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Announcements

e Assignment 1 due Thursday, 11:59

* You can use up to 3 late days (making it due Sunday at
midnight)

e Default final project will be released February 15t

* To help you choose which project option you want to do

* Final project proposal due February 8t
* See website for details and inspiration



Overview Today:

e From one-layer to multi layer neural networks!
e Fully vectorized gradient computation
e The backpropagation algorithm

e (Time permitting) Class project tips



Remember: One-layer Neural Net

s=u'h
h=f(Wax+Db)
x (input)

[ X Xin XParis Xare Xamazing ]



Two-layer Neural Net

S = ’LLThQ x

ho = f(W2h1 + bz) 0000 0000

hl — f(Wl.fU + bl) 0000 0000

T (input) 0000 0000 0000 0000 0000

X =[ Xm uuuuuu Xin XParis Xare Xamazing]



Repeat as Needed!

S = uThg
hs = f(Wshs + bs
ho = f(Wah; + b2

h)=f(Wix+b)

2
) 0000 0000
) 0000 0000

X =[ X Xin XParis Xare Xamazing]

museums



Why Have Multiple Layers?

* Hierarchical representations -> neural net can
represent complicated features

e Better results!

S o # Layers Machine Translation
Gcecmamsma  OPect mode Score
iy SNy SNy =

e ) 73.7
EWE 4 25.3
I 8 75.5

From Transformer Network (will cover in a
later lecture)




Remember: Stochastic Gradient Descent

e Update equation:

grew — (gold . CVVQJ(O)

a = step size or learning rate




Remember: Stochastic Gradient Descent

e Update equation:

grew — Oold . CVVQJ(@)

a = step size or learning rate

e This Lecture: How do we compute V@ J(@) ?
* By hand
e Algorithmically (the backpropagation algorithm)



Why learn all these details about gradients?

e Modern deep learning frameworks compute gradients for you

e But why take a class on compilers or systems when they are
implemented for you?

* Understanding what is going on under the hood is useful!

e Backpropagation doesn’t always work perfectly.

* Understanding why is crucial for debugging and improving
models

* Example in future lecture: exploding and vanishing gradients
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Quickly Computing Gradients by Hand

e Review of multivariable derivatives

* Fully vectorized gradients
*  Much faster and more useful than non-vectorized gradients

* But doing a non-vectorized gradient can be good practice,
see slides in last week’s lecture for an example

* Lecture notes cover this material in more detail
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Gradients

12

Given a function with 1 output and n inputs

f(.’L’) — f(x17x27 ,an)

Its gradient is a vector of partial derivatives

of _[of of  of

ox | 0x1 Oxy’ " Oz




Jacobian Matrix: Generalization of the Gradient

* Given a function with m outputs and n inputs

flx) =fi(z1,22,...;Tn),y oy frn(T1, T2, ..oy T

* |ts Jacobian is an m x n matrix of partial derivatives

on . oh-

x T

ﬁ — . 1 - (ﬁ) _ 9fi

N T T O
- Oxq ox,, -

13



Chain Rule For Jacobians

* For one-variable functions: multiply derivatives

z = 3Y
y ="
dz dzdy
DS 2r) =
dr dydx (3)(2z) = 6z
* For multiple variables: multiply Jacobians
h = f(z)
z=Wx+b
dh  Oh Oz

ox ~ 0z ox

14



Example Jacobian: Activation Function

h = f(z),what is 8—h7 h,z ¢ R"

0z
hi = f(zi)
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Example Jacobian: Activation Function

h = f(z),what is 8_h7 h,z ¢ R"

0z
h; = f(Zz)

Function has n outputs and n inputs -> n by n Jacobian
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Example Jacobian: Activation Function

oh
h = f(z),what is 5’_z? h,z ¢ R"
hi = f(z)
(Z—Z)w = gz % f(z) definition of Jacobian
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Example Jacobian: Activation Function

h = f(z),what is Oh.,

Oz
h; = f(Zz)

(8h> O _ D L

0z
)10 if otherwise

18

h,z e R"

definition of Jacobian

regular 1-variable derivative



Example Jacobian: Activation Function

h = f(z),what is 8_h7

0z
hi = f(zi)

<ah> _8hi:if(2i)

0z i

)10 if otherwise

9 f'(21)

0z

2 0

h,z e R"

definition of Jacobian

regular 1-variable derivative

= diag(f'(2))



Other Jacobians

0
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Other Jacobians

0

g Wx + b) = I (Identity matrix
o0b

21



Other Jacobians

0
a—m(W:chb) =W

%(Wm + b) = I (Identity matrix)
i(uTh) =h"
ou
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Other Jacobians

0

%(Wm + b) = I (Identity matrix)

O Ty _ 3T
5’u(u h)=nh

 Compute these at home for practice!

Check your answers with the lecture notes
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Back to Neural Nets!

s=ulh
h=f(Wx+b)
x (input)

24

X =[ X Xin Xparis X X

museums are amazing ]



Back to Neural Nets!

Let’s find @
Ob

* In practice we care about the gradient of the loss, but
we will compute the gradient of the score for simplicity

s=u'h
h=f(Wx+b)
x (input)

25

X =[ Xmuseums Xin XParis Xare Xamazing]



1. Break up equations into simple pieces

s=u'h s=ulh
h=f(Wz+b) h = f(z)
z=Wax+0b

x (input) x (input)
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2. Apply the chain rule

s=u'h
h = f(z)
z=Wax+0b

x (input)

27

0s 0s Oh 0z

b~ Oh 0z Ob




2. Apply the chain rule
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s=u'h
h = f(z)
z=Wx+0b

x (input)

0s
0b

0s

Oh 0z

Oh

0z 0b



2. Apply the chain rule

s=u'h
h = f(z)
z=Wx+0b

x (input)

29

0s
0b

0s

Oh 0z

oh

0b



2. Apply the chain rule
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s=u'h
h = f(2)
z=Wx+0b

x (input)

0s 0s Oh

0z

b~ Oh 0z

0b




3. Write out the Jacobians
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s=ulh

h = f(z)
z=Wx+0b
x (input)

0s 0s Oh

o~ oh Oz

Useful Jacobians from previous slide

O T,y _ T
8h(u h)=u

9 (7(2)) = diag(f'(2))

0z
2(Wa: +b)=1
ob B

8_z
ob



3. Write out the Jacobians

32

s=ulh

h = f(z)
z=Wx+0b
x (input)

0s 0s

oh 0z

ob  Oh 0z 0b

l

= U

Useful Jacobians from previous slide

O T,y _ T
8h(u h)=u

9 (7(2)) = diag(f'(2))

0z
Q(Wa: +b)=1
0b B

T



3. Write out the Jacobians
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s=ulh

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

56~ oh 0z b
|

= u’ diag(f’(2))

Useful Jacobians from previous slide

O T,y _ T
8h(u h)=u

9 (7(2)) = diag(f'(2))

Iz
Q(Wa: +b)=1
0b B




3. Write out the Jacobians

34

s=ulh

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

ob (‘jh 8lz 8f

= u’ diag(f’(2))1

Useful Jacobians from previous slide

0

(9_h(uTh) =l
- (f(2)) = diag(f(2))
0

—(Wx+b)=1

0b




3. Write out the Jacobians
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s=ulh

h = f(z)
z=Wx+0b
x (input)

ds 0s 0Oh 0z
ob~ Oh 9z b
Lol

= u’ diag(f’(2))1

—u” o f/(2)

Useful Jacobians from previous slide
0
T T
—(u " h)=u
on (W R
0

——(f(2)) = diag(f'(2))
0




Re-using Computation

e Suppose we nhow want to compute

Using the chain rule again:

0s s Oh 0z
OW ~ 9h 0z OW

36

o5
9% 4



Re-using Computation

37

Suppose we now want to compute

o5
9% 4

Using the chain rule again:

0s 0s Oh 0z

oW — Oh 0z OW
0s 0s Oh 0z

ob ~ Oh 9z Ob

The same! Let’s avoid duplicated computation...




Re-using Computation

38

Suppose we now want to compute

Using the chain rule again:
s _ 0z
oW oW
ds .0z
b Ob
ds Oh
= = U

o5
9% 4



Derivative with respect to Matrix

39

9,
What does 8—‘;/' look like? W ¢ R"*™

1 output, nm inputs: 1 by nm Jacobian?
Inconvenient to do gnew — gold _ aVy J(@)



Derivative with respect to Matrix

9,
e What does 8—‘;/' look like? W ¢ R"*™

e 1 output, nminputs: 1 by nm Jacobian?
» Inconvenienttodo gnew — gold _ QVQJ(H)

* Instead follow convention: shape of the gradient is
shape of parameters

- 0s 0s
* So 0s isn by m: 8‘/‘-/11 8W1m
oW ) : :
0s 0s
40 L OW 1 T OW o -




Derivative with respect to Matrix

0s _ s 0z
Remember W oW

. 5 is going to be in our answer

*  The other term should be ¢ because £ = Wax + b

0s

e |t turns out e
oW

41



Why the Transposes?

0s
oW
nxm| [nx1][1xm]

_ 5T ZET

 Hacky answer: this makes the dimensions work
out

*  Useful trick for checking your work!

* Full explanation in the lecture notes

42



Why the Transposes?

 Hacky answer: this makes the dimensions work
out

*  Useful trick for checking your work!

* Full explanation in the lecture notes

43




What shape should derivatives be?

ds :
* 55 u’ o f'(z) is arow vector
* But convention says our gradient should be a column vector
because b is a column vector...

* Disagreement between Jacobian form (which makes
the chain rule easy) and the shape convention (which
makes implementing SGD easy)

*  We expect answers to follow the shape convention

* But Jacobian form is useful for computing the answers

44



What shape should derivatives be?

* Two options:

1. Use Jacobian form as much as possible, reshape to
follow the convention at the end:

0s
*  What we just did. But at the end transpose ap o make the
derivative a column vector, resulting in 6!

* 2. Always follow the convention

* Look at dimensions to figure out when to transpose and/or
reorder terms.
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Notes on PA1l

 Don’t worry if you used some other method for
gradient computation (as long as your answer is right
and you are consistent!)

* This lecture we computed the gradient of the score,
but in PA1 its of the loss

 Don’t forget to replace f” with the actual derivative

e PAluses xW 4+ b for the linear transformation:
gradients are different!

46



Backpropagation

 Compute gradients algorithmically
* Converting what we just did by hand into an algorithm

 Used by deep learning frameworks (TensorFlow,
PyTorch, etc.)

47



Computational Graphs

* Representing our neural net
equations as a graph

* Source nodes: inputs

* Interior nodes: operations

48

s=ulh

h = f(z)

z=Wx+0b

x (input)
u



Computational Graphs

: _ T
 Representing our neural net s=u"h
equations as a graph h = f(z)
Source nodes: inputs z=Wax+b
° Interior nodes: operations r (input)

* Edges pass along result of the
operation

w_>.Wa:+Z@h S

w b u

49



Computational Graphs

. T
* Representing our neural net s=u h
equations as a graph h = f(z)

operation

w_)(?vm{?z@h()s
w W b u




Backpropagation

* Go backwards along edges

Pass along gradients

y
L —> o W +

@

0z
3 %4

s=ulh

h = f(z)

z=Wax+0b

x (input)
h S
@ 0s
oh 0s



Backpropagation: Single Node

* Node receives an “upstream gradient”

* Goalis to pass on the correct h =

“downstream gradient”

Z h

< <
68 85
0z oh

5o Downstream Upstream

gradient gradient




Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with

respect to its input

Z h

< <
0s Os
0z oh
53 Downstream Local Upstream

gradient gradient gradient




Backpropagation: Single Node

Chain
rule!

54

Each node has a local gradient

The gradient of its output with

respect to its input

<
@ _ Os oh
0z Oh 0z
Downstream

gradient

Local
gradient

h

ds
oh

Upstream

gradient




Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

* [downstream gradient] = [upstream gradient] x [local gradient]

Z h

@ ~ 0s Oh @
0z Oh Oz Oh
55 Downstream Local Upstream

gradient gradient gradient



Backpropagation: Single Node

56

What about nodes with multiple inputs?

|44

z=Wax




Backpropagation: Single Node

*  Multiple inputs -> multiple local
gradients

m

S

oW~ 9z OW

dr 0z oz

Downstream Local
57 gradients gradients

z=Wax

0s
0z

Upstream
gradient




An Example
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f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0




An Example f(z,y,2) = (z + y) max(y, z)
r=1y=2,2=0

Forward prop steps

a=I+Y
b = max(y, 2)
f=uab

L

Yy % >

<

59



An Example f(z,y,2) = (z + y) max(y, z)
r=1y=2,2=0

Forward prop steps
a=2T+Y
b = max(y, 2)

f=uab

60



An Example f(z,y,2) = (z + y) max(y, z)
r=1y=2,2=0

Forward prop steps Local gradients
a=2x+Yy %=1%:1
b = max(y, 2)

f=ab

61



An Example f(z,y,2) = (z + y) max(y, z)
r=1y=2,2=0

Forward prop steps Local gradients
da da
@ T+ Yy Ox oy
b = max(y, 2 o _ _q b _
(Y, 2) ay—l(y>z)—1 o, =1z>y) =0
f=ab

L

62



An Example

Forward prop steps

a=x+Y
b = max(y, 2)
f =ab

fl,y,z) = (z + y) max(y, z)
r=1y=2,2=0

L

63

Local gradients

da da

—=1 —=1

ox oy

ob ob

- — — I e ]_ —
9y 1(y>z2)=1 9, (z>y)=0
of of

L _p=9 L 4=

da b ob a=3




An Example

Forward prop steps

a=x+Y
b = max(y, 2)
f =ab

fl,y,z) = (z + y) max(y, z)
r=1y=2,2=0

L

64

Local gradients

da da

—=1 —=1

ox oy

ob ob

- — — — = ]_ —
9y 1(y>z2)=1 9, (z>y)=0
of of

L _p=9 L 4=

da b ob a=3




An Example

Forward prop steps

a=I+Y
b = max(y, 2)
f=uab

T 1

f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0

Local gradients

oa oa

1 2

Ox oy

0b O0b
8f_ B 0f_ B
da 072 o=

65

1*3=3

upstream * local = downstream



An Example

Forward prop steps

a=I+Y
b = max(y, 2)
f=uab

T 1

f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0

Local gradients

oa oa

1 2

Ox oy

0b O0b
8f_ B 0f_ B
da 072 o=

upstream * local = downstream




An Example

Forward prop steps

a=I+Y
b = max(y, 2)
f=uab

T 1

f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0

Local gradients

67

oa oa

1 2

Ox oy

0b O0b
8f_ B 0f_ B
da 072 o=

upstream * local = downstream




An Example

Forward prop steps

f(z,y,2) = (z + y) max(y, z)

r=1,y=2,2=0

a=x+Y
b = max(y, z)
f =ab
af
0y -
. AT

Local gradients

da da

— =1 — =1

Ox 0y

b ob

9 —1 Z_1 —
9y 1(y>z2)=1 9, (z>y)=0
of of

L _p=9 L _ 4=

da b an )




Gradients add at branches
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Gradients add at branches

a=I+Y
b=max(y,z) Of Ofda Of 0b
f=ab Oy 0Oady Ob Oy
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Node Intuitions

f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0

* + “distributes” the upstream gradient

N NN N
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Node Intuitions f(z,y,2) = (v +y) max(y, z)
r=1y=2,2=0

* + “distributes” the upstream gradient

* max “routes” the upstream gradient

N
OO0 W/N
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Node Intuitions f(z,y,2) = (v +y) max(y, z)
r=1y=2,2=0

* + “distributes” the upstream gradient
* max “routes” the upstream gradient

 *“witches” the upstream gradient

73



Efficiency: compute all gradients at once

* Incorrect way of doing backprop: s=u'h
First compute % h = f(z)
z=Wx+b
x (input)

z— ﬁ—Q CP_



Efficiency: compute all gradients at once

T
* Incorrect way of doing backprop: s=u"h
*  First compute % h = f(z)
* Then independently compute 0s z=Wx+b
x (input)

*  Duplicated computation!

T

W@S b Os u
ob




Efficiency: compute all gradients at once

T
* Correct way: s=u"h
*  Compute all the gradients at once h = f(z)
* Analogous to using 0 when we z=Wx+b
computed gradients by hand T (input)
W os b 0s u

oW ob



Backprop Implementations

class ComputationalGraph(object):
iz
def forward(inputs):
# 1. [pass inputs to input gates...]
# 2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients
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Implementation: forward/backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = x*y
return z

def backward(dz):

Fdx = ... #tosz\\\\“\-\-\\\\
)/ # dy = ... #todo

return [dx, dy]

OL
0z

(X,y,z are scalars) \

OL
Ox

78




Implementation: forward/backward API

class MultiplyGate(object):
X def forward(x,y):

zZ = X¥*y

self.x = x # must keep these around!
self.y =y
return z
)/ def backward(dz):
dx = self.y * dz # [dz/dx * dL/dz]
(Xx,y,z are scalars)

dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

79



Alternative to backprop: Numeric Gradient

flx+h)—flz—h)
2h

* Forsmallh, f(x) ~
* Easyto implement

* But approximate and very slow:

* Have to recompute f for every parameter of our model

* Useful for checking your implementation
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Summary

* Backpropagation: recursively apply the chain rule
along computational graph

* [downstream gradient] = [upstream gradient] x [local gradient]

 Forward pass: compute results of operation and save
intermediate values

* Backward: apply chain rule to compute gradient
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Project Types

1. Apply existing neural network model to a new task

2. Implement a complex neural architecture(s)

* This is what PA4 will have you do!

3. Come up with a new model/training algorithm/etc.

* Get 1 or 2 working first

* See project page for some inspiration
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Must-haves (choose-your-own final project)

10,000+ labeled examples by milestone
e Feasible task
e Automatic evaluation metric

e NLPis central
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Details matter!

e Split your data into train/dev/test: only look at test for
final experiments

* Look at your data, collect summary statistics
* Look at your model’s outputs, do error analysis
* Tuning hyperparameters is important

*  Writeup quality is important

* Look at last-year’s prize winners for examples
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Project Advice

* Implement simplest possible model first (e.g., average
word vectors and apply logistic regression) and
iImprove it

* Having a baseline system is crucial

* First overfit your model to train set (get really good
training set results)

* Then regularize it so it does well on the dev set

e Start early!
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