seen widespread
use for language modeling (Mikolov et al., 2010) due to
their ability to, at least in theory, retain long term depen-
dencies. RNNs employ the chain rule to factorize the joint
probabilities over a sequence of tokens: p(w1, . . . , wN ) =QN

i=1 p(wi|w1, . . . , wi�1). More precisely, at each time
step i, we compute the RNN hidden state hi according to
the previous hidden state hi�1 and the input xi such that
hi = RNN(xi, hi�1). When all the N � 1 words have
been processed by the RNN, the final state hN�1 is fed
into a softmax layer which computes the probability over
a vocabulary of possible words:

pvocab(w) = softmax(UhN�1), (1)

where pvocab 2 RV , U 2 RV ⇥H , H is the hidden size, and
V the vocabulary size. RNNs can suffer from the vanishing
gradient problem. The LSTM (Hochreiter & Schmidhuber,
1997) architecture has been proposed to deal with this by
updating the hidden state according to a set of gates. Our
work focuses on the LSTM but can be applied to any RNN
architecture that ends in a vocabulary softmax.

2.2. The Pointer Network Component

In this section, we propose a modification to pointer net-
works for language modeling. To predict the next word in
the sequence, a pointer network would select the member
of the input sequence p(w1, . . . , wN�1) with the maximal
attention score as the output.

The simplest way to compute an attention score for a spe-
cific hidden state is an inner product with all the past hid-
den states h, with each hidden state hi 2 RH . However, if
we want to compute such a score for the most recent word
(since this word may be repeated), we need to include the
last hidden state itself in this inner product. Taking the in-
ner product of a vector with itself results in the vector’s
magnitude squared, meaning the attention scores would be
strongly biased towards the most recent word. Hence we
project the current hidden state to a query vector q first. To
produce the query q we compute

q = tanh(WhN�1 + b), (2)

where W 2 RH⇥H , b 2 RH , and q 2 RH . To generate the
pointer attention scores, we compute the match between the
previous RNN output states hi and the query q by taking the
inner product, followed by a softmax activation function to
obtain a probability distribution:

zi = qT hi, (3)
a = softmax(z), (4)

where z 2 RL, a 2 RL, and L is the total number of hidden
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Pointer	Sentinel	for	Language	Modeling
Pointer Sentinel Mixture Models

Model Parameters Validation Test

Mikolov & Zweig (2012) - KN-5 2M‡ � 141.2
Mikolov & Zweig (2012) - KN5 + cache 2M‡ � 125.7
Mikolov & Zweig (2012) - RNN 6M‡ � 124.7
Mikolov & Zweig (2012) - RNN-LDA 7M‡ � 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache 9M‡ � 92.0
Pascanu et al. (2013a) - Deep RNN 6M � 107.5
Cheng et al. (2014) - Sum-Prod Net 5M‡ � 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 86.2 82.7
Zaremba et al. (2014) - LSTM (large) 66M 82.2 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 81.9 ± 0.2 79.7 ± 0.1
Gal (2015) - Variational LSTM (medium, untied, MC) 20M � 78.6 ± 0.1
Gal (2015) - Variational LSTM (large, untied) 66M 77.9 ± 0.3 75.2 ± 0.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M � 73.4 ± 0.0
Kim et al. (2016) - CharCNN 19M � 78.9
Zilly et al. (2016) - Variational RHN 32M 72.8 71.3

Zoneout + Variational LSTM (medium) 20M 84.4 80.6
Pointer Sentinel-LSTM (medium) 21M 72.4 70.9

Table 2. Single model perplexity on validation and test sets for the Penn Treebank language modeling task. For our models and the
models of Zaremba et al. (2014) and Gal (2015), medium and large refer to a 650 and 1500 units two layer LSTM respectively. The
medium pointer sentinel-LSTM model achieves lower perplexity than the large LSTM model of Gal (2015) while using a third of the
parameters and without using the computationally expensive Monte Carlo (MC) dropout averaging at test time. Parameter numbers with
‡ are estimates based upon our understanding of the model and with reference to Kim et al. (2016).

Model Parameters Validation Test

Variational LSTM implementation from Gal (2015) 20M 101.7 96.3

Zoneout + Variational LSTM 20M 108.7 100.9
Pointer Sentinel-LSTM 21M 84.8 80.8

Table 3. Single model perplexity on validation and test sets for the WikiText-2 language modeling task. All compared models use a two
layer LSTM with a hidden size of 650 and the same hyperparameters as the best performing Penn Treebank model.

was since seeing a word. By integrating the gating func-
tion into the pointer component, we avoid the RNN hidden
state having to maintain this intensive bookkeeping.

7. Conclusion

We introduced the pointer sentinel mixture model and the
WikiText language modeling dataset. This model achieves
state of the art results in language modeling over the Penn
Treebank while using few additional parameters and little
additional computational complexity at prediction time.

We have also motivated the need to move from Penn Tree-
bank to a new language modeling dataset for long range
dependencies, providing WikiText-2 and WikiText-103 as
potential options. We hope this new dataset can serve as a
platform to improve handling of rare words and the usage
of long term dependencies in language modeling.
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Attention	application:
Intra-Decoder	attention	for	Summarization
• Longer	document	summarization.	Example:
• Tony	Blair	has	said	he	does	not	want	to	retire	until	he	is	91	– as	he	unveiled	plans	to	set	up	a	‘cadre’	of	ex-leaders	to	advise governments	

around	the	world.	The	defiant	61-year-old	former	Prime	Minister	said	he	had	‘decades’	still	in	him	and	joked	that	he	would	‘turn to	drink’	if	
he	ever	stepped	down	from	his	multitude	of	global	roles.	He	told	Newsweek	magazine	that	his	latest	ambition	was	to	recruit	former	heads	of	
government	to	go	round	the	world	to	advise	presidents	and	prime	ministers	on	how	to	run	their	countries.	In	an	interview	with the	magazine	
Newsweek	Mr Blair	said	he	did	not	want	to	retire	until	he	was	91	years	old	Mr Blair	said	his	latest	ambition	is	to	recruit	former	heads	of	
government	to	advise	presidents	and	prime	ministers	on	how	to	run	their	countries	Mr Blair	said	he	himself	had	been	‘mentored’	by	US	
president	Bill	Clinton	when	he	took	office	in	1997.	And	he	said	he	wanted	to	build	up	his	organisations,	such	as	his	Faith	Foundation,	so	they	
are	‘capable	of	changing	global	policy’.	Last	night,	Tory	MPs	expressed	horror	at	the	prospect	of	Mr Blair	remaining	in	public	life	for	another	
30	years.	Andrew	Bridgen said:	‘We	all	know	weak	Ed	Miliband’s	called	on	Tony	to	give	his	flailing	campaign	a	boost,	but	the	attention’s	
clearly	gone	to	his	head.’	(...)

• Summary:
The	former	Prime	Minister	claimed	he	has	'decades'	of	work	left	
in	him.	Joked	he	would	'turn	to	drink'	if	he	ever	stepped	down	
from	global	roles.	Wants	to	recruit	former	government	heads	to	
advise	current	leaders.	He	was	'mentored'	by	US	president	Bill	
Clinton	when	he	started	in	1997.
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Attention	application:
Intra-Decoder	attention	for	Summarization
• Based	on	paper:
• Romain Paulus,	Caiming Xiong,	and	Richard	Socher.	2017.

A	Deep	Reinforced	Model	for	Abstractive	Summarization
• But	similar	ideas	appear	elsewhere	also

• Two	necessary,	new	ingredients
• Attention	during	generation	à Today
• Reinforcement	learning	à Not	in	this	class
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Attention	application:
Similar	Seq2Seq	Idea	as	in	Translation

• Problems:	For	longer	outputs	(MT	was	just	single	sentences),	the	
decoder	starts	to	repeat	itself
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More	advanced	attention

1. More	advanced	encoder	attention
2. Self-attention	(=	intra-decoder	attention)
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1.	Details	of	this	attention	mechanism

• More	advanced	similarity	function	than	simple	inner	product:

• Temporal	attention	function,	penalizing	input	tokens	that	have	
obtained	high	attention	scores	in	past	decoding	steps:

• Improves		coverage	and	prevent	repeated	attention	to	same	
inputs 2/20/1827



1.	Details	of	this	attention	mechanism

• Combine	softmax’ed weighted	hidden	states	from	encoder:

• Remember	softmax-normalized	encoder	𝛼(𝑠 for	later!
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2.	Self-attention	on	decoder

2/20/1829

• Self-attention: A	general	idea	used	in	many	RNN	models	(e.g.	
Language	Models).	The	hidden	states	“attend	to	themselves”,	i.e.	each	
hidden	state	attends	to	the	previous	hidden	states	of	the	same	RNN.

• On	step	t,						attends	to	previous decoder	hidden	states						:

• Apply	softmax to	get	attention	distribution	over	previous hidden	
states							for	t’	=	1,…,t-1:

• Compute	decoder	attention	output:



2.	Combine	softmax and	pointers	using	both	attention	
computations
• Compute	probability	of	copying/pointing	to	word	from	input:

• If	not	copying/pointing,	use	standard	softmax:

• If	pointing,	use	encoder	attention	weights	(from	2	slides	ago)

• Combine	everything:
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Summarization	Results
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Summarization	Results
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Similar	ideas	explored	simultaneously	by	Abi	et	al.

• Get	To	The	Point:	Summarization	with	Pointer-Generator	
Networks,	Abigail	See,	Peter	J.	Liu,	Christopher	Manning,	2017

Blog	post:	http://www.abigailsee.com/2017/04/16/taming-rnns-for-better-summarization.html
33



Preview

• Hopefully,	you	can	see	how	useful	and	versatile	attention	is

• Next	lecture	we	will	go	even	further	and	cover	a	model	that	only
has	attention	(The	Transformer)

• But,	for	now,	we	will	cover	some	tips	and	tricks	to	actually	scale	
upmachine	translation.
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Extending	NMT	to	more	languages

• “Copy”	mechanisms	are	not	sufficient.
• Transliteration:	Christopher	↦ Kryštof
• Multi-word	alignment:	Solar	system	↦ Sonnensystem

• Need	to	handle	large,	open	vocabulary
• Rich	morphology:
• nejneobhospodařovávatelnějšímu - Czech	=	“to	the	worst	farmable	one”
• Donaudampfschiffahrtsgesellschaftskapitän – German	=	Danube	
steamship	company	captain

• Informal	spelling:	goooooood morning	!!!!!

Need	to	be	able	to	operate	at	sub-word	levels!
35



Dealing	with	a	large	output	vocabulary	in	MT++

am a student _ Je suis étudiant

Je suis étudiant _

I

am a student _ Je suis étudiant

Je suis étudiant _

I

Softmax
parameters

Hidden	
state

P(Je|	…)
|V|
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The	word	generation	problem

• Word	generation problem

am a student _ Je suis étudiant

Je suis étudiant _

I

am a student _ Je suis étudiant

Je suis étudiant _

I

Softmax
parameters

Hidden	
state

P(Je|	…)
|V|

37

Softmax computation is expensive.



The	word	generation	problem

• Word	generation	problem
• If	vocabs	are	modest,	e.g.,	50K

am a student _ Je suis étudiant

Je suis étudiant _

I

The	 <unk> portico	 in	 <unk>
Le	 <unk> <unk> de	 <unk>

The	 ecotax portico	 in	 Pont-de-Buis
Le	 portique	 écotaxe de	 Pont-de-Buis

38



First	thought:	scale	the	softmax

• Lots	of	ideas	from	the	neural	LM	literature!

• Hierarchical	models:	tree-structured	vocabulary
• [Morin	&	Bengio,	AISTATS’05],	[Mnih &	Hinton,	NIPS’09].
• Complex,	sensitive	to	tree	structures.

• Noise-contrastive	estimation:	binary	classification
• [Mnih &	Teh,	ICML’12],	[Vaswani et	al.,	EMNLP’13].
• Different	noise	samples	per	training	example.*

Not GPU-friendly
39 *We’ll	mention	a	simple	fix	for	this!



• GPU-friendly.

• Training:	a	subset	of	the	vocabulary	at	a	time.

• Testing: smart	on	the	set	of	possible	translations.

Sébastien Jean,	Kyunghyun Cho,	Roland	Memisevic,	Yoshua Bengio.	On	Using	Very	
Large	Target	Vocabulary	for	Neural	Machine	Translation.	ACL’15.

Fast at both train & test time.

40

Large-vocab	NMT



Training

• Each	time	train	on	a	smaller	vocab	Vʹ	≪ V

How do we 
select Vʹ?

41

|Vʹ|



Training

• Each	time	train	on	a	smaller	vocab	Vʹ	≪ V

• Partition training	data	in	subsets:
• Each	subset	has	𝜏 distinct	target	words,	|Vʹ|	=	𝜏.

42

|Vʹ|



Training	– Segment	data

• Sequentially select	examples:	|Vʹ|	=	5.

43

she loves cats

he likes dogs

cats have tails

dogs have tails

dogs chase cats

she loves dogs

cats hate dogs

Vʹ	=	{she,	loves,	cats,	he,	likes}



Training	– Segment	data

• Sequentially	select	examples:	|Vʹ|	=	5.
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she loves cats

he likes dogs

cats have tails

dogs have tails

dogs chase cats

she loves dogs

cats hate dogs

Vʹ	=	{cats,	have,	tails,	dogs,	chase}



Training	– Segment	data

• Sequentially	select	examples:	|Vʹ|	=	5.

45

she loves cats

he likes dogs

cats have tails

dogs have tails

dogs chase cats

she loves dogs

cats hate dogs Vʹ	=	{she,	loves,	dogs,	cats,	hate}

• Practice: |V| = 500K, |Vʹ| = 30K or 50K.



Testing	– Select	candidate	words

• Kmost	frequent words:	unigram	prob.

46

de,
,
la
.
et
des
les
…



Testing	– Select	candidate	words

• Kmost	frequent words:	unigram	prob.

• Candidate	target words
• Kʹ	choices	per	source	word.	Kʹ	=	3.
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cats

elle
celle
ceci
She

de,
,
la
.
et
des
les
…

loves

aime
amour
aimer

chats
chat
félin



Testing	– Select	candidate	words
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de,
,
la
.
et
des
les
…

cats

elle
celle
ceci
She loves

aime
amour
aimer

chats
chat
félin

+ = Candidate	
list

• Produce translations within the candidate list
• Practice: Kʹ = 10 or 20, K = 15k, 30k, or 50k.

Kʹ

K



More	on	large-vocab	techniques

• “BlackOut:	Speeding	up	Recurrent	Neural	Network	Language	
Models	with	very	Large	Vocabularies”	– [Ji,	Vishwanathan,	
Satish,	Anderson,	Dubey,	ICLR’16].
• Good	survey	over	many	techniques.

• “Simple,	Fast	Noise	Contrastive	Estimation	for	Large	RNN	
Vocabularies”	– [Zoph,	Vaswani,	May,	Knight,	NAACL’16].
• Use	the	same	samples	per	minibatch.	GPU	efficient.
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Sub-word	NMT:	two	trends

• Same	seq2seq architecture:
• Use	smaller	units.
• [Sennrich,	Haddow,	Birch,	ACL’16a],	[Chung,	Cho,	Bengio,	
ACL’16].

• Hybrid	architectures:
• RNN	for	words	+	something	else	for	characters.
• [Costa-Jussà &	Fonollosa,	ACL’16],	[Luong	&	Manning,	
ACL’16].
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Byte	Pair	Encoding

Rico	Sennrich,	Barry	Haddow,	and	Alexandra	Birch.	Neural	Machine	
Translation	of	Rare	Words	with	Subword Units.	ACL	2016.

• A	compression algorithm:
• Most	frequent	byte	pair ↦ a	new	byte.

51

Replace bytes with character ngrams



Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.
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Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

53

5 l o w
2   l o w e r
6   n e w e s t 
3   w i d e s t

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d

VocabularyDictionary

Start with all characters in vocab



Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.
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5 l o w
2   l o w e r
6   n e w es t 
3   w i d es t

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es

VocabularyDictionary

Add a pair (e, s) with freq 9



Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.
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5 l o w
2   l o w e r
6   n e w est
3   w i d est

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est

VocabularyDictionary

Add a pair (es, t) with freq 9



Byte	Pair	Encoding

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.
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5 lo w
2   lo w e r
6   n e w est
3   w i d est

(Example	from	Sennrich)

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

VocabularyDictionary

Add a pair (l, o) with freq 7



Byte	Pair	Encoding

57

• A	word	segmentation algorithm:
• Start	with	a	vocabulary	of	characters.
• Most	frequent	ngram pairs	↦ a	new	ngram.

• Automatically	decide	vocabs	for	NMT

Top places in WMT 2016!
https://github.com/rsennrich/nematus



Character-based	LSTM

58

u n yl

…

…

(unfortunately)

Bi-LSTM builds word representations

Ling,	Luís,	Marujo,	Astudillo,	Amir,	Dyer,	Black,	Trancoso.	Finding	Function	in	Form:	
Compositional	Character	Models	for	Open	Vocabulary	Word	Representation.	EMNLP’15.



Ling,	Luís,	Marujo,	Astudillo,	Amir,	Dyer,	Black,	Trancoso.	Finding	Function	in	Form:	
Compositional	Character	Models	for	Open	Vocabulary	Word	Representation.	EMNLP’15.

Character-based	LSTM

59

Recurrent Language Model

u n yl

…

…

(unfortunately)

the

the

bank

bank

was

was

closed

Bi-LSTM builds word representations



• A best-of-both-worlds architecture:
• Translate	mostly	at	the	word	level
• Only	go	to	the	character	level	when	needed.

• More	than	2 BLEU	improvement	over	a	copy	mechanism.

Thang	Luong	and	Chris	Manning.	Achieving	Open	Vocabulary	Neural	Machine	
Translation	with	Hybrid	Word-Character	Models.	ACL	2016.

Hybrid	NMT
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Hybrid	NMT

Word-level	
(4	layers)

End-to-end training
8-stacking LSTM layers.
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2-stage	Decoding

62

• Word-level beam search



2-stage	Decoding Init with	word	
hidden	states.

63

• Word-level beam search
• Char-level beam search 

for <unk>.



English-Czech	Results

30x	data
3	systems

64

Systems BLEU

Winning	WMT’15	(Bojar & Tamchyna,	2015) 18.8

Word-level NMT (Jean	et	al.,	2015) 18.3 Large	vocab
+	copy	mechanism

• Train	on	WMT’15	data	(12M	sentence	pairs)
• newstest2015



English-Czech	Results

30x	data
3	systems

65

Systems BLEU

Winning	WMT’15	(Bojar & Tamchyna,	2015) 18.8

Word-level NMT (Jean	et	al.,	2015) 18.3

Hybrid NMT	(Luong &	Manning,	2016)* 20.7 New	
SOTA!

Large	vocab
+	copy	mechanism

• Train	on	WMT’15	data	(12M	sentence	pairs)
• newstest2015



Sample	English-Czech	translations

source Her	11-year-old daughter	,	Shani Bart ,	said	it	felt	a	little	bit	weird

human Její jedenáctiletá dcera Shani Bartová prozradila ,	že je	to	trochu zvláštní

word
Její <unk>	dcera <unk>	<unk>	řekla ,	že je	to	trochu divné

Její 11-year-old dcera Shani , řekla ,	že je	to	trochu divné

hybrid
Její <unk>	dcera ,	<unk>	<unk>	,	řekla ,	že je	to	<unk>	<unk>

Její jedenáctiletá dcera ,	Graham Bart ,	řekla ,	že cítí trochu divný

• Word-based:	identity	copy	fails.
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Sample	English-Czech	translations

source Her	11-year-old daughter	,	Shani Bart ,	said	it	felt	a	little	bit	weird

human Její jedenáctiletá dcera Shani Bartová prozradila ,	že je	to	trochu zvláštní

word
Její <unk>	dcera <unk>	<unk>	řekla ,	že je	to	trochu divné

Její 11-year-old dcera Shani , řekla ,	že je	to	trochu divné

hybrid
Její <unk>	dcera ,	<unk>	<unk>	,	řekla ,	že je	to	<unk>	<unk>

Její jedenáctiletá dcera ,	Graham Bart ,	řekla ,	že cítí trochu divný
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• Hybrid:	correct,	11-year-old – jedenáctiletá..



Using	attention	for	coverage

• Caption	generation

68

How to not miss an important 
image patch?

Xu,	Ba,	Kiros,	Cho,	Courville,	Salakhutdinov,	Zemel,	Bengio.	Show,	Attend	and	
Tell:	Neural	Image	Caption	Generation	with	Visual	Attention.	ICML’15



RNNs	are	Slow

• RNNs	are	the	basic	building	block	for	deepNLP

• Idea:	Take	the	best	and	parallelizable	parts	of	RNNs	and	CNNs

• Quasi-Recurrent	Neural	Networks	by
James	Bradbury,	Stephen	Merity,	Caiming Xiong &	Richard	
Socher

69



Quasi-Recurrent	Neural	Network

• Parallelism	computation	across	time:

• Element-wise	gated	recurrence	for	parallelism	across	
channels:

Under review as a conference paper at ICLR 2017

LSTM CNN

LSTM/Linear

Linear

LSTM/Linear

Linear

fo-Pool

Convolution

fo-Pool

Convolution

Max-Pool

Convolution

Max-Pool

Convolution

QRNN

Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z

t

. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z

t

depends only on x
t�k+1 through x

t

. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate f

t

and an output gate o
t

at each timestep, the full set of computations in the convolutional
component is then:
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masked convolution along the timestep dimension. Note that if the filter width is 2, these equations
reduce to the LSTM-like
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

h
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, (3)

2

Under review as a conference paper at ICLR 2017

LSTM CNN

LSTM/Linear

Linear

LSTM/Linear

Linear

fo-Pool

Convolution

fo-Pool

Convolution

Max-Pool

Convolution

Max-Pool

Convolution

QRNN

Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
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t�k+1 through x
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:
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to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z
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. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:
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Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z

t

. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z

t

depends only on x
t�k+1 through x

t

. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate f

t

and an output gate o
t

at each timestep, the full set of computations in the convolutional
component is then:
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors cL
t

in the IMDb task, with
timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10

�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test

LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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Sequence length
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8 5.5x 8.8x 11.0x 12.4x 16.9x

16 5.5x 6.7x 7.8x 8.3x 10.8x

32 4.2x 4.5x 4.9x 4.9x 6.4x

64 3.0x 3.0x 3.0x 3.0x 3.7x

128 2.1x 1.9x 2.0x 2.0x 2.4x

256 1.4x 1.4x 1.3x 1.3x 1.3x

Figure 4: Left: Training speed for two-layer 640-unit PTB LM on a batch of 20 examples of 105
timesteps. “RNN” and “softmax” include the forward and backward times, while “optimization
overhead” includes gradient clipping, L2 regularization, and SGD computations.
Right: Inference speed advantage of a 320-unit QRNN layer alone over an equal-sized cuDNN
LSTM layer for data with the given batch size and sequence length. Training results are similar.

(2016), which had variational inference based dropout of 0.2 applied recurrently. The best perform-
ing variation also used Monte Carlo (MC) dropout averaging at test time of 1000 different masks,
making it computationally expensive to run.

When training on the PTB dataset with an NVIDIA K40 GPU, we found that the QRNN is sub-
stantially faster than a standard LSTM, even when comparing against the optimized cuDNN LSTM.
In Figure 4 we provide a breakdown of the time taken for Chainer’s default LSTM, the cuDNN
LSTM, and QRNN to perform a full forward and backward pass on a single batch during training of
the RNN LM on PTB. For both LSTM implementations, running time was dominated by the RNN
computations, even with the highly optimized cuDNN implementation. For the QRNN implementa-
tion, however, the “RNN” layers are no longer the bottleneck. Indeed, there are diminishing returns
from further optimization of the QRNN itself as the softmax and optimization overhead take equal
or greater time. Note that the softmax, over a vocabulary size of only 10,000 words, is relatively
small; for tasks with larger vocabularies, the softmax would likely dominate computation time.

It is also important to note that the cuDNN library’s RNN primitives do not natively support any form
of recurrent dropout. That is, running an LSTM that uses a state-of-the-art regularization scheme at
cuDNN-like speeds would likely require an entirely custom kernel.

3.3 CHARACTER-LEVEL NEURAL MACHINE TRANSLATION

We evaluate the sequence-to-sequence QRNN architecture described in 2.1 on a challenging neu-
ral machine translation task, IWSLT German–English spoken-domain translation, applying fully
character-level segmentation. This dataset consists of 209,772 sentence pairs of parallel training
data from transcribed TED and TEDx presentations, with a mean sentence length of 103 characters
for German and 93 for English. We remove training sentences with more than 300 characters in
English or German, and use a unified vocabulary of 187 Unicode code points.

Our best performance on a development set (TED.tst2013) was achieved using a four-layer encoder–
decoder QRNN with 320 units per layer, no dropout or L2 regularization, and gradient rescaling to
a maximum magnitude of 5. Inputs were supplied to the encoder reversed. The first encoder layer
used convolutional filter width k = 6, while the other encoder layers used k = 2. Optimization was
performed for 10 epochs on minibatches of 16 examples using Adam (Kingma & Ba, 2014) with
↵ = 0.001, �1 = 0.9, �2 = 0.999, and ✏ = 10

�8. Decoding was performed using beam search with
beam width 8 and length normalization ↵ = 0.6. The modified log-probability ranking criterion is
provided in the appendix.

Results using this architecture were compared to an equal-sized four-layer encoder–decoder LSTM
with attention, applying dropout of 0.2. We again optimized using Adam; other hyperparameters
were equal to their values for the QRNN and the same beam search procedure was applied. Table
3 shows that the QRNN outperformed the character-level LSTM, almost matching the performance
of a word-level attentional baseline.

7

71



Q-RNNs	for	Sentiment	Analysis

• Often	better	and	faster
than	LSTMs	

• More	interpretable

• Example:
• Initial	positive	review
• Review	starts	out	positive

At	117:	“not	exactly	a	bad	story”
At	158:	“I	recommend	this	movie	to	everyone,	even	if	you’ve	
never	played	the	game”

Under review as a conference paper at ICLR 2017

Model Time / Epoch (s) Test Acc (%)

BSVM-bi (Wang & Manning, 2012) � 91.2
2 layer sequential BoW CNN (Johnson & Zhang, 2014) � 92.3
Ensemble of RNNs and NB-SVM (Mesnil et al., 2014) � 92.6
2-layer LSTM (Longpre et al., 2016) � 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) � 90.1

Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 91.4
D.C. 4-layer QRNN with k = 4 160 91.1

Table 1: Accuracy comparison on the IMDb binary sentiment classification task. All of our models
use 256 units per layer; all layers other than the first layer, whose filter width may vary, use filter
width k = 2. Train times are reported on a single NVIDIA K40 GPU. We exclude semi-supervised
models that conduct additional training on the unlabeled portion of the dataset.

3 EXPERIMENTS

We evaluate the performance of the QRNN on three different natural language tasks: document-level
sentiment classification, language modeling, and character-based neural machine translation. Our
QRNN models outperform LSTM-based models of equal hidden size on all three tasks while dra-
matically improving computation speed. Experiments were implemented in Chainer (Tokui et al.).

3.1 SENTIMENT CLASSIFICATION

We evaluate the QRNN architecture on a popular document-level sentiment classification bench-
mark, the IMDb movie review dataset (Maas et al., 2011). The dataset consists of a balanced sample
of 25,000 positive and 25,000 negative reviews, divided into equal-size train and test sets, with an
average document length of 231 words (Wang & Manning, 2012). We compare only to other results
that do not make use of additional unlabeled data (thus excluding e.g., Miyato et al. (2016)).

Our best performance on a held-out development set was achieved using a four-layer densely-
connected QRNN with 256 units per layer and word vectors initialized using 300-dimensional cased
GloVe embeddings (Pennington et al., 2014). Dropout of 0.3 was applied between layers, and we
used L2 regularization of 4 ⇥ 10

�6. Optimization was performed on minibatches of 24 examples
using RMSprop (Tieleman & Hinton, 2012) with learning rate of 0.001, ↵ = 0.9, and ✏ = 10

�8.

Small batch sizes and long sequence lengths provide an ideal situation for demonstrating the
QRNN’s performance advantages over traditional recurrent architectures. We observed a speedup
of 3.2x on IMDb train time per epoch compared to the optimized LSTM implementation provided
in NVIDIA’s cuDNN library. For specific batch sizes and sequence lengths, a 16x speed gain is
possible. Figure 4 provides extensive speed comparisons.

In Figure 3, we visualize the hidden state vectors cL
t

of the final QRNN layer on part of an example
from the IMDb dataset. Even without any post-processing, changes in the hidden state are visible
and interpretable in regards to the input. This is a consequence of the elementwise nature of the
recurrent pooling function, which delays direct interaction between different channels of the hidden
state until the computation of the next QRNN layer.

3.2 LANGUAGE MODELING

We replicate the language modeling experiment of Zaremba et al. (2014) and Gal & Ghahramani
(2016) to benchmark the QRNN architecture for natural language sequence prediction. The experi-
ment uses a standard preprocessed version of the Penn Treebank (PTB) by Mikolov et al. (2010).

We implemented a gated QRNN model with medium hidden size: 2 layers with 640 units in each
layer. Both QRNN layers use a convolutional filter width k of two timesteps. While the “medium”
models used in other work (Zaremba et al., 2014; Gal & Ghahramani, 2016) consist of 650 units in
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors cL
t

in the IMDb task, with
timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10

�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test

LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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