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Lecture	Plan

1. Motivation:	Compositionality	and	Recursion
2. Structure	prediction	with	simple	Tree	RNN:	Parsing
3. Backpropagation	through	Structure
4. More	complex	units

Reminders/comments:	
Learn	up	on	GPUs,	Azure,	Docker
Ass	4:	Get	something	working,	using	a	GPU	for	milestone
Final	project	discussions	– come	meet	with	us!	
OH	today	after	class.	You	have	to	come	to	every	OH.	No	
additional	feedback	beyond	OH.	Nothing	on	gradescope.
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1.	The	spectrum	of	language	in	CS

2 3/1/18



Semantic	interpretation	of	language	–
Not	just	word	vectors

How	can	we	know	when	larger	units	are	similar	in	
meaning?

• The	snowboarder is	leaping	over	a	mogul

• A	person	on	a	snowboard	jumps	into	the	air

People	interpret	the	meaning	of	larger	text	units	–
entities,	descriptive	terms,	facts,	arguments,	stories	– by	
semantic	composition of	smaller	elements
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Compositionality





Language understanding –
& Artificial Intelligence – requires 
being able to understand bigger 

things from knowing about smaller 
parts
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Are	languages	recursive?

• Cognitively	somewhat	debatable
• But:	recursion	is	natural	for	describing	language
• [The	man	from	[the	company	that	you	spoke	with	about	[the	

project]	yesterday]]
• noun	phrase	containing	a	noun	phrase	containing	a	noun	phrase
• Arguments	for	now:	1)	Helpful	in	disambiguation:
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Is	recursion	useful?

2)	Helpful	for	some	tasks	to	refer	to	specific	phrases:
• John	and	Jane	went	to	a	big	festival.	They	enjoyed	the	trip	
and	the	music	there.

• “they”:	John	and	Jane
• “the	trip”:	went	to	a	big	festival
• “there”:	big	festival

3)	Works	better	for	some	tasks	to	use	grammatical	tree	structure
• It’s	a	powerful	prior	for	language	structure
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Building	on	Word	Vector	Space	Models
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How	should	we	map	phrases	into	a	vector	space?
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0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

Use	principle	of	compositionality
The	meaning	(vector)	of	a	sentence	
is		determined	by	
(1) the	meanings	of	its	words	and
(2) the	rules	that	combine	them.

Models	in	this	section	
can	jointly	learn	parse	
trees	and	compositional	
vector	representations
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Constituency	Sentence	Parsing:	What	we	want
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Learn	Structure	and	Representation
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Recursive	vs.	recurrent	neural	networks
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Recursive	vs.	recurrent	neural	networks
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• Recursive	neural	nets
require	a	tree	structure

• Recurrent	neural	nets
cannot	capture	phrases
without	prefix	context
and	often	capture	too	much
of	last	words	in	final	vector
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Recursive	Neural	Networks	for	Structure	Prediction

on															the															mat.
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Inputs:	two	candidate	children’s	representations
Outputs:
1. The	semantic	representation	if	the	two	nodes	are	merged.
2. Score	of	how	plausible	the	new	node	would	be.
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Recursive	Neural	Network	Definition

score		=		UTp

p =		tanh(W +	b),

SameW parameters	at	all	nodes	
of	the	tree
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Parsing	a	sentence	with	an	RNN
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Parsing	a	sentence
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Parsing	a	sentence
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Parsing	a	sentence
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Max-Margin	Framework	- Details

• The	score	of	a	tree	is	computed	by	
the	sum	of	the	parsing	decision
scores	at	each	node:

• x is	sentence;	y is	parse	tree

8
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3
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RNN

8
31.3
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Max-Margin	Framework	- Details

• Similar	to	max-margin	parsing	(Taskar et	al.	2004),	a	supervised	
max-margin	objective

• The	loss																penalizes	all	incorrect	decisions

• Structure	search	for	A(x)	was	greedy	(join	best	nodes	each	time)
• Instead:	Beam	search	with	chart
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Backpropagation	Through	Structure

Introduced	by	Goller &	Küchler (1996)	

Principally	the	same	as	general	backpropagation

Three	differences	resulting	from	the	recursion	and	tree	structure:
1. Sum	derivatives	of	W from	all	nodes	(like	RNN)
2. Split	derivatives	at	each	node	(for	tree)
3. Add	error	messages	from	parent	+	node	itself

24

The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�
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where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.
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BTS:	1)	Sum	derivatives	of	all	nodes

You	can	actually	assume	it’s	a	different	W at	each	node
Intuition	via	example:

If	we	take	separate	derivatives	of	each	occurrence,	we	get	same:
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BTS:	2)	Split	derivatives	at	each	node

During	forward	prop,	the	parent	is	computed	using	2	children

Hence,	the	errors	need	to	be	computed	wrt each	of	them:

where	each	child’s	error	is	n-dimensional
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BTS:	3)	Add	error	messages

• At	each	node:	
• What	came	up	(fprop)	must	come	down	(bprop)
• Total	error	messages		=	error	messages	from	parent	+	error	
message	from	own	score

3/1/18Lecture	1,	Slide	27
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BTS	Python	Code:	forwardProp
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BTS	Python	Code:	backProp
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):
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In summary, the backprop procedure consists of four steps:

1. Apply an input x
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and forward propagate it through the network to get the hidden and output
activations using eq. 18.
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3. Backpropagate the �’s to obtain a �
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4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.
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Discussion:	Simple	RNN
• Decent	results	with	single	matrix	TreeRNN

• Single	weight	matrix	TreeRNN could	capture	some	
phenomena	but	not	adequate	for	more	complex,	
higher	order	composition	and	parsing	long	sentences

• There	is	no	real	interaction	between	the	input	words

• The	composition	function	is	the	same	
for	all	syntactic	categories,	punctuation,	etc. W

c1 c2

p
Wscore s

3/1/18Lecture	1,	Slide	30



Version	2:	Syntactically-Untied	RNN

• A	symbolic	Context-Free	Grammar	(CFG)	backbone	is	
adequate	for	basic	syntactic	structure

• We	use	the	discrete	syntactic	categories	of	the	
children	to	choose	the	composition	matrix

• A	TreeRNN can	do	better	with	different	composition	
matrix	for	different	syntactic	environments

• The	result	gives	us	a	better	semantics
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Compositional	Vector	Grammars

• Problem:	Speed.	Every	candidate	score	in	beam	
search	needs	a	matrix-vector	product.

• Solution:	Compute	score	only	for	a	subset	of	trees	
coming	from	a	simpler,	faster	model	(PCFG)
• Prunes	very	unlikely	candidates	for	speed
• Provides	coarse	syntactic	categories	of	the	
children	for	each	beam	candidate

• Compositional	Vector	Grammar	=	PCFG	+	TreeRNN
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Related	Work	for	parsing

• Resulting	CVG	Parser	is	related	to	previous	work	that	extends	PCFG	
parsers

• Klein	and	Manning	(2003a)	:	manual	feature	engineering
• Petrov et	al.	(2006)	:	learning	algorithm	that	splits	and	merges	

syntactic	categories	
• Lexicalized	parsers	(Collins,	2003;	Charniak,	2000):	describe	each	

category	with	a	lexical	item
• Hall	and	Klein	(2012)	combine	several	such	annotation	schemes	in	a	

factored	parser.	
• CVGs	extend	these	ideas	from	discrete	representations	to	richer	

continuous	ones
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Experiments
• Standard	WSJ	split,	labeled	F1
• Based	on	simple	PCFG	with	fewer	states
• Fast	pruning	of	search	space,	few	matrix-vector	products
• 3.8%	higher	F1,	20%	faster	than	Stanford	factored	parser

Parser Test, All	Sentences
Stanford	PCFG, (Klein	and	Manning,	2003a) 85.5
Stanford Factored	(Klein	and	Manning,	2003b) 86.6

Factored	PCFGs	(Hall and	Klein,	2012) 89.4
Collins	(Collins, 1997) 87.7
SSN	(Henderson, 2004) 89.4
Berkeley Parser	(Petrov and	Klein,	2007) 90.1
CVG	(RNN)	(Socher	et	al., ACL	2013) 85.0
CVG	(SU-RNN)	(Socher	et	al., ACL	2013) 90.4
Charniak - Self	Trained (McClosky et	al.	2006) 91.0
Charniak - Self	Trained-ReRanked (McClosky et	al.	2006) 92.13/1/18Lecture	1,	Slide	34



SU-RNN	/	CVG	[Socher,	Bauer,	Manning,	Ng	2013]

Learns	soft	notion	of	head	words
Initialization:	

NP-CC

NP-PP PP-NP

PRP$-NP
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SU-RNN	/	CVG	[Socher,	Bauer,	Manning,	Ng	2013]

ADJP-NP

ADVP-ADJP

JJ-NP

DT-NP
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Analysis	of	resulting	vector	representations

All	the	figures	are	adjusted	for	seasonal	variations
1.	All	the	numbers	are	adjusted	for	seasonal	fluctuations
2.	All	the	figures	are	adjusted	to	remove	usual	seasonal	patterns

Knight-Ridder	wouldn’t	comment	on	the	offer
1.	Harsco	declined	to	say	what	country	placed	the	order
2.	Coastal	wouldn’t	disclose	the	terms

Sales	grew	almost	7%	to	$UNK	m.	from	$UNK	m.
1.	Sales	rose	more	than	7%	to	$94.9	m.	from	$88.3	m.
2.	Sales	surged	40%	to	UNK	b.	yen	from	UNK	b.
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Version	3:
Compositionality	Through	Recursive	Matrix-Vector	Spaces

One	way	to	make	the	composition	function	more	powerful	was	by	
untying	the	weights	W

But	what	if	words	act	mostly	as	an	operator,	e.g.	“very”	in
very	good

Proposal:	A	new	composition	function

p		=		tanh(W							+	b)c1
c2

Before:
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Compositionality	Through	Recursive	Matrix-Vector	
Recursive	Neural	Networks

p		=		tanh(W							+	b)c1
c2

p		=		tanh(W												+	b)C2c1
C1c2
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Matrix-vector	RNNs
[Socher,	Huval,	Bhat,	Manning,	&	Ng,	2012]

p	=

	A													B	

=P
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Predicting	Sentiment	Distributions
Good	example	for	non-linearity	in	language
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Classification	of	Semantic	Relationships

• Can	an	MV-RNN	learn	how	a	large	syntactic	context	
conveys	a	semantic	relationship?

• My	[apartment]e1 has	a	pretty	large	[kitchen] e2
à component-whole	relationship	(e2,e1)

• Build	a	single	compositional	semantics	for	the	minimal	
constituent	including	both	terms
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Classification	of	Semantic	Relationships

Classifier Features F1
SVM POS,	stemming,	syntactic	patterns 60.1
MaxEnt POS,	WordNet,	morphological	features,	noun	

compound	system,	thesauri,	Google	n-grams
77.6

SVM POS,	WordNet,	prefixes,	morphological	
features,	dependency	parse	features,	Levin	
classes,	PropBank,	FrameNet,	NomLex-Plus,	
Google	n-grams,	paraphrases,	TextRunner

82.2

RNN	 – 74.8
MV-RNN – 79.1
MV-RNN POS,	WordNet,	NER 82.4
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Scene	Parsing

• The	meaning	of	a	scene	image	is	
also	a	function	of	smaller	regions,	

• how	they	combine	as	parts	to	form	
larger	objects,

• and	how	the	objects	interact.

Similar	principle	of	compositionality.
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Algorithm	for	Parsing	Images

Same	Recursive	Neural	Network	as	for	natural	language	parsing!	
(Socher	et	al.	ICML	2011)

Features

Grass Tree

Segments

Semantic		
Representations

People Building

Parsing	Natural	Scene	ImagesParsing	Natural	Scene	Images
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Multi-class	segmentation

Method Accuracy

Pixel	CRF (Gould	et	al.,	ICCV	2009) 74.3

Classifier on	superpixel features 75.9

Region-based	energy (Gould	et	al.,	ICCV	2009) 76.4

Local	labelling (Tighe &	Lazebnik,	ECCV	2010) 76.9

Superpixel MRF	(Tighe &	Lazebnik, ECCV	2010) 77.5

Simultaneous	MRF	(Tighe &	Lazebnik,	ECCV	2010) 77.5

Recursive	Neural	Network 78.1

Stanford	Background	Dataset	(Gould	et	al.	2009)46 3/1/18



Next	lecture

• Model	overview,	comparison,	extensions,	combinations,	etc
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