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Outline

e Last minute tips for projects

e Model overview and combinations

e Dynamic memory networks
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Last minute tips

Nothing works and everything is too slow = Panic

* Simplify model = Go back to basics: bag of vectors + nnet
e Make a smaller network and dataset for debugging

e Once no bugs: increase model size

e Make sure you can overfit to your dataset

e Plot your training and dev errors over training iterations
 Then regularize with L2 and Dropout

e Then do hyperparameter search

e Come to OH! (
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Model comparison

e Bag of Vectors: Surprisingly good baseline for simple text classification
problems. Especially if followed by a few relu layers!

e Window Model: Good for single word classification for problems that do not
need wide context, e.g. POS

e CNNs: good for classification, unclear how to incorporate phrase level
annotation (can only take a single label), need zero padding for shorter
phrases, hard to interpret, easy to parallelize on GPUs, can be very efficient
and versatile

e Recurrent Neural Networks: Cognitively plausible (reading from left to right,
keeping a state), not best for classification (n-gram), slower than CNNs, can
do sequence tagging and classification, very active research, amazing with
attention mechanisms

 TreeRNNs: Linguistically plausible, hard to parallelize, tree structures are
discrete and harder to optimize, need a parser

e Combinations and extensions!



But, there’s more

e Combine and extend creatively

e Rarely do we use the vanilla models as is
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TreelLSTMs

e LSTMs are great
e TreeRNNs can benefit from gates too = TreeRNNs + LSTMs

 |Improved Semantic Representations From Tree-Structured Long
Short-Term Memory Networks by Kai Sheng Tai, Richard
Socher, Christopher D. Manning
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TreelLSTMs

e Standard LSTM TreelLSTM
* Only has one child Has multiple child nodes:
It =0 (W(i)a:t + U(i)ht—l + b(i)) : i~zj = Z hi,

fi=o (W(f)xt L UDh, , + b(f)) , | 0 or
) (©) ) ZjIU(W iL'j-I—U h_7+b ),
otza(W xt+U\"hi_1+b ),

fir=o0 (W(f)a:j +UWDR, + b(f)) ,
u; = tanh (W(u)wt +U®Wh,_q + b(“)) :

¢t =it Oup + fr © cpq,
ht =0+ © tanh(ct), uj = tanh (W(u)$] - []('U')]TL‘7 + b(u)) :

0j =0 (W(O):L'j + U(O)ilj + b(o)) ,

;=i 0uj+ Y  [fir®ck
keC(j)

hj = 0; ® tanh(c;),
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RNNs are Slow & Combine with CNNs

e RNNSs are the most common basic building block for deepNLP
e |dea: Take the best and parallelizable parts of RNNs and CNNs

e (Quasi-Recurrent Neural Networks by
James Bradbury, Stephen Merity, Caiming Xiong & Richard

Socher



Quasi-Recurrent Neural Network

LSTM CNN QRNN
v v v v v v
Linear Convolution w Convolution F
LSTM/Linear Max-Pool | | fo-Pool — — — — — — >]
Linear Convolution # Convolution #
LSTM/Linear Max-Pool | | fo-Pool [~ — — — — — >]
v v v v

e Parallelism computation across time:

z; = tanh(Wlx;, 1 + Wix,) Z = tanh(W x X)
ft = U(W]lfxt—l + W?Xt) F = O'(Wf * X)
Oy — U(ngt—l + ngt). O = O(WO * X)7

 Element-wise gated recurrence for parallelism across

channels:
h,=fo0h, 1+ (1—-1£) Oz,



Q-RNNs for Language Modeling

Better

Faster

Model | Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M — 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6
Our models

LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3
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Q-RNNs for Sentiment Analysis

o (Often better and faster Mo

| Time / Epoch (s) Test Acc (%)

h BSVM-bi (Wang & Manning, 2012) - 91.2

21 tial BoW CNN (Joh & Zhang, 2014) — 92.3

than LSTMs B i ond MBSOk oty |

2-layer LSTM (Longpre et al., 2016) — 87.6

Residual 2-layer bi-LSTM (Longpre et al., 2016) — 90.1

Our models

Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9

Deeply connected 4-layer QRNN 150 914

D.C. 4-layer QRNN with k = 4 160 91.1
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* Review starts out positive
At 117: “not exactly a bad story”
At 158: “I recommend this movie to everyone, even if you’ve
never played the game”




Neural Architecture Search!

e Manual process of finding best units requires a lot of expertise

e What if we could use Al to find the right architecture for any
problem?

e Neural architecture search with reinforcement learning by Zoph
and Le, 2016



Neural Architecture Search

Sample architecture A
with probability p

[

The controller (RNN)

(

'

Trains a child network
with architecture
A to get accuracy R

J

Compute gradient of p and
scale it by R to update
the controller




Example: CNN Controller
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LSTM Cell vs NAS Cell

elem_mult

elem mult identity

add
— sigmoid ( tanh
sigmoid( add
()identity ‘
Jsi i : . tanh : .
oid sigmoid S
add add add

elem_m '\\\‘

elem_mult

tanh
tanh

add

elem_mult
elem_mul

elem_mult




Nice Perplexity Reduction for Language Modeling

Model | Parameters Test Perplexity
Mikolov & Zweig (2012) - KN-5 2M* 141.2
Mikolov & Zweig (2012) - KNS5 + cache 2M* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA ™ 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net 5M? 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 79.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M 78.6
Gal (2015) - Variational LSTM (large, untied) 66M 75.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4
Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 5IM 73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 2IM 70.9
Inan et al. (2016) - VD-LSTM + REAL (large) 51IM 68.5
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0
Neural Architecture Search with base 8 32M 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64.0
Neural Architecture Search with base 8 and shared embeddings 54M 62.4




More complex tasks need more complex architectures

e So far, we looked at basic sequence models and seq2seq models

e Asyou know from the default final project, some tasks require
more complex memory components

e One of the first ones that was shown to work on both synthetic
problems and real NLP tasks:

e Dynamic Memory Networks by
Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit lyyer, James
Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus,
Richard Socher
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High level idea for harder questions

* Imagine having to read an
article, memorize it, then get

asked various questions 2>
Hard!

e You can't store everything in
working memory

e Optimal: give you the input
data, give you the question,
allow as many glances as
possible

Mary moved to the bathroom.
John went to the hallway.
Where is Mary? bathroom
Daniel went back to the hallway.
Sandra moved to the garden.
Where is Daniel? hallway
John moved to the office.
Sandra journeyed to the bathroom.
Where is Daniel? hallway
Mary moved to the hallway.
Daniel travelled to the office.
Where is Daniel? office
John went back to the garden.
John moved to the bedroom.
Where is Sandra? bathroom
Sandra travelled to the office.
Sandra went to the bathroom.
Where is Sandra? bathroom




Dynamic Memory Network
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Standard GRU. The last hidden state of each sentence is accessible.



Further Improvement: BiGRU

+——> <+—> +——>
Facts f1 f2 f3
GRU » GRU » GRU

Input fusion
layer GRU |« GRU |<¢ GRU




The Modules: Question

dt — GRU(Ut, Qt—l)f

I
Question Module ¢




The Modules: Episodic Memory

hi = giGRU(si, hi—y) + (1 — i )hi—y

Last hidden state: mt



The Modules: Episodic Memory

e (Gates are activated if sentence relevant to the question or
memory

t
Zj

=[sioq;siom* s —ql; s —m'H]
Zt=W® tanh (szz@ + b<1>) + b

'
e When gf: ;::cp(Zz-) :
summ Zk:ﬁ exp(Zk)




The Modules: Episodic Memory

e |If summary is insufficient to answer the question, repeat
sequence over input

Episodic Memory ,
€
Module 0.0




The Modules: Answer
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Related work

e Sequence to Sequence (Sutskever et al. 2014)

e Neural Turing Machines (Graves et al. 2014)

e Teaching Machines to Read and Comprehend (Hermann et al. 2015)
e Learning to Transduce with Unbounded Memory (Grefenstette 2015)
e Structured Memory for Neural Turing Machines (Wei Zhang 2015)

e Memory Networks (Weston et al. 2015)

e Endto end memory networks (Sukhbaatar et al. 2015)
9



Comparison to MemNets

Similarities:

e MemNets and DMNs have input, scoring, attention and response
mechanisms

Differences:

e For input representations MemNets use bag of word, nonlinear or
linear embeddings that explicitly encode position

e MemNets iteratively run functions for attention and response

e DMNs show that neural sequence models can be used for
input representation, attention and response mechanisms
— naturally captures position and temporality

e Enables broader range of applications



babl 1k, with gate supervision

Task MemNN DMN | Task MemNN DMN
1: Single Supporting Fact 100 100 | 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 | 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 | 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 | 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 | 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 994
7: Counting 85 96.9 | 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 | 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 | 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 | 20: Agent’s Motivations 100 100
Mean Accuracy (%) 93.3 93.6




Experiments: Sentiment Analysis

Stanford Sentiment Treebank Task Binary Fine-grained
. MV-RNN 82.9 44.4
Test accuracies: RNTN 85 .4 45 7
e MV-RNN and RNTN: DCNN 86.8 48.5
Socher et al. (2013) PVec 87.8 43.7
e DCNN: CNN-MC 88.1 47.4
Kalchbrenner et al. (2014) BE-T;TM gg:g g?:g

e PVec: Le & Mikolov. (2014)

DMN 88.6 52.1

e CNN-MC: Kim (2014)

e DRNN: Irsoy & Cardie (2015)
e CT-LSTM: Tai et al. (2015)



Analysis of Number of Episodes

e How many attention + memory passes are
needed in the episodic memory?

Max  task 3 task 7 task 8 sentiment
passes three-facts count lists/sets (fine grain)
0 pass 0 48.8 33.6 50.0

1 pass 0 48.8 54.0 51.5

2 pass 16.7 49.1 55.6 52.1

3 pass 64.7 83.4 83.4 50.1

5 pass 95.2 96.9 96.5 N/A




Analysis of Attention for Sentiment

e Sharper attention when 2 passes are allowed.
e Examples that are wrong with just one pass

1-iter DMN (pred: negative, ans: positive)

1
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> & (,,6\\’(0 N
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2-iter DMN (pred: positive, ans: positive)
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Analysis of Attention for Sentiment

1-iter DMN (pred: very positive, ans: negative)
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Analysis of Attention for Sentiment

e Examples where full sentence context from first pass changes
attention to words more relevant for final prediction

1-iter DMN (pred: negative, ans: positive)




Analysis of Attention for Sentiment

e Examples where full sentence context from first pass changes
attention to words more relevant for final prediction

1-iter DMN (pred: positive, ans: negative)




Experiments: POS Tagging

e PTB WSJ, standard splits
e Episodic memory does not require multiple
passes, single pass enough

Model SVMTool Sogaard Suzukietal. Spoustovaetal. SCNN | DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 | 97.56




Modularization Allows for Different Inputs

Answer Answer

Episodic Memory | Kitchen Episodic Memory > .
Question Input Module Question

John moved to the Where is _
B, b What kind
John got the apple there. apple? of tree is
John moved to the ' in the
kitchen.
Sandra picked up the ba(:kg rou
milk there. nd?
John dropped the apple.
John moved to the
office.




Input Module for Images

Input Module
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Dynamic Memory Networks for Visual and Textual Question Answering,
Caiming Xiong, Stephen Merity, Richard Socher



Accuracy: Visual Question Answering

VQA test-dev and
test-standard:

Antol et al. (2015)

ACK Wu et al. (2015);
iBOWIMG - Zhou et al.
(2015);

DPPnet - Noh et al.
(2015); D-NMN - Andreas
et al. (2016);

SAN - Yang et al. (2015)

test-dev test-std
Method All  Y/N Other Num All
VQA
Image 28.1 64.0 3.8 04 -
Question 48.1 7577 27.1 36.7 -
Q+I 526 756 374 33.7 -
LSTM Q+I 53.7 789 364 352 54.1
ACK 55.77 79.2 40.1 36.1 56.0
iIBOWIMG 55.7 76.5 42.6 35.0 55.9
DPPnet 572 80.7 41.77 37.2 57.4
D-NMN 579 805 43.1 374 58.0
SAN 587 79.3 46.1 36.6 58.9
DMN+ 60.3 805 483 36.8 60.4



Attention Visualization

What is the main color on Answer: blue What type of trees are in Answer: pine
the bus ? the background ?

Answer: no

Hn pk flags Answer: 2
are there ?



Attention Visualization

Which man is dressed more
flamboyantly ?

Answer: right Who is on .both photos ? Answer: girl

.....

Wt is the boy holding?  Answer: surfboard

What time of day was this
picture taken ?

Answer: night



Attention Visualization

T i

What color ;i;é-

What is this sculpture
made out of ? the bananas ?

Swrts T Poaderdinmas

What is the pattern on the Answer: stripes Did the player hit
cat ' s fur on its tail ? the ball ?

Answer: yes



What is the girl holding ? What is the girl doing ? Is the girl wearing a hat ? What is the girl wearing ?

tennis racket playing tennis yes shorts

What is the color of the ground ? What color is the ball ? What color is her skirt ? What did the girl just hit ?

brown yellow white tennis ball



Summary

Basic blocks can be combined or learned with NAS

Memory is useful. DMN accurately solves variety of tasks
Next week: Most recent research and fun future outlook

O Episodic Memory

Episodic Memory
Answer Answer |
Attention Memory | [®| Kitchen Attention Memory Palm
Mechanism Update Mechanism Update
I t f 1

Question InDUt MOdUIe Question
John moved to the garden. Where is the What kind of
apple? tree is in the
John got the apple there. background?

John moved to the kitchen.
Sandra got the milk there.
John dropped the apple.

John moved to the office.




