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Announcements	

•  Assignment	1	due	Thursday,	11:59	
•  You	can	use	up	to	3	late	days	(making	it	due	Sunday	at	
midnight)	

	
•  Default	final	project	will	be	released	February	1st	

•  To	help	you	choose	which	project	opGon	you	want	to	do	

•  Final	project	proposal	due	February	8th		
•  See	website	for	details	and	inspiraGon	

2	



Overview	Today:	

•  From	one-layer	to	mulG	layer	neural	networks!	

•  Fully	vectorized	gradient	computaGon	
	
•  The	backpropagaGon	algorithm	

•  (Time	permiNng)	Class	project	Gps	
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Remember:	One-layer	Neural	Net	

x		=	[		xmuseums					xin								xParis											xare						xamazing	]	
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Two-layer	Neural	Net	

x		=	[		xmuseums					xin								xParis											xare						xamazing	]	
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Repeat	as	Needed!	

x		=	[		xmuseums					xin								xParis											xare						xamazing	]	
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Why	Have	Mul@ple	Layers?	

•  Hierarchical	representaGons	->	neural	net	can	
represent	complicated	features	

•  BeZer	results!	

#	Layers	 Machine	Transla@on	
Score	

2	 23.7	

4	 25.3	

8	 25.5	

From	Transformer	Network	(will	cover	in	a	
later	lecture)	
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Remember:	Stochas@c	Gradient	Descent	

•  Update	equaGon:	

	

𝛼	=	step	size	or	learning	rate	
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Remember:	Stochas@c		Gradient	Descent	

•  Update	equaGon:	

•  This	Lecture:	How	do	we	compute																						?	
•  By	hand	
•  Algorithmically	(the	backpropagaGon	algorithm)	

	

𝛼	=	step	size	or	learning	rate	
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Why	learn	all	these	details	about	gradients?	

•  Modern	deep	learning	frameworks	compute	gradients	for	you	
	
•  But	why	take	a	class	on	compilers	or	systems	when	they	are	

implemented	for	you?	
•  Understanding	what	is	going	on	under	the	hood	is	useful!	

	
•  BackpropagaGon	doesn’t	always	work	perfectly.		
•  Understanding	why	is	crucial	for	debugging	and	improving	

models	
•  Example	in	future	lecture:	exploding	and	vanishing	gradients	

10	



Quickly	Compu@ng	Gradients	by	Hand	

•  Review	of	mulGvariable	derivaGves		

•  Fully	vectorized	gradients	

•  Much	faster	and	more	useful	than	non-vectorized	gradients	

•  But	doing	a	non-vectorized	gradient	can	be	good	pracGce,	
see	slides	in	last	week’s	lecture	for	an	example	

•  Lecture	notes	cover	this	material	in	more	detail	
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Gradients	

•  Given	a	funcGon	with	1	output	and	n	inputs	

	

•  Its	gradient	is	a	vector	of	parGal	derivaGves		
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Jacobian	Matrix:	Generaliza@on	of	the	Gradient	

•  Given	a	funcGon	with	m	outputs	and	n	inputs	

	

•  Its	Jacobian	is	an	m	x	n	matrix	of	parGal	derivaGves		
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Chain	Rule	For	Jacobians	

•  For	one-variable	funcGons:	mulGply	derivaGves	

	

	

•  For	mulGple	variables:	mulGply	Jacobians	
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Example	Jacobian:	Ac@va@on	Func@on	
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Example	Jacobian:	Ac@va@on	Func@on	

FuncGon	has	n	outputs	and	n	inputs	->	n	by	n	Jacobian	
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Example	Jacobian:	Ac@va@on	Func@on	
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Example	Jacobian:	Ac@va@on	Func@on	
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Example	Jacobian:	Ac@va@on	Func@on	
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Other	Jacobians	

•  Compute	these	at	home	for	pracGce!	

•  Check	your	answers	with	the	lecture	notes	
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Other	Jacobians	

•  Compute	these	at	home	for	pracGce!	
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Other	Jacobians	

•  Compute	these	at	home	for	pracGce!	

•  Check	your	answers	with	the	lecture	notes	
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Back	to	Neural	Nets!	

x		=	[		xmuseums					xin								xParis											xare						xamazing	]	
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Back	to	Neural	Nets!	

x		=	[		xmuseums					xin								xParis											xare						xamazing	]	

•  Let’s	find	
•  In	pracGce	we	care	about	the	gradient	of	the	loss,	but	

we	will	compute	the	gradient	of	the	score	for	simplicity	
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1.	Break	up	equa@ons	into	simple	pieces	
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2.	Apply	the	chain	rule	
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2.	Apply	the	chain	rule	
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2.	Apply	the	chain	rule	

29	



2.	Apply	the	chain	rule	
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3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	
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3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	
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3.	Write	out	the	Jacobians	
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3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	
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Re-using	Computa@on	

•  Suppose	we	now	want	to	compute	
•  Using	the	chain	rule	again:	
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Re-using	Computa@on	

•  Suppose	we	now	want	to	compute	
•  Using	the	chain	rule	again:	

		

	

The	same!	Let’s	avoid	duplicated	computaGon…	
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Re-using	Computa@on	

•  Suppose	we	now	want	to	compute	
•  Using	the	chain	rule	again:	

		

	38	



Deriva@ve	with	respect	to	Matrix	

•  What	does													look	like?										

•  1	output,	nm	inputs:	1	by	nm	Jacobian?	

•  Inconvenient	to	do		
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Deriva@ve	with	respect	to	Matrix	

•  What	does													look	like?										

•  1	output,	nm	inputs:	1	by	nm	Jacobian?	

•  Inconvenient	to	do		

	

•  Instead	follow	convenGon:	shape	of	the	gradient	is	
shape	of	parameters	

•  So														is	n	by	m:		
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Deriva@ve	with	respect	to	Matrix	

•  Remember		
•  				is	going	to	be	in	our	answer	

•  The	other	term	should	be							because	

•  It	turns	out			
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Why	the	Transposes?	

	

	

•  Hacky	answer:	this	makes	the	dimensions	work	
out	

•  Useful	trick	for	checking	your	work!	

•  Full	explanaGon	in	the	lecture	notes	
	42	



Why	the	Transposes?	

	

	

•  Hacky	answer:	this	makes	the	dimensions	work	
out	

•  Useful	trick	for	checking	your	work!	

•  Full	explanaGon	in	the	lecture	notes	
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What	shape	should	deriva@ves	be?	

•  																											is	a	row	vector		
•  But	convenGon	says	our	gradient	should	be	a	column	vector	

because						is	a	column	vector…	

•  Disagreement	between	Jacobian	form	(which	makes	
the	chain	rule	easy)	and	the	shape	convenGon	(which	
makes	implemenGng	SGD	easy)	

•  We	expect	answers	to	follow	the	shape	convenGon		

•  But	Jacobian	form	is	useful	for	compuGng	the	answers	
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What	shape	should	deriva@ves	be?	
•  Two	opGons:	

•  1.	Use	Jacobian	form	as	much	as	possible,	reshape	to	
follow	the	convenGon	at	the	end:	
•  What	we	just	did.	But	at	the	end	transpose							to	make	the	

derivaGve	a	column	vector,	resulGng	in	

•  2.	Always	follow	the	convenGon	

•  Look	at	dimensions	to	figure	out	when	to	transpose	and/or	
reorder	terms.		
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Notes	on	PA1	

•  Don’t	worry	if	you	used	some	other	method	for	
gradient	computaGon	(as	long	as	your	answer	is	right	
and	you	are	consistent!)	

•  This	lecture	we	computed	the	gradient	of	the	score,	
but	in	PA1	its	of	the	loss	

•  Don’t	forget	to	replace	f’	with	the	actual	derivaGve	

•  PA1	uses																					for	the	linear	transformaGon:	
gradients	are	different!	
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Backpropaga@on	

•  Compute	gradients	algorithmically	

•  ConverGng	what	we	just	did	by	hand	into	an	algorithm	

•  Used	by	deep	learning	frameworks	(TensorFlow,	
PyTorch,	etc.)	
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Computa@onal	Graphs	

�	
	

+	 �	

•  RepresenGng	our	neural	net	
equaGons	as	a	graph		

•  Source	nodes:	inputs	

•  Interior	nodes:	operaGons	
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Computa@onal	Graphs	

�	
	

+	 �	

•  RepresenGng	our	neural	net	
equaGons	as	a	graph		

•  Source	nodes:	inputs	

•  Interior	nodes:	operaGons	

•  Edges	pass	along	result	of	the	
operaGon	
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Computa@onal	Graphs	

�	
	

+	 �	

•  RepresenGng	our	neural	net	
equaGons	as	a	graph		

•  Source	nodes:	inputs	

•  Interior	nodes:	operaGons	

•  Edges	pass	along	result	of	the	
operaGon	

	

“Forward	PropagaGon”	
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Backpropaga@on	

�	
	

+	 �	

•  Go	backwards	along	edges	
•  Pass	along	gradients	
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Backpropaga@on:	Single	Node	

•  Node	receives	an	“upstream	gradient”	

•  Goal	is	to	pass	on	the	correct	
“downstream	gradient”	

Upstream	
gradient		

52	 Downstream		
gradient	



Backpropaga@on:	Single	Node	

Downstream		
gradient	

Upstream	
gradient		

•  Each	node	has	a	local	gradient	

•  The	gradient	of	its	output	with	
respect	to	its	input	

Local	
gradient	
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Backpropaga@on:	Single	Node	

Downstream		
gradient	

Upstream	
gradient		

•  Each	node	has	a	local	gradient	

•  The	gradient	of	its	output	with	
respect	to	its	input	

Local	
gradient	
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Chain	
rule!	



Backpropaga@on:	Single	Node	

Downstream		
gradient	

Upstream	
gradient		

•  Each	node	has	a	local	gradient	

•  The	gradient	of	its	output	with	
respect	to	its	input	

Local	
gradient	

•  [downstream	gradient]	=	[upstream	gradient]	x	[local	gradient]	
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Backpropaga@on:	Single	Node	

*	

•  What	about	nodes	with	mulGple	inputs?	
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Backpropaga@on:	Single	Node	

Downstream		
gradients	

Upstream	
gradient		

Local	
gradients	

*	

•  MulGple	inputs	->	mulGple	local	
gradients	
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An	Example	
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An	Example	

+	

*	
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Forward	prop	steps	



An	Example	

+	

*	
max	

60	

Forward	prop	steps	
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An	Example	
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Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	



An	Example	

+	

*	
max	

62	

Forward	prop	steps	
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An	Example	
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Forward	prop	steps	
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An	Example	

+	

*	
max	
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Forward	prop	steps	
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An	Example	

+	

*	
max	
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Forward	prop	steps	
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An	Example	

+	

*	
max	
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Forward	prop	steps	
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Gradients	add	at	branches	
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Gradients	add	at	branches	
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Node	Intui@ons	

+	

*	
max	
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Node	Intui@ons	

+	

*	
max	
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Node	Intui@ons	

+	

*	
max	
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Efficiency:	compute	all	gradients	at	once		

*	 +	 �	

•  Incorrect	way	of	doing	backprop:	
•  First	compute		
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Efficiency:	compute	all	gradients	at	once		

*	 +	 �	

•  Incorrect	way	of	doing	backprop:	
•  First	compute		

•  Then	independently	compute	

•  Duplicated	computaGon!	
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Efficiency:	compute	all	gradients	at	once		

*	 +	 �	

•  Correct	way:	
•  Compute	all	the	gradients	at	once	

•  Analogous	to	using						when	we	
computed	gradients	by	hand	
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Backprop	Implementa@ons	
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Implementa@on:	forward/backward	API	
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Implementa@on:	forward/backward	API	
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Alterna@ve	to	backprop:	Numeric	Gradient	

•  For	small	h,	

•  Easy	to	implement	

•  But	approximate	and	very	slow:	
•  Have	to	recompute	f	for	every	parameter	of	our	model		

•  Useful	for	checking	your	implementaGon		
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Summary	

•  BackpropagaGon:	recursively	apply	the	chain	rule	
along	computaGonal	graph	
•  [downstream	gradient]	=	[upstream	gradient]	x	[local	gradient]	

•  Forward	pass:	compute	results	of	operaGon	and	save	
intermediate	values	

•  Backward:	apply	chain	rule	to	compute	gradient	
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Project	Types	

1.	Apply	exisGng	neural	network	model	to	a	new	task	

2.	Implement	a	complex	neural	architecture(s)		

•  This	is	what	PA4	will	have	you	do!	

3.	Come	up	with	a	new	model/training	algorithm/etc.	
•  Get	1	or	2	working	first	

•  See	project	page	for	some	inspiraGon		
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Must-haves	(choose-your-own	final	project)	

•  10,000+	labeled	examples	by	milestone	

•  Feasible	task		

•  AutomaGc	evaluaGon	metric	

•  NLP	is	central		
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Details	ma_er!	

•  Split	your	data	into	train/dev/test:	only	look	at	test	for	
final	experiments	

•  Look	at	your	data,	collect	summary	staGsGcs	

•  Look	at	your	model’s	outputs,	do	error	analysis	

•  Tuning	hyperparameters	is	important	

•  Writeup	quality	is	important	
•  Look	at	last-year’s	prize	winners	for	examples	
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Project	Advice	

•  Implement	simplest	possible	model	first	(e.g.,	average	
word	vectors	and	apply	logisGc	regression)	and	
improve	it	
•  Having	a	baseline	system	is	crucial		

•  First	overfit	your	model	to	train	set	(get	really	good	
training	set	results)	
•  Then	regularize	it	so	it	does	well	on	the	dev	set	

•  Start	early!	
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