## Natural Language Processing with Deep Learning

# CS224N/Ling284



#### Lecture 5: Backpropagation **Kevin Clark**

#### Announcements

- Assignment 1 due Thursday, 11:59
  - You can use up to 3 late days (making it due Sunday at midnight)
- Default final project will be released February 1<sup>st</sup>
  - To help you choose which project option you want to do
- Final project proposal due February 8<sup>th</sup>
  - See website for details and inspiration

#### **Overview Today:**

- From one-layer to multi layer neural networks!
- Fully vectorized gradient computation
- The backpropagation algorithm
- (Time permitting) Class project tips

#### **Remember: One-layer Neural Net**

$$s = u^{T}h$$

$$h = f(Wx + b)$$

$$x \quad (input)$$

$$x = [x_{museums} \quad x_{in} \quad x_{Paris} \quad x_{are} \quad x_{amazing}]$$

## **Two-layer Neural Net**

$$s = u^{T}h_{2}$$

$$h_{2} = f(W_{2}h_{1} + b_{2})$$

$$h_{1} = f(W_{1}x + b_{1})$$

$$x \quad (input)$$

$$x = [x_{museums} \quad x_{in} \quad x_{Paris} \quad x_{are} \quad x_{amazing}]$$

#### **Repeat as Needed!**

$$s = u^{T}h_{3}$$

$$h_{3} = f(W_{3}h_{2} + b_{3})$$

$$h_{2} = f(W_{2}h_{1} + b_{2})$$

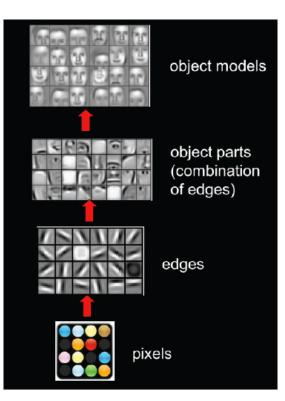
$$h_{1} = f(W_{1}x + b_{1})$$

$$x \quad (input)$$

$$x = [x_{museums} x_{in} x_{Paris} x_{are} x_{amazing}]$$

## Why Have Multiple Layers?

- Hierarchical representations -> neural net can represent complicated features
- Better results!



| # Layers | Machine Translation<br>Score |
|----------|------------------------------|
| 2        | 23.7                         |
| 4        | 25.3                         |
| 8        | 25.5                         |

From Transformer Network (will cover in a later lecture)

#### **Remember: Stochastic Gradient Descent**

• Update equation:

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

 $\alpha$  = step size or learning rate

## **Remember: Stochastic Gradient Descent**

• Update equation:

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

 $\alpha$  = step size or learning rate

- This Lecture: How do we compute  $abla_ heta J( heta)$  ?
  - By hand
  - Algorithmically (the backpropagation algorithm)

## Why learn all these details about gradients?

- Modern deep learning frameworks compute gradients for you
- But why take a class on compilers or systems when they are implemented for you?
  - Understanding what is going on under the hood is useful!
- Backpropagation doesn't always work perfectly.
  - Understanding why is crucial for debugging and improving models
  - Example in future lecture: exploding and vanishing gradients

## **Quickly Computing Gradients by Hand**

- Review of multivariable derivatives
- Fully vectorized gradients
  - Much faster and more useful than non-vectorized gradients
  - But doing a non-vectorized gradient can be good practice, see slides in last week's lecture for an example
  - Lecture notes cover this material in more detail

#### Gradients

• Given a function with 1 output and *n* inputs  $f(\boldsymbol{x}) = f(x_1, x_2, ..., x_n)$ 

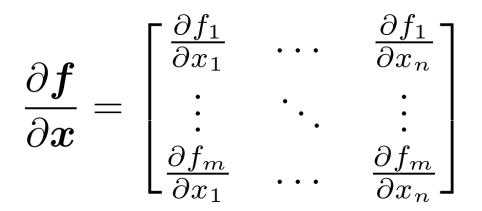
Its gradient is a vector of partial derivatives

$$\frac{\partial f}{\partial \boldsymbol{x}} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]$$

#### **Jacobian Matrix: Generalization of the Gradient**

• Given a function with *m* outputs and *n* inputs  $f(x) = [f_1(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n)]$ 

Its Jacobian is an *m* x *n* matrix of partial derivatives



$$\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)_{ij} = \frac{\partial f_i}{\partial x_j}$$

## **Chain Rule For Jacobians**

• For one-variable functions: multiply derivatives z = 3y $y = x^2$ 

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = (3)(2x) = 6x$$

• For multiple variables: multiply Jacobians

$$h = f(z)$$
$$z = Wx + b$$
$$\frac{\partial h}{\partial x} = \frac{\partial h}{\partial z} \frac{\partial z}{\partial x} = \dots$$

$$\boldsymbol{h} = f(\boldsymbol{z}), \text{ what is } \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}?$$
  
 $h_i = f(z_i)$ 

 $oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$ 

$$\boldsymbol{h} = f(\boldsymbol{z}), \text{ what is } \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}?$$
  
 $h_i = f(z_i)$ 

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

#### Function has *n* outputs and *n* inputs -> *n* by *n* Jacobian

 $\sim$  -

$$\boldsymbol{h} = f(\boldsymbol{z}), \text{ what is } \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}?$$
  
 $h_i = f(z_i)$ 

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

$$\left(\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}\right)_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)$$

definition of Jacobian

$$\boldsymbol{h} = f(\boldsymbol{z}), \text{ what is } \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}?$$
  
 $h_i = f(z_i)$ 

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

$$\begin{pmatrix} \frac{\partial \mathbf{h}}{\partial \mathbf{z}} \end{pmatrix}_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)$$
$$= \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{if otherwise} \end{cases}$$

definition of Jacobian

regular 1-variable derivative

$$\boldsymbol{h} = f(\boldsymbol{z}), \text{ what is } \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}?$$
  
 $h_i = f(z_i)$ 

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

$$\begin{pmatrix} \frac{\partial \mathbf{h}}{\partial \mathbf{z}} \end{pmatrix}_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)$$
$$= \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{if otherwise} \end{cases}$$

definition of Jacobian

regular 1-variable derivative

 $\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} = \begin{pmatrix} f'(z_1) & \boldsymbol{0} \\ & \ddots & \\ \boldsymbol{0} & f'(z_n) \end{pmatrix} = \operatorname{diag}(\boldsymbol{f}'(\boldsymbol{z}))$ 

 $rac{\partial}{\partial x}(Wx+b)=W$ 

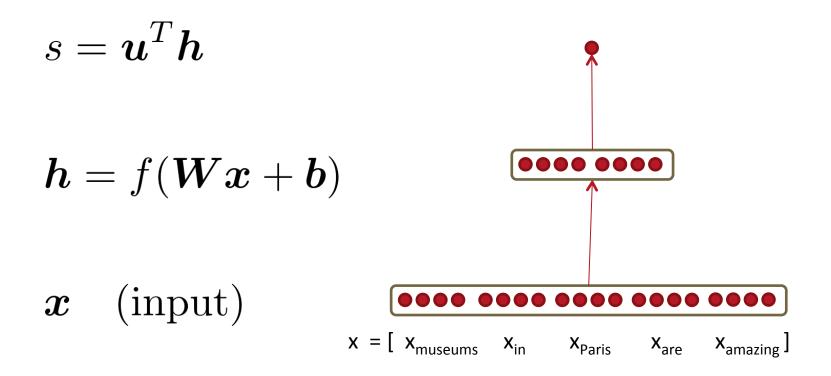
$$\frac{\partial}{\partial x} (Wx + b) = W$$
$$\frac{\partial}{\partial b} (Wx + b) = I \text{ (Identity matrix)}$$

$$\begin{aligned} \frac{\partial}{\partial x} (\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) &= \boldsymbol{W} \\ \frac{\partial}{\partial \boldsymbol{b}} (\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) &= \boldsymbol{I} \quad \text{(Identity matrix)} \\ \frac{\partial}{\partial \boldsymbol{u}} (\boldsymbol{u}^T \boldsymbol{h}) &= \boldsymbol{h}^T \end{aligned}$$

$$\frac{\partial}{\partial x} (Wx + b) = W$$
$$\frac{\partial}{\partial b} (Wx + b) = I \text{ (Identity matrix)}$$
$$\frac{\partial}{\partial u} (u^T h) = h^T$$

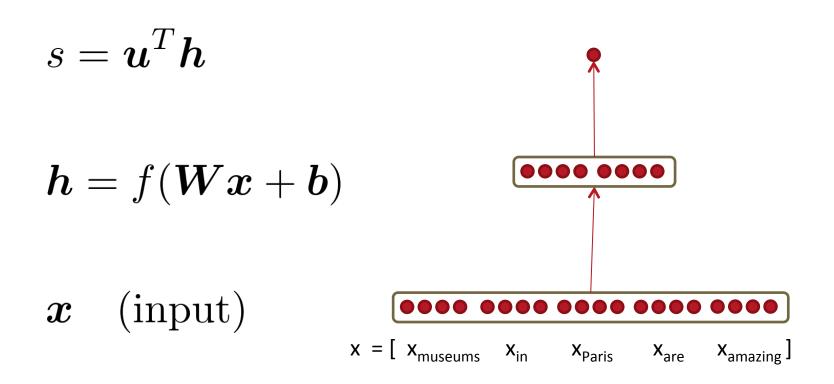
- Compute these at home for practice!
  - Check your answers with the lecture notes

#### **Back to Neural Nets!**



## **Back to Neural Nets!**

- Let's find  $\frac{\partial s}{\partial b}$ 
  - In practice we care about the gradient of the loss, but we will compute the gradient of the score for simplicity



#### **1. Break up equations into simple pieces**

$$s = u^T h$$
  
 $s = u^T h$   
 $s = u^T h$   
 $h = f(Wx + b)$   
 $z = Wx + b$   
 $x$  (input)  
 $x$  (input)

$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)

# $\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta &= eta & eta &$$

$$\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$

$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)

$$\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$

$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)

$$\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$

$$s = u^{T}h$$
  

$$h = f(z)$$
  

$$z = Wx + b$$
  

$$x \quad (input)$$
  

$$\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \quad \frac{\partial h}{\partial z} \quad \frac{\partial z}{\partial b}$$

Useful Jacobians from previous slide  $\frac{\partial}{\partial h} (\boldsymbol{u}^T \boldsymbol{h}) = \boldsymbol{u}^T$   $\frac{\partial}{\partial \boldsymbol{z}} (f(\boldsymbol{z})) = \text{diag}(f'(\boldsymbol{z}))$   $\frac{\partial}{\partial \boldsymbol{b}} (\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) = \boldsymbol{I}$ 

31

$$\begin{vmatrix} s = u^T h \\ h = f(z) \\ z = Wx + b \\ x \text{ (input)} \end{vmatrix} \qquad \begin{aligned} \frac{\partial s}{\partial b} &= \frac{\partial s}{\partial h} & \frac{\partial h}{\partial z} & \frac{\partial z}{\partial b} \\ &= u^T \end{aligned}$$

Useful Jacobians from previous slide  

$$\frac{\partial}{\partial h} (\boldsymbol{u}^T \boldsymbol{h}) = \boldsymbol{u}^T$$

$$\frac{\partial}{\partial \boldsymbol{z}} (f(\boldsymbol{z})) = \text{diag}(f'(\boldsymbol{z}))$$

$$\frac{\partial}{\partial \boldsymbol{b}} (\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) = \boldsymbol{I}$$

32

$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)

33

$$egin{aligned} rac{\partial s}{\partial m{b}} &= rac{\partial s}{\partial m{h}} & rac{\partial m{h}}{\partial m{z}} & rac{\partial m{z}}{\partial m{b}} \ & \downarrow & \downarrow \ & = m{u}^T \mathrm{diag}(\mathrm{f}^*(m{z})) \end{aligned}$$

Useful Jacobians from previous slide  $\frac{\partial}{\partial h} (\boldsymbol{u}^T \boldsymbol{h}) = \boldsymbol{u}^T$   $\frac{\partial}{\partial \boldsymbol{z}} (f(\boldsymbol{z})) = \text{diag}(f'(\boldsymbol{z}))$   $\frac{\partial}{\partial \boldsymbol{b}} (\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) = \boldsymbol{I}$ 

$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)

Useful Jacobians from previous slide  $\frac{\partial}{\partial h} (\boldsymbol{u}^T \boldsymbol{h}) = \boldsymbol{u}^T$   $\frac{\partial}{\partial \boldsymbol{z}} (f(\boldsymbol{z})) = \text{diag}(f'(\boldsymbol{z}))$   $\frac{\partial}{\partial \boldsymbol{b}} (\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) = \boldsymbol{I}$ 

34

$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)

 $egin{aligned} rac{\partial s}{\partial m{b}} &= rac{\partial s}{\partial m{h}} & rac{\partial m{h}}{\partial m{z}} & rac{\partial m{z}}{\partial m{b}} \ & \downarrow & \downarrow & \downarrow \ & = m{u}^T \mathrm{diag}(\mathrm{f}'(m{z}))m{I} \ & = m{u}^T \circ f'(m{z}) \end{aligned}$ 

Useful Jacobians from previous slide

$$egin{aligned} & rac{\partial}{\partial oldsymbol{h}}(oldsymbol{u}^Toldsymbol{h}) = oldsymbol{u}^T \ & rac{\partial}{\partial oldsymbol{z}}(f(oldsymbol{z})) = ext{diag}(f'(oldsymbol{z})) \ & rac{\partial}{\partial oldsymbol{b}}(oldsymbol{W}oldsymbol{x} + oldsymbol{b}) = oldsymbol{I} \end{aligned}$$

35

## **Re-using Computation**

- Suppose we now want to compute
  - Using the chain rule again:

 $\frac{\partial s}{\partial \boldsymbol{W}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{W}}$ 

 $rac{\partial s}{\partial oldsymbol{W}}$ 

## **Re-using Computation**

- Suppose we now want to compute
  - Using the chain rule again:

 $\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}$  $\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b}$ 

The same! Let's avoid duplicated computation...

 $\partial s$ 

## **Re-using Computation**

- Suppose we now want to compute
  - Using the chain rule again:

$$\frac{\partial s}{\partial W} = \boldsymbol{\delta} \frac{\partial \boldsymbol{z}}{\partial W}$$
$$\frac{\partial s}{\partial \boldsymbol{b}} = \boldsymbol{\delta} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$
$$\boldsymbol{\delta} = \frac{\boldsymbol{\delta} s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} = \boldsymbol{u}^T \circ f'(\boldsymbol{z})$$

 $rac{\partial s}{\partial oldsymbol{W}}$ 

## **Derivative with respect to Matrix**

- What does  $rac{\partial s}{\partial oldsymbol{W}}$  look like?  $oldsymbol{W} \in \mathbb{R}^{n imes m}$
- 1 output, *nm* inputs: 1 by *nm* Jacobian?
  - Inconvenient to do  $\theta^{new} = \theta^{old} \alpha \nabla_{\theta} J(\theta)$

## **Derivative with respect to Matrix**

- What does  $rac{\partial s}{\partial oldsymbol{W}}$  look like?  $oldsymbol{W} \in \mathbb{R}^{n imes m}$ 
  - 1 output, *nm* inputs: 1 by *nm* Jacobian?
    - Inconvenient to do  $\ \theta^{new} = \theta^{old} \alpha \nabla_{\theta} J(\theta)$

 Instead follow convention: shape of the gradient is shape of parameters

• So 
$$\frac{\partial s}{\partial W}$$
 is *n* by *m*: 
$$\begin{bmatrix} \frac{\partial s}{\partial W_{11}} & \cdots & \frac{\partial s}{\partial W_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial s}{\partial W_{n1}} & \cdots & \frac{\partial s}{\partial W_{nm}} \end{bmatrix}$$

## **Derivative with respect to Matrix**

- Remember  $\frac{\partial s}{\partial W} = \delta \frac{\partial \boldsymbol{z}}{\partial W}$ 
  - $\delta$  is going to be in our answer
  - The other term should be  $oldsymbol{x}$  because  $oldsymbol{z} = W x + oldsymbol{b}$

• It turns out 
$$\ rac{\partial s}{\partial oldsymbol{W}} = oldsymbol{\delta}^T oldsymbol{x}^T$$

# Why the Transposes?

$$egin{array}{ll} rac{\partial s}{\partial oldsymbol{W}} &=& oldsymbol{\delta}^T & oldsymbol{x}^T \ [n imes m] & [n imes 1][1 imes m] \end{array}$$

- Hacky answer: this makes the dimensions work out
  - Useful trick for checking your work!
- Full explanation in the lecture notes

# Why the Transposes?

$$\frac{\partial s}{\partial \boldsymbol{W}} = \boldsymbol{\delta}^T \boldsymbol{x}^T = \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_n \end{bmatrix} \begin{bmatrix} x_1, \dots, x_m \end{bmatrix} = \begin{bmatrix} \delta_1 x_1 & \dots & \delta_1 x_m \\ \vdots & \ddots & \vdots \\ \delta_n x_1 & \dots & \delta_n x_m \end{bmatrix}$$

- Hacky answer: this makes the dimensions work out
  - Useful trick for checking your work!
- Full explanation in the lecture notes

## What shape should derivatives be?

• 
$$\frac{\partial s}{\partial \boldsymbol{b}} = \boldsymbol{u}^T \circ f'(\boldsymbol{z})$$
 is a row vector

- But convention says our gradient should be a column vector because b is a column vector...
- Disagreement between Jacobian form (which makes the chain rule easy) and the shape convention (which makes implementing SGD easy)
  - We expect answers to follow the shape convention
  - But Jacobian form is useful for computing the answers

# What shape should derivatives be?

- Two options:
- 1. Use Jacobian form as much as possible, reshape to follow the convention at the end:
  - What we just did. But at the end transpose  $\frac{\partial s}{\partial b}$  to make the derivative a column vector, resulting in  $\delta^T$
- 2. Always follow the convention
  - Look at dimensions to figure out when to transpose and/or reorder terms.

#### **Notes on PA1**

- Don't worry if you used some other method for gradient computation (as long as your answer is right and you are consistent!)
- This lecture we computed the gradient of the score, but in PA1 its of the loss
- Don't forget to replace *f*' with the actual derivative
- PA1 uses xW + b for the linear transformation: gradients are different!

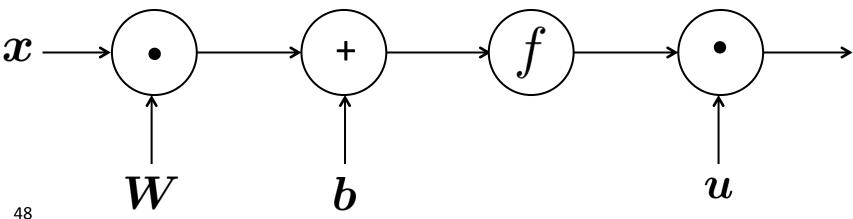
## **Backpropagation**

- Compute gradients algorithmically
- Converting what we just did by hand into an algorithm
- Used by deep learning frameworks (TensorFlow, PyTorch, etc.)

## **Computational Graphs**

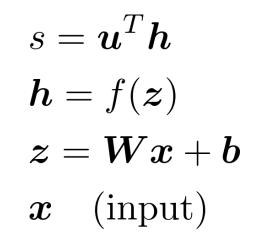
- Representing our neural net equations as a graph
  - Source nodes: inputs
  - Interior nodes: operations

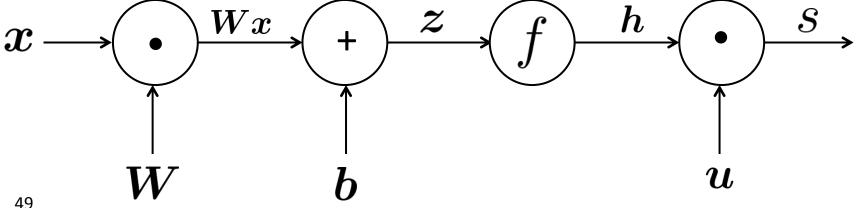
```
s = u^T h
\boldsymbol{h} = f(\boldsymbol{z})
z = Wx + b
\boldsymbol{x} (input)
```



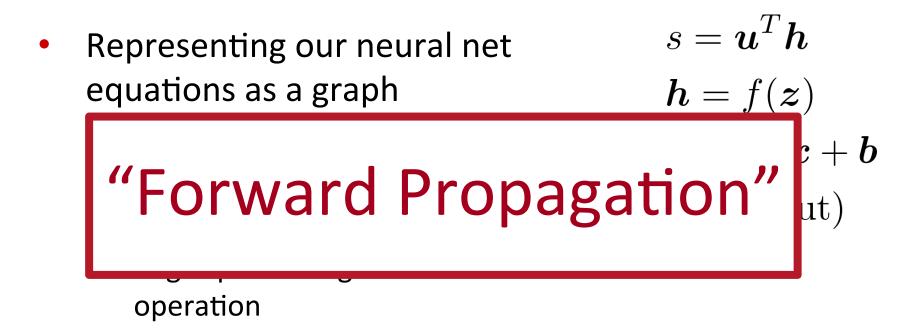
## **Computational Graphs**

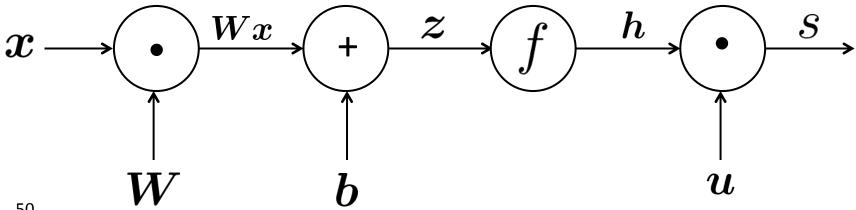
- Representing our neural net equations as a graph
  - Source nodes: inputs
  - Interior nodes: operations
  - Edges pass along result of the operation





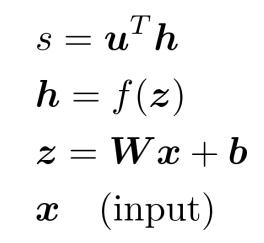
## **Computational Graphs**

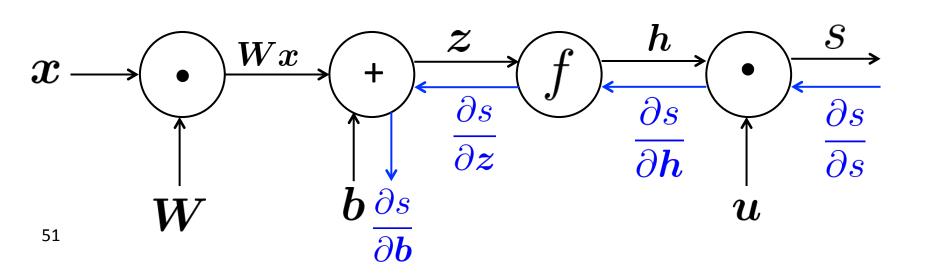




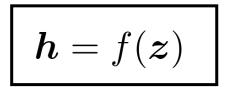
## Backpropagation

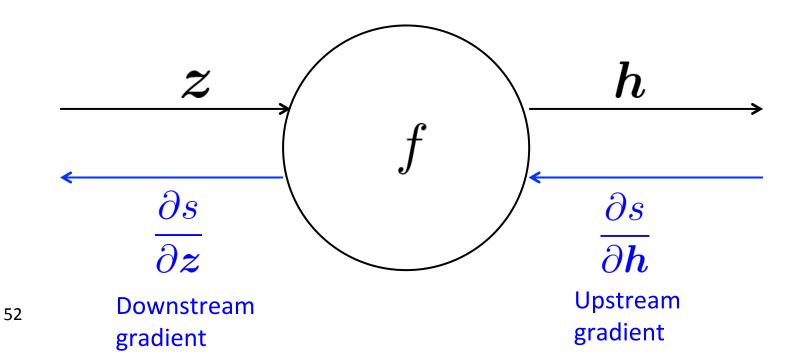
- Go backwards along edges
  - Pass along gradients





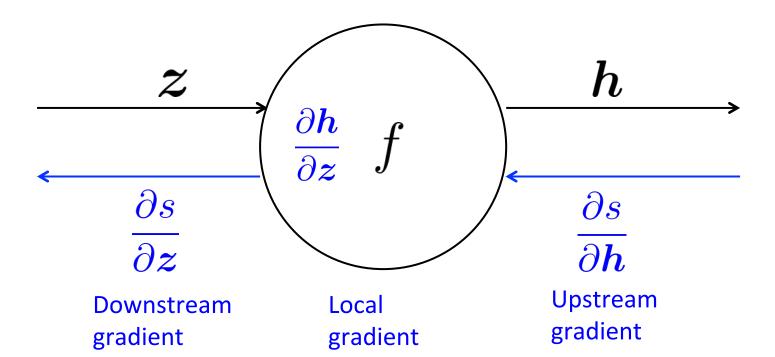
- Node receives an "upstream gradient"
- Goal is to pass on the correct "downstream gradient"





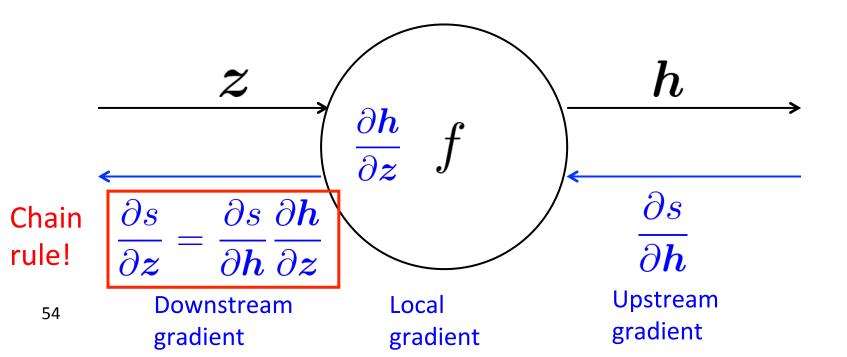
- Each node has a **local gradient** 
  - The gradient of its output with respect to its input

$$h = f(z)$$



- Each node has a **local gradient** 
  - The gradient of its output with respect to its input

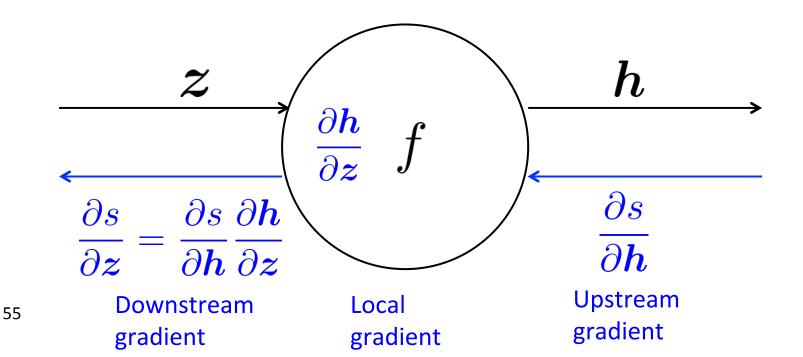
$$h = f(z)$$



- Each node has a **local gradient** 
  - The gradient of its output with respect to its input

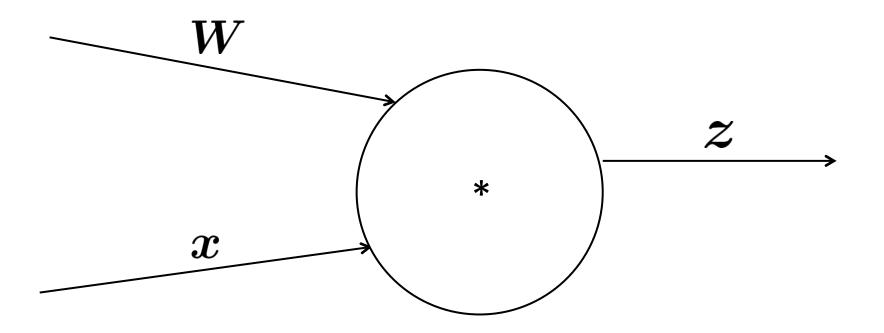
$$oldsymbol{h}=f(oldsymbol{z})$$

• [downstream gradient] = [upstream gradient] x [local gradient]

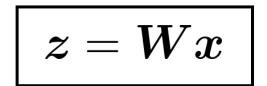


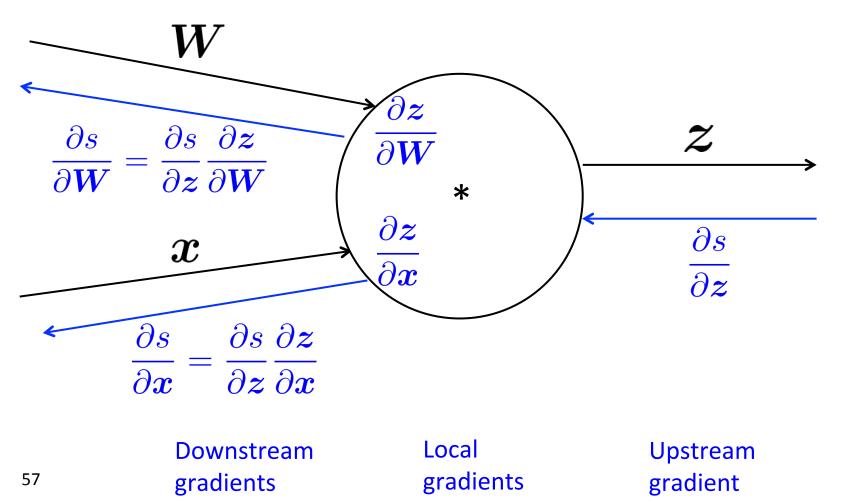
• What about nodes with multiple inputs?

$$oldsymbol{z} = Wx$$



 Multiple inputs -> multiple local gradients

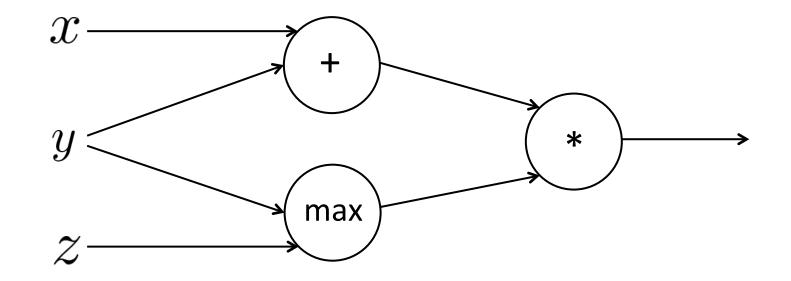




$$f(x, y, z) = (x + y) \max(y, z)$$
  
 $x = 1, y = 2, z = 0$ 

$$f(x, y, z) = (x + y) \max(y, z)$$
  
x = 1, y = 2, z = 0

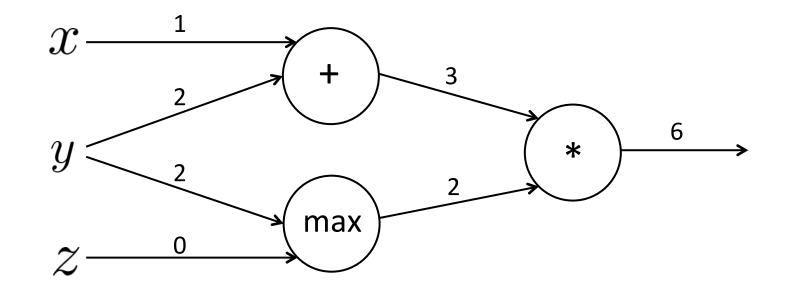
$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$



$$f(x, y, z) = (x + y) \max(y, z)$$
  
x = 1, y = 2, z = 0

Forward prop steps

a = x + y $b = \max(y, z)$ f = ab

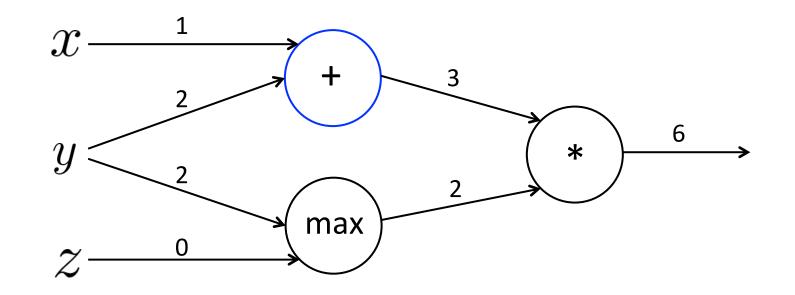


$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

Local gradients  $\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$ 



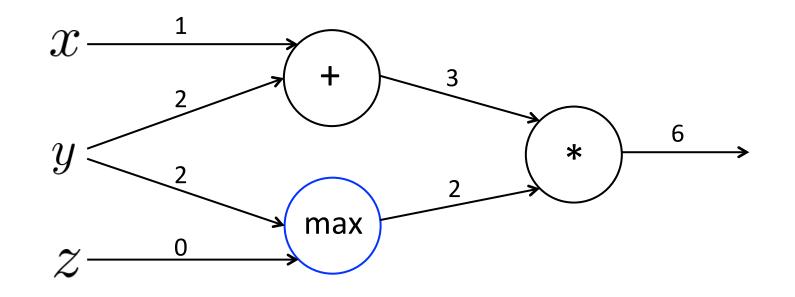
$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

Local gradients  

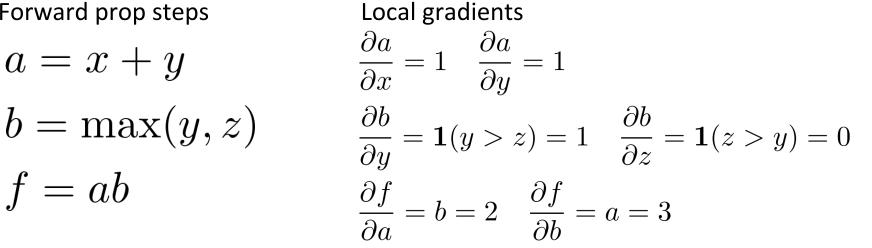
$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

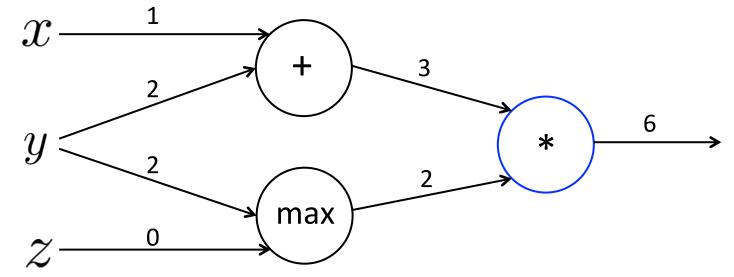
$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$



f = ab

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$



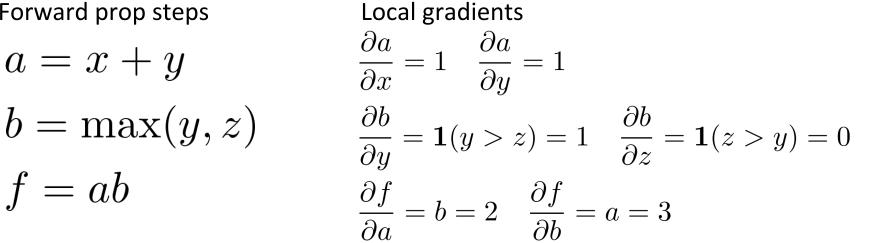


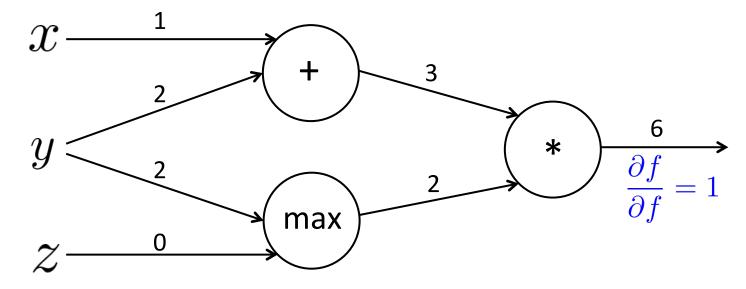
$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

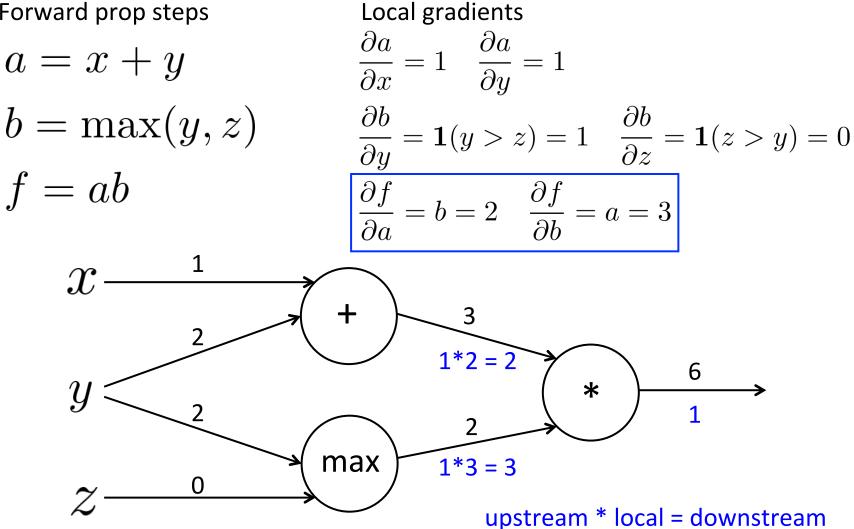
a = x + y

f = ab

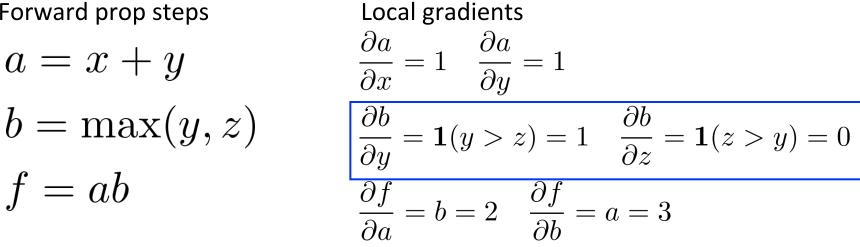


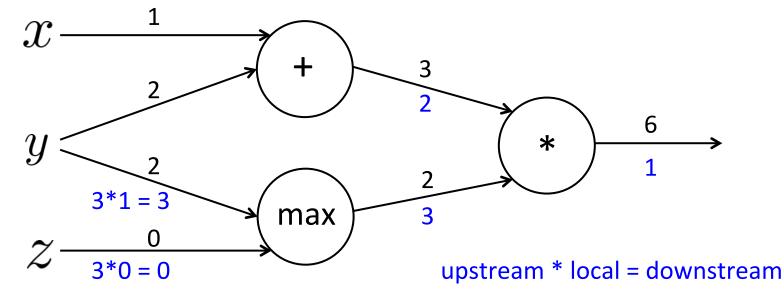


$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

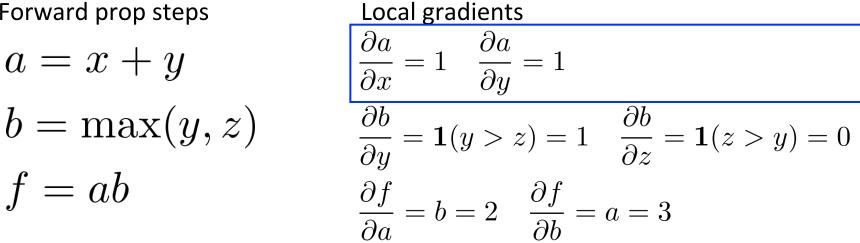


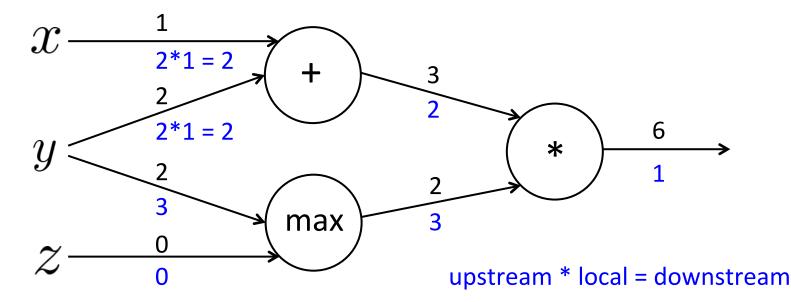
$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$



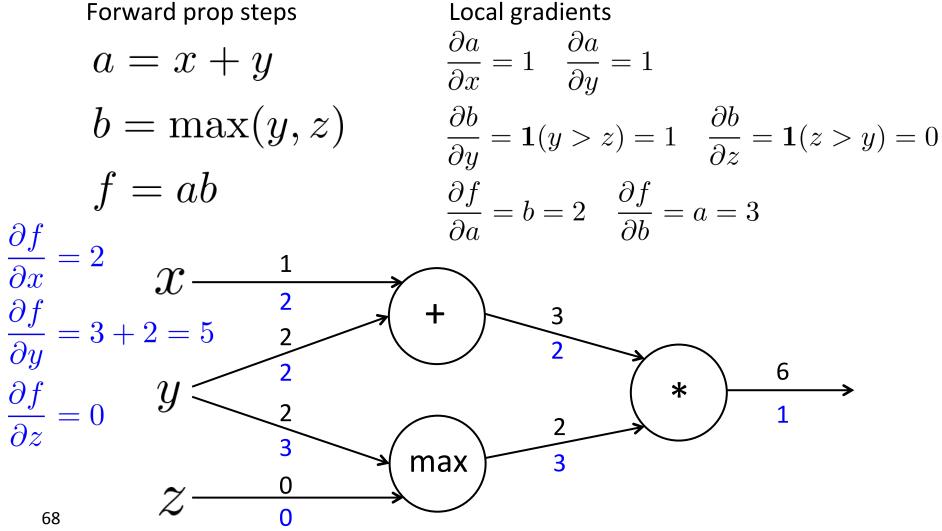


$$f(x, y, z) = (x + y) \max(y, z)$$
  
 $x = 1, y = 2, z = 0$ 

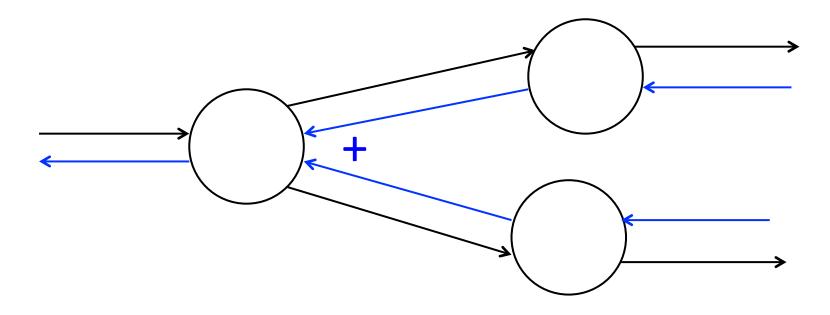




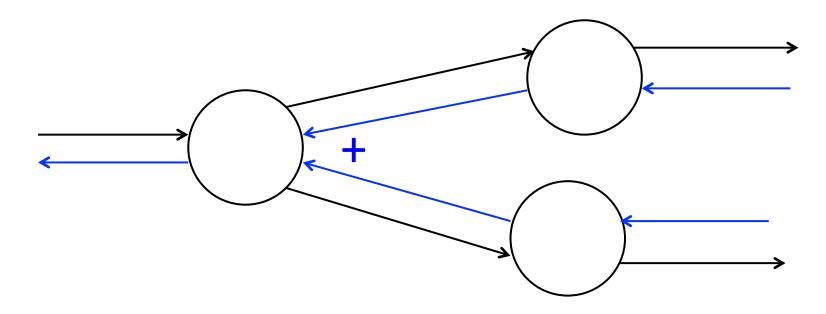
$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$



#### **Gradients add at branches**



#### **Gradients add at branches**



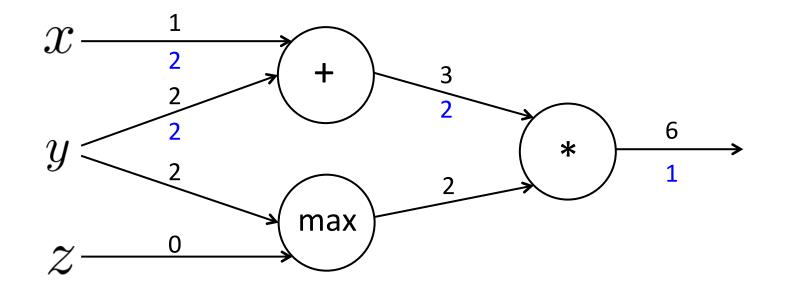
$$a = x + y$$
  

$$b = \max(y, z) \qquad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial y} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial y}$$

### **Node Intuitions**

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

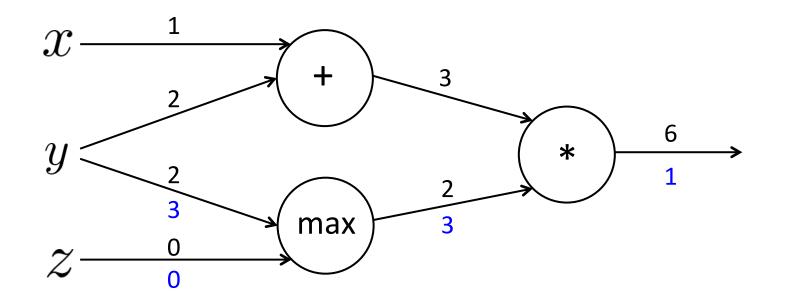
+ "distributes" the upstream gradient



### **Node Intuitions**

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

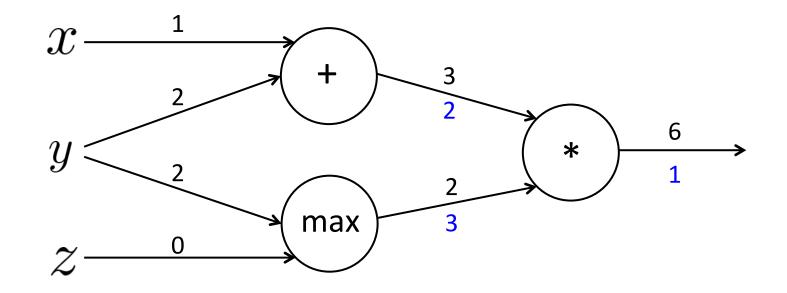
- + "distributes" the upstream gradient
- max "routes" the upstream gradient



#### **Node Intuitions**

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

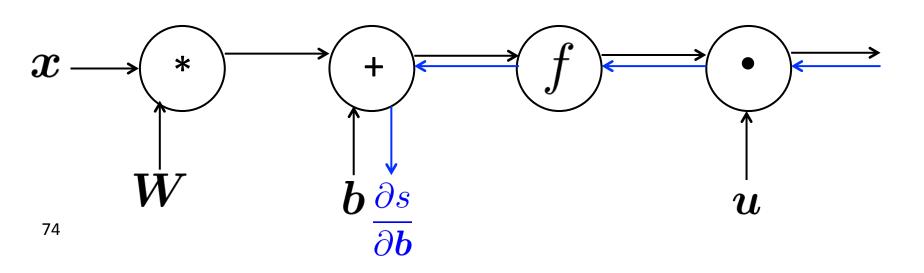
- + "distributes" the upstream gradient
- max "routes" the upstream gradient
- \* "switches" the upstream gradient



### **Efficiency: compute all gradients at once**

- Incorrect way of doing backprop:
  - First compute  $\frac{\partial s}{\partial b}$

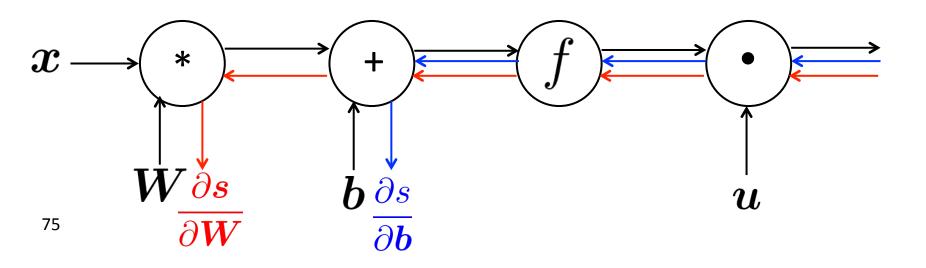
 $s = u^T h$  h = f(z) z = Wx + bx (input)



### **Efficiency: compute all gradients at once**

- Incorrect way of doing backprop:
  - First compute  $\frac{\partial s}{\partial b}$
  - Then independently compute
  - Duplicated computation!

$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)

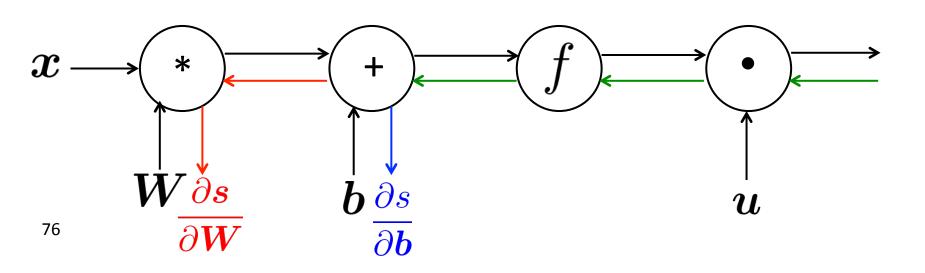


 $rac{\partial oldsymbol{s}}{\partial oldsymbol{W}}$ 

### **Efficiency: compute all gradients at once**

- Correct way:
  - Compute all the gradients at once
  - Analogous to using  $\delta$  when we computed gradients by hand

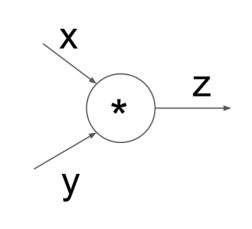
$$s = u^T h$$
  
 $h = f(z)$   
 $z = Wx + b$   
 $x$  (input)



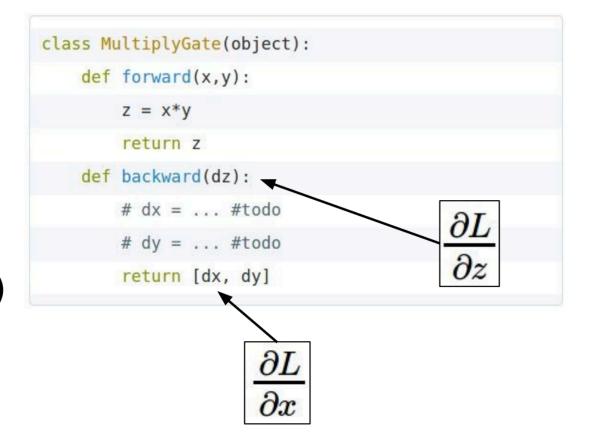
# **Backprop Implementations**

```
class ComputationalGraph(object):
   #...
   def forward(inputs):
       # 1. [pass inputs to input gates...]
       # 2. forward the computational graph:
       for gate in self.graph.nodes topologically sorted():
           gate.forward()
       return loss # the final gate in the graph outputs the loss
   def backward():
       for gate in reversed(self.graph.nodes topologically sorted()):
           gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

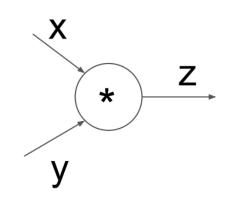
# Implementation: forward/backward API



(x,y,z are scalars)



# Implementation: forward/backward API



(x,y,z are scalars)

| <pre>class MultiplyGate(object):</pre> |                                                 |
|----------------------------------------|-------------------------------------------------|
| def                                    | <pre>forward(x,y):</pre>                        |
|                                        | $z = x^*y$                                      |
|                                        | <pre>self.x = x # must keep these around!</pre> |
|                                        | <pre>self.y = y</pre>                           |
|                                        | return z                                        |
| def                                    | <pre>backward(dz):</pre>                        |
|                                        | dx = self.y * dz # [dz/dx * dL/dz]              |
|                                        | dy = self.x * dz # [dz/dy * dL/dz]              |
|                                        | <pre>return [dx, dy]</pre>                      |

#### **Alternative to backprop: Numeric Gradient**

• For small 
$$h$$
,  $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$ 

- Easy to implement
- But approximate and very slow:
  - Have to recompute *f* for every parameter of our model
- Useful for checking your implementation



- Backpropagation: recursively apply the chain rule along computational graph
  - [downstream gradient] = [upstream gradient] x [local gradient]
- Forward pass: compute results of operation and save intermediate values
- Backward: apply chain rule to compute gradient



- 1. Apply existing neural network model to a new task
- 2. Implement a complex neural architecture(s)
  - This is what PA4 will have you do!
- 3. Come up with a new model/training algorithm/etc.
  - Get 1 or 2 working first

• See project page for some inspiration

### Must-haves (choose-your-own final project)

- 10,000+ labeled examples by milestone
- Feasible task
- Automatic evaluation metric
- NLP is central

### **Details matter!**

- Split your data into train/dev/test: only look at test for final experiments
- Look at your data, collect summary statistics
- Look at your model's outputs, do error analysis
- Tuning hyperparameters is important
- Writeup quality is important
  - Look at last-year's prize winners for examples

### **Project Advice**

- Implement simplest possible model first (e.g., average word vectors and apply logistic regression) and improve it
  - Having a baseline system is crucial
- First overfit your model to train set (get really good training set results)
  - Then regularize it so it does well on the dev set
- Start early!