Natural Language Processing
with Deep Learning

CS224N/Ling284

Richard Socher

Lecture 14: Tree Recursive Neural Networks
and Constituency Parsing



Lecture Plan

1. Motivation: Compositionality and Recursion

2. Structure prediction with simple Tree RNN: Parsing
3. Backpropagation through Structure

4. More complex units

Reminders/comments:
Learn up on GPUs, Azure, Docker
Ass 4: Get something working, using a GPU for milestone

Final project discussions — come meet with us!
OH today after class. You have to come to every OH. No
additional feedback beyond OH. Nothing on gradescope.
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Semantic interpretation of language —
Not just word vectors

How can we know when larger units are similar in
meaning?

People interpret the meaning of larger text units —
entities, descriptive terms, facts, arguments, stories — by
semantic composition of smaller elements
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Language understanding -

& Artificial Intelligence - requires
being able ko understand bigger
things from lanowing about smaller
parts
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REVIEW: NEUROSCIENCE 4%

The Faculty of Language: What Is It, Who Has
It, and How Did It Evolve?

Marc D. Hauser,’ Noam Chomsky,? W. Tecumseh Fitch’

We argue that an understanding of the faculty of language requires substantial
interdisciplinary cooperation. We suggest how current developments in linguistics can
be profitably wedded to work in evolutionary biology, anthropology, psychology, and
neuroscience. We submit that a distinction should be made between the faculty of
language in the broad sense (FLB) and in the narrow sense (FLN). FLB includes a
sensory-motor system, a conceptual-intentional system, and the computational
mechanisms for recursion, providing the capacity to generate an infinite range of
expressions from a finite set of elements. We hypothesize that FLN only includes
recursion and is the only uniquely human component of the faculty of language. We
further argue that FLN may have evolved for reasons other than language, hence
comparative studies might look for evidence of such computations outside of the
domain of communication (for example, number, navigation, and social relations).

f a martian graced our planet, it would be
struck by one remarkable similarity among
Earth’s living creatures and a key difference.
Concerning similarity, it would note that all
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Are languages recursive?

e Cognitively somewhat debatable
e But: recursion is natural for describing language

e [The man from [the company that you spoke with about [the
project] yesterday]]

 noun phrase containing a noun phrase containing a noun phrase
e Arguments for now: 1) Helpful in disambiguation:

S S
/\ NP VP
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I PRP
PRP | VBZ NP
| He l /\
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Lecture 1, Slide 8 d spoon 3/1/18 meat



Is recursion useful?

2) Helpful for some tasks to refer to specific phrases:

* John and Jane went to a big festival. They enjoyed the trip
and the music there.

* “they”: John and Jane
* “the trip”: went to a big festival
* “there”: big festival

3) Works better for some tasks to use grammatical tree structure
* |t's a powerful prior for language structure

Lecture 1, Slide 9 3/1/18



Building on Word Vector Space Models
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How can we represent the meaning of longer phrases?

10

By mapping them into the same vector space!
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How should we map phrases into a vector space?

Use principle of compositionality

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and
(2) the rules that combine them.

0.4 . 7
0.3 .

country  of

x the country of my birth
x the place where | was born

xFrance
xMonday
xTuesday
1 T T T T T ] T : i )
1 2 3 4 5 6 7 8 9 10 X

Models in this section

can jointly learn parse
trees and compositional
vector representations
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Constituency Sentence Parsing: What we want

LG 0 B[ [

12 The cat sat the mat3/1/18



Learn Structure and Representation
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Recursive vs. recurrent neural networks
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Recursive vs. recurrent neural networks

1
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e Recursive neural nets
require a tree structure

the country  of
e Recurrent neural nets 315_>;_>2-;’__>‘3‘Z—>§g
cannot capture phrases 1\ ) 'T“ 'T‘ 'T‘ 1'
without prefix context (0.4] 5 1] (5] m 53]
and often capture too much (°3 >3 L7 ) 3C
the country  of my birth

of last words in final vector
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Recursive Neural Networks for Structure Prediction

Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.

2. Score of how plausible the new node would be.
= ) )
3 3
3
Neural [3 ]
Network /\
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1 3

g
> 3 n the mat.
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Recursive Neural Network Definition

score = U'p

Neural

Network = | p = tanh(W[?]+ b),
2

Same W parameters at all nodes
of the tree
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Parsing a sentence with an RNN
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Parsing a sentence
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Parsing a sentence

20

NEI L
Network

the

g

mat.

3/1/18



Parsing a sentence
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Max-Margin Framework - Details

e The score of a tree is computed by
the sum of the parsing decision
scores at each node:

S(l‘,y) — Z Sn

nenodes(y)

* Xxissentence; yis parse tree

22

3/1/18



Max-Margin Framework - Details

e Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J:ZS(xi,y,-) — Imax (S(Xi>Y)+A(Y>Yi>)
i yeA(x;)

* Theloss A(y,y;) penalizes all incorrect decisions

e Structure search for A(x) was greedy (join best nodes each time)
* Instead: Beam search with chart

23 3/1/18



Backpropagation Through Structure

Introduced by Goller & Kiichler (1996)

Principally the same as general backpropagation

0
ow )

s — ((W(l)>T5(l+1)) o f/(zW), Er = 6D ()T £ aw®

Three differences resulting from the recursion and tree structure:
1. Sum derivatives of W from all nodes (like RNN)
2. Split derivatives at each node (for tree)
3. Add error messages from parent + node itself
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BTS: 1) Sum derivatives of all nodes

You can actually assume it’s a different W at each node

Intuition via example:

0
i (W (W)
0 0
= v ( (W) SV + W rva)
= [f(W({f(Wz))(f(Wz)+ W f (Wz)x)
If we take separate derivatives of each occurrence, we get same:

T (Wa( (W1) + o= F(Walf(Wia)

Wiz)) (f(Whiz)) + ff(Wa(f(Wiz)) (Wa f'(Wyiz)z)
Wiz)) (f(Wiz) + Wa f' (Wiz)z)
= ffW(f(Wx)) (f(Wz)+ W f' (Wz)x)
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BTS: 2) Split derivatives at each node

During forward prop, the parent is computed using 2 children

)
4o 1y, o

Hence, the errors need to be computed wrt each of them:
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BTS: 3) Add error messages

e At each node:
* What came up (fprop) must come down (bprop)

* Total error messages = error messages from parent + error
message from own score

Lecture 1, Slide 27 3/1/18



BTS Python Code: forwardProp

def forwardProp(self,node):
# Recursion

# This node's hidden activation

node.h = np.dot(self.W,np.hstack([node.left.h, node.right.h])) + self.b
# Relu

node.h[node.h<0] = 0

# Softmax
node.probs = np.dot(self.Ws,node.h) + self.bs
node.probs -= np.max(node.probs)

node.probs = np.exp(node.probs)
node.probs = node.probs/np.sum(node.probs)

Lecture 1, Slide 28 3/1/18



BTS Python Code: backProp

def backProp(self,node,error=None):
# Softmax grad
deltas = node.probs

deltas[node.label] -= 1.0
self.dWs += np.outer(deltas,node.h)

self.dbs += deltas 5(0 — ((W(l)>T5(l‘|‘1)) o f/(Z(l)),

deltas = np.dot(self.Ws.T,deltas)

# Add deltas from above
if error is not None: é) (l 1) (l) - (l)
deltas += error — Fn =) + a + AW
ow (@™)

# £'(z) now:

deltas *= (node.h != 0)

# Update word vectors if leaf node:
if node.isLeaf:
self.dL[node.word] += deltas
return

# Recursively backprop

if not node.isLeaf:
self.dW += np.outer(deltas,np.hstack([node.left.h, node.right.h]))
self.db += deltas
# Error signal to children
deltas = np.dot(self.W.T, deltas)
self.backProp(node.left, deltas[:self.hiddenDim])
self.backProp(node.right, deltas[self.hiddenDim:])

Lecture 1, Slide 29 3/1/18



Discussion: Simple RNN

Decent results with single matrix TreeRNN

Single weight matrix TreeRNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

There is no real interaction between the input words

The composition function is the same w0
for all syntactic categories, punctuation, etc. j

Lecture 1, Slide 30 3/1/18



Version 2: Syntactically-Untied RNN

e A symbolic Context-Free Grammar (CFG) backbone is
adequate for basic syntactic structure

e We use the discrete syntactic categories of the
children to choose the composition matrix

e A TreeRNN can do better with different composition
matrix for different syntactic environments

 The result gives us a better semantics

Standard Recursive Neural Network

Syntactically Untied Recursive Neural Network
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Compositional Vector Grammars

 Problem: Speed. Every candidate score in beam
search needs a matrix-vector product.

e Solution: Compute score only for a subset of trees
coming from a simpler, faster model (PCFG)

* Prunes very unlikely candidates for speed

* Provides coarse syntactic categories of the
children for each beam candidate

e Compositional Vector Grammar = PCFG + TreeRNN

Lecture 1, Slide 32 3/1/18



Related Work for parsing

e Resulting CVG Parser is related to previous work that extends PCFG
parsers

e Klein and Manning (2003a) : manual feature engineering

e Petrov et al. (2006) : learning algorithm that splits and merges
syntactic categories

e Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each
category with a lexical item

e Halland Klein (2012) combine several such annotation schemes in a
factored parser.

e (CVGs extend these ideas from discrete representations to richer
continuous ones

Lecture 1, Slide 33 3/1/18



Experiments
e Standard WSJ split, labeled F1

 Based on simple PCFG with fewer states
e Fast pruning of search space, few matrix-vector products
e 3.8% higher F1, 20% faster than Stanford factored parser

Paser ________________|Test,All Sentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5
Stanford Factored (Klein and Manning, 2003b) 86.6
Factored PCFGs (Hall and Klein, 2012) 89.4
Collins (Collins, 1997) 87.7
SSN (Henderson, 2004) 89.4
Berkeley Parser (Petrov and Klein, 2007) 90.1
CVG (RNN) (Socher et al., ACL 2013) 85.0
CVG (SU-RNN) (Socher et al., ACL 2013) 90.4
Charniak - Self Trained (McClosky et al. 2006) 91.0

Ch miflgli_dg%lj Trained-ReRanked (McClosky et al. 2006) 3/1/1892.1

Lecture



SU-RNN / CVG [Socher, Bauer, Manning, Ng 2013]
Learns soft notion of head words
Initialization: W) = 0.5[L,xnlnxnOnx1] + €

Lecture 1, Slide 35 3/1/18



SU-RNN / CVG [Socher, Bauer, Manning, Ng 2013]

25 n
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Analysis of resulting vector representations

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.

Lecture 1, Slide 37 3/1/18



Version 3:
Compositionality Through Recursive Matrix-Vector Spaces

Before: D = tanh(W[21]+ b)
2

One way to make the composition function more powerful was by
untying the weights W

But what if words act mostly as an operator, e.g. “very” in
very good

Proposal: A new composition function

38 3/1/18



Compositionality Through Recursive Matrix-Vector
Recursive Neural Networks

p = tanh(W[zi]+ b) p = tanh(W [Ezcl] + b)

1C,

Recursive Matrix-Vector Model

I S - vector
f(Ba, Ab)=(e® - ,
ool matrix

very good movie

(a,A) (b,B) (c,C)

@®|ee0 CIDIFY CI AT
(ON@) (ON@) (ON@)
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Matrix-vector RNNs
[Socher, Huval, Bhat, Manning, & Ng, 2012]
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Predicting Sentiment Distributions

Good example for non-linearity in language

fairly annoying fairly awesome fairly sad
05 051 05
——MV-RNN oal ——MV-RNN oal —o— MV-RNN
- -+-RNN ' -+--RNN
0.3+ 03r
0.2r 02+
0.1 ’—_'—'/M 0l1‘i-—-=‘=-=.-;_-*;t ettt
0! : : : ‘ : : ‘ : - 0 : : : : : : ‘ : !
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
not annoying not awesome not sad
051 05
——MV-RNN 0al ——MV-RNN oa —o—MV-RNN
~+-RNN ' ~+-RNN ' -+~ RNN
031 03 —=—Ground Truth
0.2f PO
S . o e
. \-;---; ;‘. 010__.__;-___;“__;-___;____1_,_5_ o ©
. L . . i alntet - . . L . . L . . :
4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
unbelievably annoying unbelievably awesome unbelievably sad
05 051 05
oal ——MV-RNN oal ——MV-RNN » o4 —— MV-RNN
' -+~ RNN ' -+~ RNN ' -+=RNN
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Classification of Semantic Relationships

e Can an MV-RNN learn how a large syntactic context
conveys a semantic relationship?

o My [apartment],, has a pretty large [kitchen] .,
- component-whole relationship (e2,e1)

e Build a single compositional semantics for the minimal
constituent including both terms

~
Classifier: Message-Topic \

- -
P Ce,
- -
- -

the [movie] showed [wars]

Lecture 1, Slide 42 3/1/18




Classification of Semantic Relationships

Classifier [Features | F1_

SVM POS, stemming, syntactic patterns 60.1

MaxEnt POS, WordNet, morphological features, noun 77.6
compound system, thesauri, Google n-grams

SVM POS, WordNet, prefixes, morphological 82.2
features, dependency parse features, Levin
classes, PropBank, FrameNet, NomLex-Plus,
Google n-grams, paraphrases, TextRunner

RNN — 74.8
MV-RNN - 79.1

MV-RNN POS, WordNet, NER 82.4

Lecture 1, Slide 43 3/1/18



Scene Parsing

Similar principle of compositionality.

e The meaning of a scene image is
also a function of smaller regions,

how they combine as parts to form
larger objects,

e and how the objects interact.

44



Algorithm for Parsing Images

45

Same Recursive Neural Network as for natural language parsing!

(Socher et al. ICML 2011)

Parsing Natural Scene Images

Grass

XXX XXX)

&

[COXXXXYX)

People Building

XXX XXX

Tree

XXX XX X))

Semantic

Representations
Features

Segments
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Multi-class segmentation

B sky -tree -road .grass .water .bldg .mntn I fg obj.

Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Recursive Neural Network 78.1

26 Stanford Background Dataset (Gould et al. 2009) 3/1/18



Next lecture

e Model overview, comparison, extensions, combinations, etc
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