Natural Language Processing
with Deep Learning
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Lecture 9:
Vanishing Gradients
and Fancy RNNs (LSTMs and GRUSs)

Richard Socher



Announcements

e Assignment 2: due Thursday

e Project proposal: due Thursday

e Midterm logistics: Fill out form on Piazza if you can’t do main
midterm, have special requirements, or other special case

* Alternate midterm is this Friday!
* Practice midterms are on the website
e Midterm review session: in-class this Thursday

* Poster session time and location:
* 5:30-8:30pm at McCaw Hall at the Alumni Center
* Note time has changed
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This lecture

e Vanishing Gradient problem
* Fancy RNNSs:

*GRU

*LSTM (!)

*Bidirectional

* Multi-layer
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RNN Refresher

* Multiply the same matrix at each time step during forward prop
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Simplify inputs to just x (usually word vectors)
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e |deally inputs from many time steps ago can modify output y
o Take% for an example RNN with 2 time steps! Insightful!
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The vanishing/exploding gradient problem

e Multiply the same matrix at each time step during backprop
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The vanishing gradient problem - Details

e Similar but simpler RNN formulation:

he = Wf(ht—l)—l—W(hx)fU[t]
g = W9 f(h)

e Total error is the sum of each error (aka cost function, aka J in
previous lectures when it was cross entropy error, could be
other cost functions too), but at time steps t

OF _ N~ O
OW & W
e Hardcore chain rule application'

@Et Z (9Et 33/75 (9ht 8hk
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The vanishing gradient problem - Details

Similar to backprop but less efficient formulation

Useful for analysis we’ll Iook at: ___— We'll show this can

quickly become very
aEt Z OF4 Oyy |Ohy|Ohy, small or very large

e Remember: he = WF(hi_1) +W(hx)x[t]
e More chain rule, remember:
LT )
8hk ikl 8hj_1
* Each partial is a Jacobian: il 9f17
d_f_[é?f 6f]_ v O
—=|5— " a|=] : . :
X 0x1 0z, of,. of,,
| 0xq ox,, |
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The vanishing gradient problem - Details

e Analyzing the norms of the Jacobians yields:
Oh;

‘ Ohj—1
e Where we defined ‘s as upper bounds of the norms

< W ||| diag[f'(hj—0)]Il < Bw Bn

e The gradient is a product of Jacobian matrices, each associated
with a step in the forward computation.

ohy
Ohy,

— | < (BwBn) "

e This can become very small or very large quickly [Bengio et al
1994], and the locality assumption of gradient descent breaks
down. = Vanishing or exploding gradient
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Why is the vanishing gradient a problem?

e |deally, the error E! on step t can flow backwards, via backprop,
and allow the weights on a previous timestep (maybe many
timesteps ago) to change.
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Why is the vanishing gradient a problem?

1. Gradients can be seen as a measure of influence of the past on
the future

2. How does the perturbation at time t affect predictions at t+n?
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Why is the vanishing gradient a problem?

When we only observe

ohy
Oh.

_ | < BwB)"" goingto 0

We cannot tell whether
1. No dependency between t and t+n in data, or
2. Wrong configuration of parameters
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The vanishing gradient problem for language models

13

The vanishing gradient problem can cause problems for RNN
Language Models:

When predicting the next word, information from many time
steps in the past is not taken into consideration.

Example:

Jane walked into the room. John walked in too. It was late in the
day. Jane said hi to
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In [21]:

Out[21]:

plt.plot(np.array(relu array[:6000]),color="blue’)
plt.plot(np.array(sigm_array[:6000]),color="green')
plt.title('Sum of magnitudes of gradients -- hidden layer neurons')

<matplotlib.text.Text at 0x10a331310>

10 Sum of magnitudes of gradients -- hidden layer neurons

0 1000 2000 3000 4000 5000
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Trick for exploding gradient: clipping trick

e The solution first introduced by Mikolov is to clip gradients
so that their norm has some maximum value.

Algorithm 1 Pseudo-code for norm clipping the gra-

dients whenever they explode
85

8 < 3¢
if Hg” > threshold then
threshold 4
R
end if

 Makes a big difference in RNNs and many other unstable models
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Gradient clipping intuition

16

Figure from paper:
On the difficulty of
'0.35 training Recurrent Neural
'0.30 Networks, Pascanu et al.
0.25 2013
'0.20 £
Q
0.15

'0.10
'0.05

Error surface of a single hidden unit RNN,

High curvature walls

Solid lines: standard gradient descent trajectories

Dashed lines gradients rescaled to fixed size
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One solution: Initialization + RelLus!

17

You can improve the Vanishing Gradient Problem with good

initialization and RelUs. T Phel-by-pixel permuted MNIST
Initialize W')’s to aol| —

identity matrix | M

and

Test Ac

f(z) = rect(z) = max(z,0)

40

30

- Huge difference! &l

107

Initialization idea first introduced in Parsing with Compositional
Vector Grammars, Socher et al. 2013

New experiments with recurrent neural nets in A Simple Way
to Initialize Recurrent Networks of Rectified Linear /GL}lrgits, Le et
al. 2015



Main solution for better RNNs: Better Units

18

The main solution to the Vanishing Gradient Problem is to use a
more complex hidden unit computation in recurrence!

Gated Recurrent Units (GRU) introduced by [Cho et al. 2014]
and LSTMs [Hochreiter & Schmidhuber, 1999]

Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs

2/6/18



GRUs

 Standard RNN computes hidden layer at next time step
directly: he = f (W(hh)ht_l + W(h‘”)xt)

« #Simplified from last lecture’s: h® = ¢ (Whh“—” + Weel) + b1>

 GRU first computes an update gate (another layer)
based on current input word vector and hidden state

2 =0 (W(z)xt 4+ U(z)ht_1>

 Compute reset gate similarly but with different weights

Tt = O (W(T)Cﬁt -+ U(T>ht_1)
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GRUs

20

Update gate =0 (W(z)xt + U(z)ht_l)
Reset gate re =0 (W(T)xt + U(”ht_l)

New memory content: h; = tanh (Wa, + 1, 0 Uhy_1)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

Final memory at time step combines current and
previous time steps: hi =z 0hse_1+ (1 — 2) o hy
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GRU illustration

2t =0 (W(z)xt + U(z)ht_1>
Ty =0 (W(T)xt + U(T)ht_1>

ht-l ht

Final memory

h; = tanh (Waxy+ri0Uhg_q)

~

— B 1 —
Memory (reset) he = ze 0 hy1 + 2t) o hy

Update gate

Reset gate

Input:
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GRU intuition

22

If reset is close to 0, =0 (W(z)xt + U(z>ht—1>
ignore previous hidden state re =0 (W“’)ast + U(T)ht—l)
- Allows model to drop fo = tanh (W, + 140 Uhy_1)

information that is irrelevant -
. ht:ZtOht_1+(1—Zt>Oht
in the future

Update gate z controls how much of past state should
matter now.

* |If zclose to 1, then we can copy information in that unit
through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset

gates very active
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GRU intuition

23

Units with long term
dependencies have active
update gates z

2t — O (W(z)xt + U(z>ht_1>
e = O (W(T)xt + U(T)ht_l)
h; = tanh (Waxy+ri0Uhg_q)

~

Illustration: -

V4

)|

() )
(h—"

ht:ZtOht_1+(1—Zt>Oht

0

Derivative of Dy F12 ? = rest is same chain rule, but
implement with modularization or automatic

differentiation
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How do Gated Recurrent Units fix vanishing gradient
problems?

Is the problem with standard RNNs the naive transition function?
ht = f (W(hh)ht_l + W(’m)xt)

It implies that the error must backpropagate through all the
intermediate nodes:

- ‘o ‘o ‘-

* Perhaps we can create shortcut connections.

)

2018-02-06
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How do Gated Recurrent Units fix vanishing gradient
problems?

 Perhaps we can create adaptive shortcut connections.
 Let the net prune unnecessary connections adaptively.

2t — O (W(Z)CCt + U(z>ht_1>
 That’s what the gates do. r = o (W(T)xt + U(”ht_l)

h; = tanh (Waxy+rioUhy_q)

ht:ZtOht_l—l—(l—Zt)OltLt
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GRU Comparison to Standard tanh-RNN

Vanilla RNN ...
Registers h
/ \ Execution
— 1. Read the whole register h

— 2. Update the whole register

hy = f (W(hh)ht—l + W(hx)l’t)

26 £LU10"VU4L-VO



GRU Comparison to Standard tanh-RNN

GRU ...

Registers h

Execution
4 )

1. Select a readable subset

» 2. Read the subset

¥ 3. Select a writable subset

— 4. Update the subset

\ / ht:ZtOht_1+(1—Zt>OiLt

Gated recurrent units are much more versatile and adaptive in which elements of the
hidden vector h they update!

27

£LU10"VU4L-VO



Long-short-term-memories (LSTMs)

28

LSTM is even more complex than GRU

Allow each time step to modify

* Input gate (current cell matters) =0 (W(%t + U(i)ht—l)

* Forget (gate O, forget past) ft=o0 (W(‘f)wt + U(f)ht—l)

*  Output (how much cell is exposed) ot = 0o (W(O)wt + U(O)ht—1>

*  New memory cell ¢¢ = tanh (W(C)flft + U(C)ht—l)
Final memory cell: ct = froci1+ipod

Final hidden state: h: = o4 o tanh(c;)
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Some visualizations

| t |
r N N N
=P = @ > —
CQantD
A Q¢ A
| 0 | [tanh] (O |
\_ /"'Clr _J ’\ /»

&) ® &)

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

By Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Most illustrations a bit overwhelming ;)

net, S, =S +gy"

g gv‘“'@ h  hy*
O —e>0O>0O—e

W

N out = f(netout)

forget =
f(netforget)

forget gate
& in= f(net,) ‘ TR

)

ymi @ youti ey
net,, net,,,
wy AN, AN

Long Short-Term Memory by Hochreiter and Schmidhuber (1997)

y©

S\

w

self-recurrent
connection

» memory cell

memory cell N E—
1/14/20 17 input S
http://people.idsia.ch/~juergen/Istm/sld017.htm Input gate output gate

http://deeplearning.net/tutorial/lstm.html

output

Intuition: memory cells can keep information intact, unless inputs makes them

forget it or overwrite it with new input.
Cell can decide to output this information or just store it

30 2/6/18



Another
LSTM
visualization
inspired by
code

31
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The LSTM

32

The LSTM gates all
operations so stuff can
be forgotten/ignored
rather than it all being
crammed on top of
everything else
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The LSTM

The non-linear update
for the next time step is
just like an RNN
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The LSTM

34

This part is the the
secret! (Of other recent
things like ResNets too!)
Rather than multiplying,
we get ¢, by adding the

non-linear stuff and c,_, !

There is a direct, linear
connection between c,
and c,_;.

@
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LSTM visualization after training for character
language modeling (predict the next character)

1t =0 (W(i)xt + U(i)ht_l) ct = Jtoci—1+1i0¢

_ (f) (f)
fi=o0 (W xy +U ht—l) h; = oy o tanh(c;)

— (o) (o) : .. o
o= (W e+ U hH) Visualizing activation of

& = tanh (W2 + U9h, 1) tanh(c,):

BiEhlelBlelrezina lies in the TRAEHE
proved the fallacy of all the plans for
and the soundness of the only possible
: = e one Kulf v and the general mass of the army
-namel) mply llow the enemy up. The French crowd f

] speed and all its energy was directed to
like a wounded animal and it was impossiblel
3 shown not so much by the arrangements it
took place at the bridges. When the bridg
, people from Moscow and women with children
ansport, all--carried on by vis inertiae- -
~and into the ice-covered water and did not,

35  From: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 2/6/18




LSTM visualization after training for character
language modeling (predict the next character)

CeII that turns on inside quotes:

Cell that robustly activates inside if statements:

A large portlon of cells are not easily interpretable. Here is a typical example:

lter fileld'sWsitring réejpres@ntation
b ffe
dit pacKi_string(V@lid *®Mbufp, size_t HMreamain, siizel t| Wen)

36 From: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 2/6/18




LSTMs are a great default for all sequence problems

37

Very powerful, especially when stacked and made
even deeper (each hidden layer is already computed
by a deep internal network)

Most useful if you have lots and lots of data
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Deep LSTMs compared to traditional systems 2015

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’ 14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
Best WMT’ 14 result [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ~45

Sequence to Sequence Learning by Sutskever et al. 2014
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Deep LSTMs (with a lot more tweaks)

WMT 2016 competition results

Scored Systems

System

Submitter

System Notes

Constraint

Run Notes

BLEU

uedin-nmt-ensemble (Details)

metamind-ensemble (Details)

uedin-nmt-single (Details)

KIT (Details)

uedin-pbt-wmt16-en-de (Details)

rsennrich
University of
Edinburgh

rsennrich
University of
Edinburgh

BPE neural MT system
with monolingual
training data (back-
translated). ensemble of
4, reranked with right-
to-left model.

yes

34.8

Neural MT system based
on Luong 2015 and
Sennrich 2015, using
Morfessor for subword
splitting, with
back-translated
monolingual
augmentation.
Ensemble of 3
checkpoints from one
run plus 1 Y-LSTM (see

entry).

yes

32.8

BPE neural MT system
with monolingual
training data (back-
translated). single
model. (contrastive)

yes

32.2

Phrase-based MT with
NMT in rescoring

yes

29.7

Phrase-based Moses

yes

2/6/18
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Deep LSTM for Machine Translation

PCA of vectors from last time step hidden layer

151 . .
4l O | was given a card by her in the garden
3r OMary admires John 10 O In the garden , she gave me a card
O She gave me a card in the garden
2r OMary is in love with John
5 |-
1+
or OMary respects John or
s OdJohn admires Mary
-5r O She was given a card by me in the garden
-2r OdJohn is in love with Mar
y O Inthe garden, | gave her a card
-3 -10
4+
5l OJohn respects Mary 151 O | gave her a card in the garden
_6 1 1 1 1 1 1 1 1 J _20 1 1 1 1 1 1 J
-8 -6 -4 -2 0 2 4 6 8 10 -15 -10 -5 0 5 10 15 20

Sequence to Sequence Learning by Sutskever et al. 2014
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Bidirectional RNNs

Problem: For classification you want to incorporate
information from words both preceding and following

Y e o o °
/K [ [ /‘ ;lt = f(th + ‘—/7)%—1 + l;)
" '-. '-. '-.
A A A

Zt = f(WXt + (‘71;”1 + (I;)

A . . . -
'\ ’\ \ ’\ y, =8WUlhs;hi]+c)

X o ° ° °

h=[h;h] now represents (summarizes) the past and future

around a single token.
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Deep Bidirectional RNNs

-

y N
RS .r

........................... ZEZL f(W(i)h(i—l) N ‘—/»(i)]—/;ﬁ)l N B(i))
t
h(z) (1) «—(i) (i-1) —(@{) () <)
ht=f(W ht +V hiwa+b )
—=(L) «(L)
A y, =gWUlh: ;h: ]+c)
X ° ° ° °

Each memory layer passes an intermediate sequential
representation to the next.
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Next up!

Midterm review!

43
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Gated Recurrent Units Comparison (different
notation)

Two most widely used gated recurrent units

Gated Recurrent Unit Long Short-Term Memory

[Cho et al., EMNLP2014; [Hochreiter & Schmidhuber, NC1999;
Chung, Gulcehre, Cho, Bengio, DLUFL2014] Gers, Thesis2001]

hy = u; ® hy + (1 —w) ® hyq hy = 0; ® tanh(c;)

hy=tanh(W [x] + U(ry ® hy_1) +b) €t = Jt ©ct—1+ 1 O

up = o(Wy, [z¢] + Uyhi—1 + by) ¢t = tanh(We [z4] + Uchi—1 + bc)
re = o(Wy [wd] + Urhe—1 + by) o0 = 0(Wo [o1] + Uohi—1 + bo)

it = o(W; ] + Uihe—1 + b;)
ft =Wy |ze] + Ushi—1 + by)
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Training a (gated) RNN

1. Use an LSTM or GRU: it makes your life so much simpler!

2. Initialize recurrent matrices to be orthogonal

3. Initialize other matrices with a sensible (small!) scale
4. Initialize forget gate bias to 1: default to remembering
5. Use adaptive learning rate algorithms: Adam, AdaDelta, ...

6. Clip the norm of the gradient: 1-5 seems to be a reasonable

threshold when used together with Adam or AdaDelta.

7. Either only dropout vertically or learn how to do it rigfﬂgaxe ot al. ICLR2014:

Ba, Kingma, ICLR2015;
Zeiler, arXiv2012;
Pascanuetal., ICML2013]

8. Be patient!
45



