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Announcements

• Assignment	2:	due	Thursday

• Project	proposal:	due	Thursday

• Midterm	logistics:	Fill	out	form	on	Piazza	if	you	can’t	do	main	
midterm,	have	special	requirements,	or	other	special	case
• Alternate	midterm	is	this	Friday!
• Practice	midterms	are	on	the	website
• Midterm	review	session:	in-class	this	Thursday

• Poster	session	time	and	location:	
• 5:30-8:30pm at	McCaw	Hall	at	the	Alumni	Center
• Note	time	has	changed
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This	lecture

• Vanishing	Gradient	problem
• Fancy	RNNs:
•GRU
•LSTM	(!)
•Bidirectional
•Multi-layer
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RNN	Refresher
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the students opened their …exams

…

• Multiply	the	same	matrix	at	each	time	step	during	forward	prop



Simplify	inputs	to	just	x	(usually	word	vectors)
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…

• Ideally	inputs	from	many	time	steps	ago	can	modify	output	y
• Take										for	an	example	RNN	with	2	time	steps!	Insightful!



The	vanishing/exploding	gradient	problem

• Multiply	the	same	matrix	at	each	time	step	during	backprop
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The	vanishing	gradient	problem	- Details

• Similar	but	simpler	RNN	formulation:

• Total	error	is	the	sum	of	each	error	(aka	cost	function,	aka	J	in	
previous	lectures	when	it	was	cross	entropy	error,	could	be	
other	cost	functions	too),	but	at	time	steps	t

• Hardcore	chain	rule	application:
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The	vanishing	gradient	problem	- Details

• Similar	to	backprop but	less	efficient	formulation
• Useful	for	analysis	we’ll	look	at:

• Remember:
• More	chain	rule,	remember:

• Each	partial	is	a	Jacobian:
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We’ll	show	this	can	
quickly	become	very	
small	or	very	large



The	vanishing	gradient	problem	- Details

• Analyzing	the	norms	of	the	Jacobians	yields:

• Where	we	defined	𝛽‘s	as	upper	bounds	of	the	norms
• The	gradient	is	a	product	of	Jacobian matrices,	each	associated	

with	a	step	in	the	forward	computation.	

• This	can	become	very	small	or	very	large	quickly	[Bengio et	al	
1994],	and	the	locality	assumption	of	gradient	descent	breaks	
down.	à Vanishing	or	exploding	gradient
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Why	is	the	vanishing	gradient	a	problem?

• Ideally,	the	error	Et on	step	t	can	flow	backwards,	via	backprop,	
and	allow	the	weights	on	a	previous	timestep (maybe	many	
timesteps ago)	to	change.
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2018-02-0611

1. Gradients	can	be	seen	as	a	measure	of	influence	of	the	past	on	
the	future

2. How	does	the	perturbation	at	time	t	affect	predictions	at	t+n?

Why	is	the	vanishing	gradient	a	problem?



2018-02-0612

When	we	only	observe

going	to	0

We	cannot	tell	whether
1. No	dependency	between	t and	t+n in	data,	or
2. Wrong	configuration	of	parameters

Why	is	the	vanishing	gradient	a	problem?



The	vanishing	gradient	problem	for	language	models

• The	vanishing	gradient	problem	can	cause	problems	for	RNN	
Language	Models:

• When	predicting	the	next	word,	information	from	many	time	
steps	in	the	past	is	not	taken	into	consideration.

• Example:	

Jane	walked	into	the	room.	John	walked	in	too.	It	was	late	in	the	
day.	Jane	said	hi	to	____
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Trick	for	exploding	gradient:	clipping	trick

• The	solution	first	introduced	by	Mikolov is	to	clip	gradients
so	that	their	norm	has	some	maximum	value.	

• Makes	a	big	difference	in	RNNs	and	many	other	unstable	models

On the di�culty of training Recurrent Neural Networks

region of space. It has been shown that in practice
it can reduce the chance that gradients explode, and
even allow training generator models or models that
work with unbounded amounts of memory(Pascanu
and Jaeger, 2011; Doya and Yoshizawa, 1991). One
important downside is that it requires a target to be
defined at every time step.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free opti-
mizer in conjunction with structural damping, a spe-
cific damping strategy of the Hessian. This approach
seems to deal very well with the vanishing gradient,
though more detailed analysis is still missing. Pre-
sumably this method works because in high dimen-
sional spaces there is a high probability for long term
components to be orthogonal to short term ones. This
would allow the Hessian to rescale these components
independently. In practice, one can not guarantee that
this property holds. As discussed in section 2.3, this
method is able to deal with the exploding gradient
as well. Structural damping is an enhancement that
forces the change in the state to be small, when the pa-
rameter changes by some small value�✓. This asks for
the Jacobian matrices @xt

@✓

to have small norm, hence
further helping with the exploding gradients problem.
The fact that it helps when training recurrent neural
models on long sequences suggests that while the cur-
vature might explode at the same time with the gradi-
ent, it might not grow at the same rate and hence not
be su�cient to deal with the exploding gradient.

Echo State Networks (Lukoševičius and Jaeger, 2009)
avoid the exploding and vanishing gradients problem
by not learning the recurrent and input weights. They
are sampled from hand crafted distributions. Because
usually the largest eigenvalue of the recurrent weight
is, by construction, smaller than 1, information fed in
to the model has to die out exponentially fast. This
means that these models can not easily deal with long
term dependencies, even though the reason is slightly
di↵erent from the vanishing gradients problem. An
extension to the classical model is represented by leaky
integration units (Jaeger et al., 2007), where

x

k

= ↵x

k�1 + (1� ↵)�(W
rec

x

k�1 +W

in

u

k

+ b).

While these units can be used to solve the standard
benchmark proposed by Hochreiter and Schmidhu-
ber (1997) for learning long term dependencies (see
(Jaeger, 2012)), they are more suitable to deal with
low frequency information as they act as a low pass
filter. Because most of the weights are randomly sam-
pled, is not clear what size of models one would need
to solve complex real world tasks.

We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)).
It involves clipping the gradient’s temporal compo-
nents element-wise (clipping an entry when it exceeds
in absolute value a fixed threshold). Clipping has been
shown to do well in practice and it forms the backbone
of our approach.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

ĝ @E
@✓

if kĝk � threshold then

ĝ threshold

kĝk ĝ

end if

This algorithm is very similar to the one proposed by
Tomas Mikolov and we only diverged from the original
proposal in an attempt to provide a better theoretical
foundation (ensuring that we always move in a de-
scent direction with respect to the current mini-batch),
though in practice both variants behave similarly.

The proposed clipping is simple to implement and
computationally e�cient, but it does however in-
troduce an additional hyper-parameter, namely the
threshold. One good heuristic for setting this thresh-
old is to look at statistics on the average norm over
a su�ciently large number of updates. In our ex-
periments we have noticed that for a given task and
model size, training is not very sensitive to this hyper-
parameter and the algorithm behaves well even for
rather small thresholds.

The algorithm can also be thought of as adapting
the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strate-
gies, which focus on improving convergence by col-
lecting statistics on the gradient (as for example in
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Gradient	clipping	intuition

• Error	surface	of	a	single	hidden	unit	RNN,	

• High	curvature	walls

• Solid	lines:	standard	gradient	descent	trajectories	

• Dashed	lines	gradients	rescaled	to	fixed	size

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure	from	paper:	
On	the	difficulty	of	
training	Recurrent	Neural	
Networks,	Pascanu et	al.	
2013
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One	solution:	Initialization	+	ReLus!
• You	can	improve	the	Vanishing	Gradient	Problem	with	good	

initialization	and	ReLUs.

• Initialize	W(*)‘s	to
identity	matrix	I
and
f(z)		=

• à Huge	difference!

• Initialization	idea	first	introduced	in	Parsing	with	Compositional	
Vector	Grammars,	Socher	et	al.	2013

• New	experiments	with	recurrent	neural	nets	in	A	Simple	Way	
to	Initialize	Recurrent	Networks	of	Rectified	Linear	Units,	Le	et	
al.	2015

T LSTM RNN + Tanh IRNN
150 lr = 0.01, gc = 10, fb = 1.0 lr = 0.01, gc = 100 lr = 0.01, gc = 100

200 lr = 0.001, gc = 100, fb = 4.0 N/A lr = 0.01, gc = 1

300 lr = 0.01, gc = 1, fb = 4.0 N/A lr = 0.01, gc = 10

400 lr = 0.01, gc = 100, fb = 10.0 N/A lr = 0.01, gc = 1

Table 1: Best hyperparameters found for adding problems after grid search. lr is the learning rate, gc
is gradient clipping, and fb is forget gate bias. N/A is when there is no hyperparameter combination
that gives good result.

4.2 MNIST Classification from a Sequence of Pixels

Another challenging toy problem is to learn to classify the MNIST digits [21] when the 784 pixels
are presented sequentially to the recurrent net. In our experiments, the networks read one pixel at a
time in scanline order (i.e. starting at the top left corner of the image, and ending at the bottom right
corner). The networks are asked to predict the category of the MNIST image only after seeing all
784 pixels. This is therefore a huge long range dependency problem because each recurrent network
has 784 time steps.

To make the task even harder, we also used a fixed random permutation of the pixels of the MNIST
digits and repeated the experiments.

All networks have 100 recurrent hidden units. We stop the optimization after it converges or when
it reaches 1,000,000 iterations and report the results in figure 3 (best hyperparameters are listed in
table 2).
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Figure 3: The results of recurrent methods on the “pixel-by-pixel MNIST” problem. We report the
test set accuracy for all methods. Left: normal MNIST. Right: permuted MNIST.

Problem LSTM RNN + Tanh RNN + ReLUs IRNN
MNIST lr = 0.01, gc = 1 lr = 10

−8, gc = 10 lr = 10
−8, gc = 10 lr = 10

−8, gc = 1

fb = 1.0

permuted lr = 0.01, gc = 1 lr = 10
−8, gc = 1 lr = 10

−6, gc = 10 lr = 10
−9, gc = 1

MNIST fb = 1.0

Table 2: Best hyperparameters found for pixel-by-pixelMNIST problems after grid search. lr is the
learning rate, gc is gradient clipping, and fb is the forget gate bias.

The results using the standard scanline ordering of the pixels show that this problem is so difficult
that standard RNNs fail to work, even with ReLUs, whereas the IRNN achieves 3% test error rate
which is better than most off-the-shelf linear classifiers [21]. We were surprised that the LSTM did
not work as well as IRNN given the various initialization schemes that we tried. While it still possi-
ble that a better tuned LSTM would do better, the fact that the IRNN perform well is encouraging.

5

rect(z) =max(z, 0)
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Main	solution	for	better	RNNs:	Better	Units

• The	main	solution	to	the	Vanishing	Gradient	Problem	is	to	use	a	
more	complex	hidden	unit	computation	in	recurrence!

• Gated	Recurrent	Units	(GRU)	introduced	by	[Cho	et	al.	2014]	
and	LSTMs	[Hochreiter &	Schmidhuber,	1999]

• Main	ideas:	

• keep	around	memories	to	capture	long	distance	
dependencies

• allow	error	messages	to	flow	at	different	strengths	
depending	on	the	inputs
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GRUs

• Standard	RNN	computes	hidden	layer	at	next	time	step	
directly:

• #Simplified	from	last	lecture’s:	

• GRU	first	computes	an	update	gate (another	layer)	
based	on	current	input	word	vector	and	hidden	state

• Compute	reset	gate	similarly	but	with	different	weights

2/6/1819



GRUs

• Update	gate	

• Reset	gate

• New	memory	content:
If	reset	gate	unit	is	~0,	then	this	ignores	previous	
memory	and	only	stores	the	new	word	information	

• Final	memory	at	time	step	combines	current	and	
previous	time	steps:		
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GRU	illustration

rtrt-1

zt-1

~ht~ht-1

zt

ht-1 ht

xtxt-1Input:

Reset	gate

Update	gate

Memory	(reset)

Final	memory
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GRU	intuition

• If	reset	is	close	to	0,	
ignore	previous	hidden	state
à Allows	model	to	drop	
information	that	is	irrelevant
in	the	future

• Update	gate	z	controls	how	much	of	past	state	should	
matter	now.
• If	z	close	to	1,	then	we	can	copy	information	in	that	unit	

through	many	time	steps!	Less	vanishing	gradient!

• Units	with	short-term	dependencies	often	have	reset	
gates	very	active
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GRU	intuition

• Units	with	long	term	
dependencies	have	active
update	gates	z

• Illustration:	

• Derivative	of																	?	à rest	is	same	chain	rule,	but
implement	with	modularization or	automatic	
differentiation

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �

⇣

[Wrx]j +
⇥

Urhht�1i
⇤

j

⌘

, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �

⇣

[Wzx]j +
⇥

Uzhht�1i
⇤

j

⌘

. (6)

The actual activation of the proposed unit hj is
then computed by

h

hti
j = zjh

ht�1i
j + (1� zj)

˜

h

hti
j , (7)

where

˜

h

hti
j = �

⇣

[Wx]j +
⇥

U
�

r� hht�1i
�⇤

j

⌘

. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state ˜

h. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and ˜

h.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-
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2018-02-0624

• Is	the	problem	with	standard	RNNs	the	naïve	transition	function?

• It	implies	that	the	error	must	backpropagate	through	all	the	
intermediate	nodes:

• Perhaps	we	can	create	shortcut	connections.

How	do	Gated	Recurrent	Units	fix	vanishing	gradient	
problems?



• Perhaps	we	can	create	adaptive	shortcut	connections.
• Let	the	net	prune	unnecessary	connections	adaptively.

• That’s	what	the	gates	do.

2018-02-0625

How	do	Gated	Recurrent	Units	fix	vanishing	gradient	
problems?
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Execution
Registers

1. Read	the	whole	register

h

2. Update	the	whole	register	
h

GRU	Comparison	to	Standard	tanh-RNN

Vanilla	RNN	…
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GRU	…

Execution
Registers

1. Select	a	readable	subset

h

2. Read	the	subset
3. Select	a	writable	subset

4. Update	the	subset

Gated	recurrent	units	are	much	more	versatile	and	adaptive	in	which	elements	of	the	
hidden	vector	h	they	update!

GRU	Comparison	to	Standard	tanh-RNN



Long-short-term-memories	(LSTMs)

• LSTM	is	even	more	complex	than	GRU

• Allow	each	time	step	to	modify	
• Input	gate	(current	cell	matters)

• Forget	(gate	0,	forget	past)

• Output	(how	much	cell	is	exposed)

• New	memory	cell

• Final	memory	cell:

• Final	hidden	state:	
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Some	visualizations

By	Chris	Olah:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Most	illustrations	a	bit	overwhelming	;)

http://people.idsia.ch/~juergen/lstm/sld017.htm

http://deeplearning.net/tutorial/lstm.html

Intuition:	memory	cells	can	keep	information	intact,	unless	inputs	makes	them
forget	it	or	overwrite	it	with	new	input.
Cell	can	decide	to	output	this	information	or	just	store	it

Long	Short-Term	Memory	by	Hochreiter and	Schmidhuber (1997)
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Another
LSTM
visualization
inspired	by	
code

31 Picture	courtesy	of	Tim	Rocktäschel



The	LSTM

32

The	LSTM	gates	all	
operations	so	stuff	can	
be	forgotten/ignored	
rather	than	it	all	being	
crammed	on	top	of	
everything	else



The	LSTM

33

The	non-linear	update	
for	the	next	time	step	is	
just	like	an	RNN



The	LSTM

34

This	part	is	the	the	
secret!	(Of	other	recent	
things	like	ResNets too!)	
Rather	than	multiplying,	
we	get	ct by	adding	the	
non-linear	stuff	and	ct−1	!	
There	is	a	direct,	linear	
connection	between	ct
and	ct−1.



LSTM	visualization	after	training	for	character	
language	modeling	(predict	the	next	character)

2/6/1835 From:	http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Visualizing	activation	of	
tanh(ct):



LSTM	visualization	after	training	for	character	
language	modeling	(predict	the	next	character)

2/6/1836 From:	http://karpathy.github.io/2015/05/21/rnn-effectiveness/



LSTMs	are	a	great	default	for	all	sequence	problems

• Very	powerful,	especially	when	stacked	and	made	
even	deeper	(each	hidden	layer	is	already	computed	
by	a	deep	internal	network)

• Most	useful	if	you	have	lots	and	lots	of	data

2/6/1837



Deep	LSTMs	compared	to	traditional	systems	2015
Method test BLEU score (ntst14)

Bahdanau et al. [2] 28.45
Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	to	Sequence	Learning	by	Sutskever et	al.	2014	
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Deep	LSTMs	(with	a	lot	more	tweaks)

WMT	2016	competition	results
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Deep	LSTM	for	Machine	Translation

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	to	Sequence	Learning	by	Sutskever et	al.	2014	

PCA	of	vectors	from	last	time	step	hidden	layer
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Bidirectional	RNNs

Problem:	For	classification	you	want	to	incorporate	
information	from	words	both	preceding	and	following

Ideas?

Bidirectionality 
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Deep	Bidirectional	RNNsGoing Deep 
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Next	up!
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Midterm	review!



Gated	Recurrent	Unit
[Cho	et	al.,	EMNLP2014;	
Chung,	Gulcehre,	Cho,	Bengio,	DLUFL2014]

Long	Short-Term	Memory	
[Hochreiter	&	Schmidhuber,	NC1999;	
Gers,	Thesis2001]
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Gated	Recurrent	Units	Comparison	(different	
notation)

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)
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Two	most	widely	used	gated	recurrent	units

h̃t = tanh(W [xt] + U(rt � ht�1) + b)



Training	a	(gated)	RNN

1. Use	an	LSTM	or	GRU:	it	makes	your	life	so	much	simpler!
2. Initialize	recurrent	matrices	to	be	orthogonal

3. Initialize	other	matrices	with	a	sensible	(small!) scale

4. Initialize	forget	gate	bias	to	1:	default	to	remembering

5. Use	adaptive	learning	rate	algorithms:	Adam,	AdaDelta,	…

6. Clip	the	norm	of	the	gradient:	1–5	seems	to	be	a	reasonable	

threshold	when	used	together	with	Adam	or	AdaDelta.
7. Either	only	dropout	vertically	or	learn	how	to	do	it	right

8. Be	patient!
2018-02-0645

[Saxe	et	al.,	ICLR2014;	
Ba,	Kingma,	ICLR2015;	

Zeiler,	arXiv2012;	
Pascanu et	al.,	ICML2013]


