
Natural Language Processing
with Deep Learning

CS224N/Ling284

Richard Socher

Lecture 7: Dependency Parsing

Organization

Reminders/comments:	
• Final	project	discussion	– come	meet	with	us
• Extra	credit	for	most	prolific	piazza	student	answerers
• Midterm	in	two	weeks

• Practice	exams	are	on	the	website

1/30/182

Lecture	Plan

1. Syntactic	Structure:	Constituency	and	Dependency
2. Dependency	Grammar
3. Transition-based	dependency	parsing
4. Neural	dependency	parsing

1/30/183

Two	views	of	linguistic	structure:	
Constituency	=	phrase	structure	grammar	
=	context-free	grammars	(CFGs)

Phrase	structure	organizes	words	into	nested	constituents.

Basic	unit:	words	
the,			cat,			cuddly,			by,			door

Words	combine	into	phrases
the	cuddly	cat,							by	the	door

Phrases	can	combine	into	bigger	phrases
the	cuddly	cat	by	the	door

1/30/184

Two	views	of	linguistic	structure:	
Constituency	=	phrase	structure	grammar	
=	context-free	grammars	(CFGs)

Phrase	structure	organizes	words	into	nested	constituents.

Basic	unit:	words	
the,			cat,			cuddly,			by,			door

Words	combine	into	phrases
the	cuddly	cat,							by	the	door

Phrases	can	combine	into	bigger	phrases
the	cuddly	cat	by	the	door

NP	->	Det Adj N

Det

NP	->	NP	PP	

N Adj P N

PP	->	P	NP

Can	represent	the	grammar	with	CFG	rules

1/30/185

Example	Constituency	Trees

• PP	attachment	ambiguities	in	constituency	structure

1/30/186

Two	views	of	linguistic	structure:	
Dependency	structure

• Dependency	structure	shows	which	words	depend	on	(modify	or	
are	arguments	of)	which	other	words.

Look		for		the		large		barking		dog		by		the		door		in		a	crate
1/30/187

• Dependency	structure	shows	which	words	depend	on	(modify	or	
are	arguments	of)	which	other	words.
• Determiners,	adjectives,	and	(sometimes)	verbs	modify	nouns

Look		for		the		large		barking		dog		by		the		door		in		a	crate

Two	views	of	linguistic	structure:	
Dependency	structure

1/30/188

Two	views	of	linguistic	structure:	
Dependency	structure

• Dependency	structure	shows	which	words	depend	on	(modify	or	
are	arguments	of)	which	other	words.
• Determiners,	adjectives,	and	(sometimes)	verbs	modify	nouns
• We	will	also	treat	prepositions	as	modifying	nouns

Look		for		the		large		barking		dog		by		the		door		in		a	crate
1/30/189

Two	views	of	linguistic	structure:	
Dependency	structure

• Dependency	structure	shows	which	words	depend	on	(modify	or	
are	arguments	of)	which	other	words.
• Determiners,	adjectives,	and	(sometimes)	verbs	modify	nouns
• We	will	also	treat	prepositions	as	modifying	nouns
• The	prepositional	phrases	are	modifying	the	main	noun	phrase

Look		for		the		large		barking		dog		by		the		door		in		a	crate
1/30/1810

Two	views	of	linguistic	structure:	
Dependency	structure

• Dependency	structure	shows	which	words	depend	on	(modify	or	
are	arguments	of)	which	other	words.
• Determiners,	adjectives,	and	(sometimes)	verbs	modify	nouns
• We	will	also	treat	prepositions	as	modifying	nouns
• The	prepositional	phrases	are	modifying	the	main	noun	phrase
• The	main	noun	phrase	is	an	argument	of	“look”

Look		for		the		large		barking		dog		by		the		door		in		a	crate
1/30/1811

Ambiguity:	PP	attachments

Scientists		study		whales		from	 space

1/30/1812

PP	attachment	ambiguities	in	dependency	
structure

Scientists		study		whales		from		space

Scientists	 study		whales		from	 space
1/30/1813

Attachment	ambiguities

• A	key	parsing	decision	is	how	we	‘attach’	various	constituents
• PPs,	adverbial	or	participial	phrases,	infinitives,	coordinations,	
etc.

1/30/1814

Attachment	ambiguities

• A	key	parsing	decision	is	how	we	‘attach’	various	constituents
• PPs,	adverbial	or	participial	phrases,	infinitives,	coordinations,	
etc.

• Catalan numbers: Cn = (2n)!/[(n+1)!n!]

• An exponentially growing series, which arises in many tree-like contexts

• But normally, we assume nesting. 1/30/1815

The rise of annotated data:
Universal Dependencies treebanks

[Universal Dependencies: http://universaldependencies.org/ ;
cf. Marcus et al. 1993, The Penn Treebank, Computational Linguistics]

1/30/1816

The	rise	of	annotated	data

Starting	off,	building	a	treebank	seems	a	lot	slower	and	less	useful	
than	building	a	grammar

But	a	treebank	gives	us	many	things
• Reusability	of	the	labor
• Many	parsers,	part-of-speech	taggers,	etc.	can	be	built	on	it
• Valuable	resource	for	linguistics

• Broad	coverage,	not	just	a	few	intuitions
• Frequencies	and	distributional	information
• A	way	to	evaluate	systems

1/30/1817

Dependency	syntax	postulates	that	syntactic	structure	consists	of	
relations	between	lexical	items,	normally	binary	asymmetric	
relations	(“arrows”)	called	dependencies

Dependency	Grammar	and	
Dependency	Structure

submitted

Bills were

Senatorby

immigration

Brownback

andon

ports

Republican

of

Kansas

1/30/1818

Dependency	syntax	postulates	that	syntactic	structure	consists	of	
relations	between	lexical	items,	normally	binary	asymmetric	
relations	(“arrows”)	called	dependencies

The	arrows	are	
commonly	typed
with	the	name	of	
grammatical	
relations	(subject,	
prepositional	object,	
apposition,	etc.)

Dependency	Grammar	and	
Dependency	Structure

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod

ports flat

Republican

of
case

nmod

Kansas

appos

1/30/1819

Dependency	syntax	postulates	that	syntactic	structure	consists	of	
relations	between	lexical	items,	normally	binary	asymmetric	
relations	(“arrows”)	called	dependencies

The	arrow	connects	a	
head (governor,	
superior,	regent)	with	a	
dependent (modifier,	
inferior,	subordinate)

Usually,	dependencies	
form	a	tree	(connected,	
acyclic,	single-head)

Dependency	Grammar	and	
Dependency	Structure

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod

ports flat

Republican

of
case

nmod

Kansas

appos

1/30/1820

21

Dependency	Relations

Selected dependency relations from the Universal Dependency set. (de Marneffe et al., 2014)
https://web.stanford.edu/~jurafsky/slp3/14.pdf 1/30/18

Pāṇini’s grammar
(c. 5th century BCE)

22

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Welcome L0032691.jpg

1/30/18

Dependency	Grammar/Parsing	History

• The	idea	of	dependency	structure	goes	back	a	long	way
• To	Pāṇini’s grammar	(c.	5th	century	BCE)
• Basic	approach	of	1st	millennium	Arabic	grammarians

• Constituency/context-free	grammars	is	a	more	recent	invention
• 20th	century	(R.S.	Wells,	1947)

• Modern	dependency	work	often	linked	to	work	of	L.	Tesnière
(1959)
• Was	dominant	approach	in	“East”	(Russia,	China,	…)
• Good	for	free-er word	order	languages

• Among	the	earliest	kinds	of	parsers	in	NLP,	even	in	the	US:
• David	Hays,	one	of	the	founders	of	U.S.	computational	linguistics,	built	
early	(first?)	dependency	parser	(Hays	1962)

1/30/1823

ROOT	Discussion	of	the	outstanding	issues	was	completed		.

Dependency	Grammar	and	
Dependency	Structure

• Some	people	draw	the	arrows	one	way;	some	the	other	way!	
• Tesnière had	them	point	from	head	to	dependent…
• Ours	will	point	from	head	to	dependent

• Usually	add	a	fake	ROOT	so	every	word	is	a	dependent	of	
precisely	1	other	node

1/30/1824

What	are	the	sources	of	information	for	dependency	parsing?
1. Bilexical affinities				[discussion	à issues]	is	plausible

2. Dependency	distance			mostly	with	nearby	words

3. Intervening	material
Dependencies	rarely	span	intervening	verbs	or	punctuation

4. Valency of	heads		
How	many	dependents	on	which	side	are	usual	for	a	head?

Dependency	Conditioning	Preferences

ROOT	Discussion	of	the	outstanding	issues	was	completed		.1/30/1825

Dependency	Parsing

• A	sentence	is	parsed	by	choosing	for	each	word	what	other	
word	(including	ROOT)	it	is	a	dependent	of	
• i.e.,	find	the	right	outgoing	arrow	from	each	word

• Usually	some	constraints:
• Only	one	word	is	a	dependent	of	ROOT
• Don’t	want	cycles	A	→	B,	B	→	A

• This	makes	the	dependencies	a	tree
• Final	issue	is	whether	arrows	can	cross	(non-projective)	or	not

26
I give a on bootstrappingtalk tomorrowROOT ’ll

1/30/18

Methods	of	Dependency	Parsing

1. Dynamic	programming
2. Graph	algorithms

You	create	a	Minimum	Spanning	Tree	for	a	sentence
McDonald	et	al.’s	(2005)	MSTParser scores	dependencies	independently	
using	an	ML	classifier	(he	uses	MIRA,	for	online	learning,	but	it	can	be	
something	else)

3. Constraint	Satisfaction	
Edges	are	eliminated	that	don’t	satisfy	hard	constraints.	Karlsson (1990),	etc.

4. “Transition-based	parsing”	or	“deterministic	dependency	
parsing”
Greedy	choice	of	attachments	guided	by	good	machine	learning	classifiers
MaltParser (Nivre et	al.	2008).	Has	proven	highly	effective.

1/30/1827

4.	Greedy	transition-based	parsing
[Nivre 2003]

• A	simple	form	of	greedy	discriminative	dependency	parser
• The	parser	does	a	sequence	of	bottom	up	actions

• Roughly	like	“shift”	or	“reduce”	in	a	shift-reduce	parser,	but	the	“reduce”	
actions	are	specialized	to	create	dependencies	with	head	on	left	or	right

• The	parser	has:
• a	stack	σ,	written	with	top	to	the	right
• which	starts	with	the	ROOT	symbol

• a	buffer	β,	written	with	top	to	the	left
• which	starts	with	the	input	sentence

• a	set	of	dependency	arcs	A
• which	starts	off	empty

• a	set	of	actions
1/30/1828

Basic	transition-based	dependency	parser

Start:	 σ =	[ROOT],	β	=	w1,	…,	wn ,	A	=	∅
1. Shift														σ,	wi|β,	A	è σ|wi,	β,	A
2. Left-Arcr σ|wi|wj,	β,	A	è σ|wj,	β,	A∪{r(wj,wi)}	
3. Right-Arcr σ|wi|wj,	β,	A	è σ|wi,	β,	A∪{r(wi,wj)}
Finish:	σ =	[w], β	=	∅

1/30/1829

Arc-standard transition-based	parser
(there	are	other	transition	schemes	…)
Analysis	of	“I	ate	fish”

ate fish[root]

Start

I

[root]

Shift

I ate fish

ate[root] fish

Shift

I

Start: σ = [ROOT], β = w1, …, wn , A = ∅
1. Shift σ, wi|β, A è σ|wi, β, A
2. Left-Arcr σ|wi|wj, β, A è

σ|wj, β, A∪{r(wj,wi)}
3. Right-Arcr σ|wi|wj, β, A è

σ|wi, β, A∪{r(wi,wj)}
Finish: β = ∅

1/30/1830

Arc-standard transition-based	parser
Analysis	of	“I	ate	fish”

ate[root] ate[root]

Left Arc

I
A +=
nsubj(ate → I)

ate fish[root] ate fish[root]

Shift

ate[root] [root]

Right Arc
A +=
obj(ate → fish)fish ate

ate[root] [root]

Right Arc
A +=
root([root] → ate)
Finish1/30/1831

MaltParser
[Nivre and	Hall	2005]

• How		could	we	choose	the	next	action?
• Each	action	is	predicted	by	a	discriminative	classifier	(eg.	SVM	or	

logistic	regression	classifier)	over	each	legal	move
• Features:	top	of	stack	word,	POS;	first	in	buffer	word,	POS;	etc.

• There	is	NO	search	(in	the	simplest	form)
• But	you	can	profitably	do	a beam	search	if	you	wish	(slower	but	better)

• It	provides	VERY fast	linear	time	parsing
• The	model’s	accuracy	is	only	slightly below	the	best	dependency	

parsers

1/30/1832

Feature	Representation

Feature templates: usually a
combination of 1 ~ 3 elements from
the configuration.

Indicator features

0 0 0 1 0 0 1 0 0 0 1 0binary, sparse
dim =106 ~ 107

…

33

Evaluation	of	Dependency	Parsing:	
(labeled)	dependency	accuracy

ROOT She saw the video lecture
0 1 2 3 4 5

Gold
1 2 She nsubj
2 0 saw root
3 5 the det
4 5 video nn
5 2 lecture obj

Parsed
1 2 She nsubj
2 0 saw root
3 4 the det
4 5 video nsubj
5 2 lecture ccomp

Acc =		 #	correct	deps
#	of	deps

UAS	=		4	/	5		=		80%
LAS		=		2	/	5		=		40%

1/30/1834

Dependency	paths	identify	semantic
relations	– e.g,	for	protein	interaction

[Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]

KaiCçnsubj interacts		nmod:withè SasA
KaiCçnsubj interacts	nmod:withè SasA conj:andè KaiA
KaiCçnsubj interacts		prep_withè SasA conj:andè KaiB

demonstrated

results

KaiC

interacts

rythmically

nsubj

The

mark
det

ccomp

that
nsubj

KaiBKaiA

SasA

conj:and

conj:and
advmod

nmod:with

with and
cc

case

1/30/1835

• Dependencies	parallel	to	a	CFG	tree	must	be	projective
• There	must	not	be	any	crossing	dependency	arcs	when	the	words	are	laid	
out	in	their	linear	order,	with	all	arcs	above	the	words.

• But	dependency	theory	normally	does	allow	non-projective	
structures	to	account	for	displaced	constituents
• You	can’t	easily	get	the	semantics	of	certain	constructions	right	without	
these	nonprojective dependencies

Who	did	Bill	buy	the	coffee	from	yesterday	?

Projectivity

1/30/1836

Handling	non-projectivity

• The	arc-standard	algorithm	we	presented	only	builds	projective	
dependency	trees

• Possible	directions:
1. Just	declare	defeat	on	nonprojective arcs
2. Use	a	dependency	formalism	which	only	admits	projective	

representations	(a	CFG	doesn’t	represent	such	structures…)
3. Use	a	postprocessor	to	a	projective	dependency	parsing	algorithm	to	

identify	and	resolve	nonprojective links
4. Add	extra	transitions	that	can	model	at	least	most	non-projective	

structures	(e.g.,	add	an	extra	SWAP	transition,	cf.	bubble	sort)
5. Move	to	a	parsing	mechanism	that	does	not	use	or	require	any	

constraints	on	projectivity	(e.g.,	the	graph-based	MSTParser)

1/30/1837

Why	train	a	neural	dependency	parser?	
Indicator	Features	Revisited

• Problem	#1:		sparse
• Problem	#2:		incomplete
• Problem	#3:		expensive	computation

More	than	95%	of	parsing	time	is	consumed	by	
feature	computation.

Our	Approach:
learn	a	dense	and	compact	feature	representation

0.1
dense
dim = ~1000

0.9-0.2 0.3 -0.1 -0.5…

38

A	neural	dependency	parser
[Chen	and	Manning	2014]

• English	parsing	to	Stanford	Dependencies:
• Unlabeled	attachment	score	(UAS)	=	head
• Labeled	attachment	score	(LAS)	=	head	and	label

Parser UAS LAS sent.	/	s

MaltParser 89.8 87.2 469

MSTParser 91.4 88.1 10

TurboParser 92.3* 89.6* 8

C &	M	2014 92.0 89.7 654
1/30/1839

• We	represent	each	word	as	a	d-dimensional	dense	vector	
(i.e.,	word	embedding)
• Similar	words	are	expected to	have	close	vectors.

• Meanwhile,	part-of-speech	tags (POS)	and	dependency	labels
are	also	represented	as	d-dimensional	vectors.
• The	smaller	discrete	sets	also	exhibit	many	similarities.

Distributed	Representations

come

go

werewas

is
good

NNS	(plural	noun)	should	be	close	to NN	(singular	noun).
num	(numerical	modifier)	should	be	close	to amod	(adjective	modifier).

40

Extracting	Tokens	and	then	vector	
representations	from	configuration

s1

s2

b1

lc(s1)
rc(s1)
lc(s2)
rc(s2)

good
has
control
∅
∅
He
∅

JJ
VBZ
NN
∅
∅
PRP
∅

∅
∅
∅
∅
∅
nsubj
∅

+ +

word POS dep.

• We	extract	a	set	of	tokens	based	on	the	stack	/	buffer	positions:

• We	convert	them	to	vector	embeddings	and	concatenate	them 41

Model	Architecture

Input layer x
lookup	+	concat

Hidden layer h
h = ReLU(Wx + b1)

Output layer y
y = softmax(Uh + b2)

Softmax probabilities

cross-entropy error will be
back-propagated to the
embeddings.

42

Non-linearities between	layers:
Why	they’re	needed

• For	logistic	regression:	map	to	probabilities
• Here:	function	approximation,	

e.g.,	for	regression	or	classification
• Without	non-linearities,	deep	neural	networks	
can’t	do	anything	more	than	a	linear	transform
• Extra	layers	could	just	be	compiled	down	into	
a	single	linear	transform

• People	use	various	non-linearities

43 1/30/18

Non-linearities:	sigmoid	and	tanh

logistic	(“sigmoid”)																															tanh

tanh is	just	a	rescaled	and	shifted	sigmoid
tanh is	often	used	and	often	performs	better	for	deep	nets

• It’s	output	is	symmetric	around	0

tanh(z) = 2logistic(2z)−1

44 1/30/18

Non-linearities:	hard	tanh

• Faster	to	compute	than	tanh
(no	exps or	division)

• But	suffers	from	“dead	
neurons”
• If	our	model	is	initialized	such	
that	a	neuron	is	always	1,	it	will	
never	change!

• “Saturated	neurons”	can	also	be	
a	problem	for	regular	tanh –
initializing	NNs	right	is	really	
important!

45 1/30/18

Non-linearities:	ReLU

rect(z) =max(z, 0)

46

• Also	fast	to	compute,	but	also	
can	cause	dead	neurons

• Mega	common:	“go-to”	
activation	function

• Transfers	a	linear	activation	
when	active

• Lots	of	variants:	LReLU,	SELU,	
ELU,	PReLU…

1/30/18

Dependency	parsing	for	sentence	structure

Neural	networks	can	accurately	determine	the	
structure	of	sentences,	supporting	interpretation

Chen	and	Manning	(2014)	was	the	first	simple,	
successful	neural	dependency	parser

The	dense	representations	let	it	outperform	other	
greedy	parsers	in	both	accuracy	and	speed

1/30/18Lecture	1,	Slide	47

Further	developments	in	transition-based	
neural	dependency	parsing

This	work	was	further	developed	and	improved	by	others,	
including	in	particular	at	Google

• Bigger,	deeper	networks	with	better	tuned	hyperparameters
• Beam	search
• Global,	conditional	random	field	(CRF)-style	inference	over	
the	decision	sequence

Leading	to	SyntaxNet and	the	Parsey McParseFace model
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Method UAS LAS	(PTB WSJ	SD	3.3
Chen	&	Manning	2014 92.0 89.7
Weiss et	al.	2015 93.99 92.05
Andor et	al.	2016 94.61 92.79

1/30/18Lecture	1,	Slide	48

Graph-based	dependency	parsers

• Compute	a	score	for	every	possible	dependency	
• Then	add	an	edge	from	each	word	to	its	highest-scoring	
candidate	head

ROOT										The												big												cat										sat

0.5

0.3

0.8

2.0

e.g.,	picking	the	head	for	“big”
1/30/18Lecture	1,	Slide	49

Graph-based	dependency	parsers

• Compute	a	score	for	every	possible	dependency	
• Then	add	an	edge	from	each	word	to	its	highest-scoring	
candidate	head

ROOT										The												big												cat										sat

0.5

0.3

0.8

2.0

e.g.,	picking	the	head	for	“big”
1/30/18Lecture	1,	Slide	50

Neural	graph-based	dependency	parsers

• Compute	a	score	for	every	possible	dependency	
• Then	add	an	edge	from	each	word	to	its	highest-scoring	
candidate	head

• Really	great	results!
• But	slower	than	transition-based	parsers:	there	are	n^2	
possible	dependencies	in	a	sentence	of	length	n.	

Method UAS LAS	(PTB WSJ	SD	3.3
Chen	&	Manning	2014 92.0 89.7
Weiss et	al.	2015 93.99 92.05
Andor et	al.	2016 94.61 92.79
Dozat &	Manning 2017 95.74 93.08

1/30/18Lecture	1,	Slide	51

