
Natural Language Processing
with Deep Learning

CS224N/Ling284

Lecture 5:
Backpropagation

Kevin Clark

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors

Announcements	

•  Assignment	1	due	Thursday,	11:59	
•  You	can	use	up	to	3	late	days	(making	it	due	Sunday	at	
midnight)	

	
•  Default	final	project	will	be	released	February	1st	

•  To	help	you	choose	which	project	opGon	you	want	to	do	

•  Final	project	proposal	due	February	8th		
•  See	website	for	details	and	inspiraGon	

2	

Overview	Today:	

•  From	one-layer	to	mulG	layer	neural	networks!	

•  Fully	vectorized	gradient	computaGon	
	
•  The	backpropagaGon	algorithm	

•  (Time	permiNng)	Class	project	Gps	

3	

Remember:	One-layer	Neural	Net	

x		=	[xmuseums					xin								xParis											xare						xamazing]	

4	

Two-layer	Neural	Net	

x		=	[xmuseums					xin								xParis											xare						xamazing]	

5	

Repeat	as	Needed!	

x		=	[xmuseums					xin								xParis											xare						xamazing]	

6	

Why	Have	Mul@ple	Layers?	

•  Hierarchical	representaGons	->	neural	net	can	
represent	complicated	features	

•  BeZer	results!	

#	Layers	 Machine	Transla@on	
Score	

2	 23.7	

4	 25.3	

8	 25.5	

From	Transformer	Network	(will	cover	in	a	
later	lecture)	

7	

Remember:	Stochas@c	Gradient	Descent	

•  Update	equaGon:	

	

𝛼	=	step	size	or	learning	rate	

8	

Remember:	Stochas@c		Gradient	Descent	

•  Update	equaGon:	

•  This	Lecture:	How	do	we	compute																						?	
•  By	hand	
•  Algorithmically	(the	backpropagaGon	algorithm)	

	

𝛼	=	step	size	or	learning	rate	

9	

Why	learn	all	these	details	about	gradients?	

•  Modern	deep	learning	frameworks	compute	gradients	for	you	
	
•  But	why	take	a	class	on	compilers	or	systems	when	they	are	

implemented	for	you?	
•  Understanding	what	is	going	on	under	the	hood	is	useful!	

	
•  BackpropagaGon	doesn’t	always	work	perfectly.		
•  Understanding	why	is	crucial	for	debugging	and	improving	

models	
•  Example	in	future	lecture:	exploding	and	vanishing	gradients	

10	

Quickly	Compu@ng	Gradients	by	Hand	

•  Review	of	mulGvariable	derivaGves		

•  Fully	vectorized	gradients	

•  Much	faster	and	more	useful	than	non-vectorized	gradients	

•  But	doing	a	non-vectorized	gradient	can	be	good	pracGce,	
see	slides	in	last	week’s	lecture	for	an	example	

•  Lecture	notes	cover	this	material	in	more	detail	

11	

Gradients	

•  Given	a	funcGon	with	1	output	and	n	inputs	

	

•  Its	gradient	is	a	vector	of	parGal	derivaGves		

12	

Jacobian	Matrix:	Generaliza@on	of	the	Gradient	

•  Given	a	funcGon	with	m	outputs	and	n	inputs	

	

•  Its	Jacobian	is	an	m	x	n	matrix	of	parGal	derivaGves		

13	

Chain	Rule	For	Jacobians	

•  For	one-variable	funcGons:	mulGply	derivaGves	

	

	

•  For	mulGple	variables:	mulGply	Jacobians	

14	

Example	Jacobian:	Ac@va@on	Func@on	

15	

Example	Jacobian:	Ac@va@on	Func@on	

FuncGon	has	n	outputs	and	n	inputs	->	n	by	n	Jacobian	

16	

Example	Jacobian:	Ac@va@on	Func@on	

17	

Example	Jacobian:	Ac@va@on	Func@on	

18	

Example	Jacobian:	Ac@va@on	Func@on	

19	

Other	Jacobians	

•  Compute	these	at	home	for	pracGce!	

•  Check	your	answers	with	the	lecture	notes	

	

20	

Other	Jacobians	

•  Compute	these	at	home	for	pracGce!	

•  Check	your	answers	with	the	lecture	notes	

	

21	

Other	Jacobians	

•  Compute	these	at	home	for	pracGce!	

•  Check	your	answers	with	the	lecture	notes	

	

22	

Other	Jacobians	

•  Compute	these	at	home	for	pracGce!	

•  Check	your	answers	with	the	lecture	notes	

	

23	

Back	to	Neural	Nets!	

x		=	[xmuseums					xin								xParis											xare						xamazing]	
24	

Back	to	Neural	Nets!	

x		=	[xmuseums					xin								xParis											xare						xamazing]	

•  Let’s	find	
•  In	pracGce	we	care	about	the	gradient	of	the	loss,	but	

we	will	compute	the	gradient	of	the	score	for	simplicity	

	

25	

1.	Break	up	equa@ons	into	simple	pieces	

26	

2.	Apply	the	chain	rule	

27	

2.	Apply	the	chain	rule	

28	

2.	Apply	the	chain	rule	

29	

2.	Apply	the	chain	rule	

30	

3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	

31	

3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	

32	

3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	

33	

3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	

34	

3.	Write	out	the	Jacobians	

Useful	Jacobians	from	previous	slide	

35	

Re-using	Computa@on	

•  Suppose	we	now	want	to	compute	
•  Using	the	chain	rule	again:	

		

	

36	

Re-using	Computa@on	

•  Suppose	we	now	want	to	compute	
•  Using	the	chain	rule	again:	

		

	

The	same!	Let’s	avoid	duplicated	computaGon…	

37	

Re-using	Computa@on	

•  Suppose	we	now	want	to	compute	
•  Using	the	chain	rule	again:	

		

	38	

Deriva@ve	with	respect	to	Matrix	

•  What	does													look	like?										

•  1	output,	nm	inputs:	1	by	nm	Jacobian?	

•  Inconvenient	to	do		

	

39	

Deriva@ve	with	respect	to	Matrix	

•  What	does													look	like?										

•  1	output,	nm	inputs:	1	by	nm	Jacobian?	

•  Inconvenient	to	do		

	

•  Instead	follow	convenGon:	shape	of	the	gradient	is	
shape	of	parameters	

•  So														is	n	by	m:		

	

	40	

Deriva@ve	with	respect	to	Matrix	

•  Remember		
•  				is	going	to	be	in	our	answer	

•  The	other	term	should	be							because	

•  It	turns	out			

41	

Why	the	Transposes?	

	

	

•  Hacky	answer:	this	makes	the	dimensions	work	
out	

•  Useful	trick	for	checking	your	work!	

•  Full	explanaGon	in	the	lecture	notes	
	42	

Why	the	Transposes?	

	

	

•  Hacky	answer:	this	makes	the	dimensions	work	
out	

•  Useful	trick	for	checking	your	work!	

•  Full	explanaGon	in	the	lecture	notes	
	43	

What	shape	should	deriva@ves	be?	

•  																											is	a	row	vector		
•  But	convenGon	says	our	gradient	should	be	a	column	vector	

because						is	a	column	vector…	

•  Disagreement	between	Jacobian	form	(which	makes	
the	chain	rule	easy)	and	the	shape	convenGon	(which	
makes	implemenGng	SGD	easy)	

•  We	expect	answers	to	follow	the	shape	convenGon		

•  But	Jacobian	form	is	useful	for	compuGng	the	answers	

44	

What	shape	should	deriva@ves	be?	
•  Two	opGons:	

•  1.	Use	Jacobian	form	as	much	as	possible,	reshape	to	
follow	the	convenGon	at	the	end:	
•  What	we	just	did.	But	at	the	end	transpose							to	make	the	

derivaGve	a	column	vector,	resulGng	in	

•  2.	Always	follow	the	convenGon	

•  Look	at	dimensions	to	figure	out	when	to	transpose	and/or	
reorder	terms.		

45	

Notes	on	PA1	

•  Don’t	worry	if	you	used	some	other	method	for	
gradient	computaGon	(as	long	as	your	answer	is	right	
and	you	are	consistent!)	

•  This	lecture	we	computed	the	gradient	of	the	score,	
but	in	PA1	its	of	the	loss	

•  Don’t	forget	to	replace	f’	with	the	actual	derivaGve	

•  PA1	uses																					for	the	linear	transformaGon:	
gradients	are	different!	

46	

Backpropaga@on	

•  Compute	gradients	algorithmically	

•  ConverGng	what	we	just	did	by	hand	into	an	algorithm	

•  Used	by	deep	learning	frameworks	(TensorFlow,	
PyTorch,	etc.)	

47	

Computa@onal	Graphs	

�	
	

+	 �	

•  RepresenGng	our	neural	net	
equaGons	as	a	graph		

•  Source	nodes:	inputs	

•  Interior	nodes:	operaGons	

48	

Computa@onal	Graphs	

�	
	

+	 �	

•  RepresenGng	our	neural	net	
equaGons	as	a	graph		

•  Source	nodes:	inputs	

•  Interior	nodes:	operaGons	

•  Edges	pass	along	result	of	the	
operaGon	

49	

Computa@onal	Graphs	

�	
	

+	 �	

•  RepresenGng	our	neural	net	
equaGons	as	a	graph		

•  Source	nodes:	inputs	

•  Interior	nodes:	operaGons	

•  Edges	pass	along	result	of	the	
operaGon	

	

“Forward	PropagaGon”	
	

50	

Backpropaga@on	

�	
	

+	 �	

•  Go	backwards	along	edges	
•  Pass	along	gradients	

51	

Backpropaga@on:	Single	Node	

•  Node	receives	an	“upstream	gradient”	

•  Goal	is	to	pass	on	the	correct	
“downstream	gradient”	

Upstream	
gradient		

52	 Downstream		
gradient	

Backpropaga@on:	Single	Node	

Downstream		
gradient	

Upstream	
gradient		

•  Each	node	has	a	local	gradient	

•  The	gradient	of	its	output	with	
respect	to	its	input	

Local	
gradient	

53	

Backpropaga@on:	Single	Node	

Downstream		
gradient	

Upstream	
gradient		

•  Each	node	has	a	local	gradient	

•  The	gradient	of	its	output	with	
respect	to	its	input	

Local	
gradient	

54	

Chain	
rule!	

Backpropaga@on:	Single	Node	

Downstream		
gradient	

Upstream	
gradient		

•  Each	node	has	a	local	gradient	

•  The	gradient	of	its	output	with	
respect	to	its	input	

Local	
gradient	

•  [downstream	gradient]	=	[upstream	gradient]	x	[local	gradient]	

55	

Backpropaga@on:	Single	Node	

*	

•  What	about	nodes	with	mulGple	inputs?	

56	

Backpropaga@on:	Single	Node	

Downstream		
gradients	

Upstream	
gradient		

Local	
gradients	

*	

•  MulGple	inputs	->	mulGple	local	
gradients	

57	

An	Example	

58	

An	Example	

+	

*	
max	

59	

Forward	prop	steps	

An	Example	

+	

*	
max	

60	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

An	Example	

+	

*	
max	

61	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

An	Example	

+	

*	
max	

62	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

An	Example	

+	

*	
max	

63	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

An	Example	

+	

*	
max	

64	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

An	Example	

+	

*	
max	

65	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

upstream	*	local	=	downstream	

1	

1*3	=	3	

1*2	=	2	

An	Example	

+	

*	
max	

66	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

upstream	*	local	=	downstream	

1	

3	

2	

3*1	=	3	

3*0	=	0	

An	Example	

+	

*	
max	

67	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

upstream	*	local	=	downstream	

1	

3	

2	

3	

0	

2*1	=	2	

2*1	=	2	

An	Example	

+	

*	
max	

68	

Forward	prop	steps	

6	

3	

2	

1	

2	

2	

0	

Local	gradients	

1	

3	

2	

3	

0	

2	

2	

Gradients	add	at	branches	

69	

+	

Gradients	add	at	branches	

70	

+	

Node	Intui@ons	

+	

*	
max	

71	

6	

3	

2	

1	

2	

2	

0	

1	

2	
2	

2	

•  +	“distributes”	the	upstream	gradient	

Node	Intui@ons	

+	

*	
max	

72	

6	

3	

2	

1	

2	

2	

0	

1	

3	3	

0	

•  +	“distributes”	the	upstream	gradient	

•  max	“routes”	the	upstream	gradient	

Node	Intui@ons	

+	

*	
max	

73	

6	

3	

2	

1	

2	

2	

0	

1	

3	

2	

•  +	“distributes”	the	upstream	gradient	

•  max	“routes”	the	upstream	gradient	

•  *	“switches”	the	upstream	gradient	

Efficiency:	compute	all	gradients	at	once		

*	 +	 �	

•  Incorrect	way	of	doing	backprop:	
•  First	compute		

74	

Efficiency:	compute	all	gradients	at	once		

*	 +	 �	

•  Incorrect	way	of	doing	backprop:	
•  First	compute		

•  Then	independently	compute	

•  Duplicated	computaGon!	

75	

Efficiency:	compute	all	gradients	at	once		

*	 +	 �	

•  Correct	way:	
•  Compute	all	the	gradients	at	once	

•  Analogous	to	using						when	we	
computed	gradients	by	hand	

76	

Backprop	Implementa@ons	

77	

Implementa@on:	forward/backward	API	

78	

Implementa@on:	forward/backward	API	

79	

Alterna@ve	to	backprop:	Numeric	Gradient	

•  For	small	h,	

•  Easy	to	implement	

•  But	approximate	and	very	slow:	
•  Have	to	recompute	f	for	every	parameter	of	our	model		

•  Useful	for	checking	your	implementaGon		

80	

Summary	

•  BackpropagaGon:	recursively	apply	the	chain	rule	
along	computaGonal	graph	
•  [downstream	gradient]	=	[upstream	gradient]	x	[local	gradient]	

•  Forward	pass:	compute	results	of	operaGon	and	save	
intermediate	values	

•  Backward:	apply	chain	rule	to	compute	gradient	

	

81	

82	

Project	Types	

1.	Apply	exisGng	neural	network	model	to	a	new	task	

2.	Implement	a	complex	neural	architecture(s)		

•  This	is	what	PA4	will	have	you	do!	

3.	Come	up	with	a	new	model/training	algorithm/etc.	
•  Get	1	or	2	working	first	

•  See	project	page	for	some	inspiraGon		

83	

Must-haves	(choose-your-own	final	project)	

•  10,000+	labeled	examples	by	milestone	

•  Feasible	task		

•  AutomaGc	evaluaGon	metric	

•  NLP	is	central		

84	

Details	ma_er!	

•  Split	your	data	into	train/dev/test:	only	look	at	test	for	
final	experiments	

•  Look	at	your	data,	collect	summary	staGsGcs	

•  Look	at	your	model’s	outputs,	do	error	analysis	

•  Tuning	hyperparameters	is	important	

•  Writeup	quality	is	important	
•  Look	at	last-year’s	prize	winners	for	examples	

85	

Project	Advice	

•  Implement	simplest	possible	model	first	(e.g.,	average	
word	vectors	and	apply	logisGc	regression)	and	
improve	it	
•  Having	a	baseline	system	is	crucial		

•  First	overfit	your	model	to	train	set	(get	really	good	
training	set	results)	
•  Then	regularize	it	so	it	does	well	on	the	dev	set	

•  Start	early!	

	86	

