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Midterm
● Feb 13, 4:30-5:50, Memorial Auditorium
● Alternate exam: Feb 9(tomorrow), 4:00 - 5:20 pm, 200-303 (Lane 

History Corner)
● One cheatsheet allowed (letter sized, double-sided)
● Bring a pencil and eraser to the midterm
● Covers all the lectures so far
● Approximate questions breakdown:

○ multiple choice and true false
○ short answers
○ more involved questions

● SCPD: Either show up or have an exam monitor pre-registered with 
SCPD!!



Review Outline

● Word Vector Representations
● Neural Networks
● Backpropagation / Gradient Calculation
● Dependency Parsing
● RNNs



Word Vector Representations
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Word Vectors

Definition: A vector that captures the meaning of a word.

Sometimes can also be called as word embeddings or word representations.

We will be reviewing: Word2Vec and GloVe.



Word2Vec

Task: Learn word vectors to encode the probability of a word given its context. 

Consider the following example with context window size = 2: 

"I understand the word2vec model now” 

Center word Context wordsContext words



Word2Vec

Task: Learn word vectors to encode the probability of a word given its context. 

For each word, we want to learn 2 vectors:

v : input vector u : output vector

Two algorithms:

● Skipgram: predicts the probability of context words from a center word.
● Continuous Bag-of-Words (CBOW): predicts a center word from the 

surrounding context in terms of word vectors.



Word2Vec - Skipgram

● Predicts the probability of context words from a center word.

● Let’s look at the previous example again:

"I understand the word2vec model now” 

Center word Context wordsContext words



Word2Vec - Skipgram

● Predicts the probability of context words from a center word.

● Let’s look at the previous example again:

"I            ?        ? word2vec ?           ?” 

Center word Context wordsContext words



Word2Vec - Skipgram

"I            ?        ? word2vec ?           ?” 

● Generate a one-hot vector, wc of the center word, “word2vec”. It is a 

|VocabSize|-dim vector with a 1 at the word index and 0 elsewhere.

● Look up the input vector,  vc in V using wc. V is the input vector matrix.

● Generate a score vector, z = Uvc where U is the output vector matrix.



Word2Vec - Skipgram

"I            ?        ? word2vec ?           ?” 

● Turn the score vector into probabilities, ŷ = softmax(z). 

● [ŷc - m , … , ŷc - 1, ŷc + 1 , … ,ŷc + m] : probabilities of observing each context word 

(m is the context window size)

● Minimize cost given by: (F can be neg-sample or softmax-CE)



Word2Vec - Continuous Bag-Of-Words (CBOW)

● Predicts a center word from the surrounding context
● Let’s look at the previous example again:

"I understand the word2vec model now” 

Center word Context wordsContext words



Word2Vec - Continuous Bag-Of-Words (CBOW)

● Predicts a center word from the surrounding context
● Let’s look at the previous example again:

"I understand the       ?      model now” 

Center word Context wordsContext words



Word2Vec - Continuous Bag-Of-Words (CBOW)

"I understand the       ?      model now” 

● Generate one-hot vectors, wc-m, … , wc - 1, wc + 1 , … ,wc + m for the context 

words.

● Look up the input vectors,  vc-m, … , vc - 1, vc + 1 , … ,vc + m in V using the one-hot 

vectors. V is the input vector matrix.

● Average these vectors to get vavg = (vc-m + … + vc - 1 + vc + 1 + … + vc + m)/2m



Word2Vec - Continuous Bag-Of-Words (CBOW)

"I understand the       ?      model now” 

● Generate a score vector, z = Uvavg where U is the output vector matrix.

● Turn the score vector into probabilities, ŷ = softmax(z). 

● ŷ: probability of the center word.

● Minimize cost given by: (F can be neg-sample or softmax-CE)



GloVe

● Like Word2Vec, GloVe is a set of vectors that capture the semantic 

information (i.e. meaning) about words.

● Unlike Word2Vec, Glove makes use of global co-occurrence statistics.

● Fast Training

● Scalable to huge corpora

● Good Performance even with small corpus and small vectors

“GloVe consists of a weighted least squares model that trains on global 

word-word co-occurrence counts.”



GloVe

Co-occurrence Matrix (window-based):

Corpus:

● I like Deep Learning.

● I like NLP.

● I enjoy flying.



GloVe

● Let X be the word-word co-occurrence counts matrix. 
○ Xi  is the number of times any word k appears in the context of word i.
○ Xij is the number of times word j occurs in the context of word i.

● Like the case in Word2Vec, each word has 2 vectors, input (v) and output (u).

● The cost function:



GloVe

● In the end, we have V and U from all the input and output vectors, v and u.

● Both capture similar co-occurrence information, and so the word vector for a 

word can be simply obtained by summing u and v up!



Evaluate Word Vectors

● Intrinsic Method

○ Word Vector Analogies: Evaluate word vectors by how well their cosine distance after addition 

captures intuitive semantic and syntactic analogy questions.

● Extrinsic Method

○ Entity recognition



Neural Networks
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Loss Functions
● Prediction of category or label (classification)

○ Softmax + Cross-Entropy Loss: optimize correct class probability

○ Max-Margin Loss: optimize margin between correct class score and incorrect 
class scores.

● Prediction of real values or continuous outputs (regression)

○ L2 Loss:

○ Others: L1, etc. 



Network Structure
● Recall:  forward pass of a neural network. 

Hidden layers computed as follows:

● Number of hidden layers/size of each hidden 
layer affects representational power. More 
parameters => more expressive model.

● Initialization is important
○ Small random numbers (e.g. Xavier/Glorot) 

for weight matrices.

Linear Model

Multilayer Neural Network



Non-Linearities

● Responsible for network’s expressiveness -- otherwise just a linear model
● Beware of saturation and “dead” neurons
● Other variants: PreLu, Maxout, Hard Tanh



Gradient Check

● Used to verify correctness of the analytic gradient

● Compute numerical gradient using the central difference formula:

● Vary one dimension of parameters at a time, observe change in output 
function (loss)

● Potentially very expensive to compute over large numbers of parameters; can 
sanity check by checking only a few dimensions a time



Optimization
● Optimize loss function with Gradient Descent to compute parameter updates:

● Taking gradient over entire training set is expensive, so use mini-batches 
(Stochastic Gradient Descent)

● In addition to SGD, there are more complicated updates: Adam (see PA2), 
AdaGrad, RMSProp, Nesterov Momentum, etc.

● Sanity check: If network is working properly, should be able to get close to 0 loss 
on small subset of training data.

● May be helpful to randomize order of examples



Monitoring Learning Curves

● Plot training loss as a function of 
iteration/time.

● Adjusting learning rate
○ Training loss increases => learning rate too 

high
○ Training loss plateaus at high value => learning 

rate too high
○ Linear decrease in training loss => learning 

rate too low
○ May be helpful to anneal learning rate over 

time



Monitoring Learning Curves
● Also should compare training and validation 

loss/accuracies

● Large gap => Overfitting: Model does not 
generalize well to unseen data

● Bad training performance=> Underfitting: 
Model is not powerful enough to learn the 
training data, resulting in bad performance on 
both training and validation datasets.

● Note: do not compare to test set, which is 
reserved for final evaluation.



Handling Overfitting
● Add Dropout 

○ Constrain each neuron to learn more meaningful 
information.

○ Can also be interpreted as an “ensemble” of smaller 
networks.

○ Need to scale activations to maintain expected value 
(see PA2)

● L2 Regularization
○ Add                    with tunable lambda for non-bias 

parameters
○ Encourages weights to be more spread out, place 

less emphasis on any one input dimension

● Reduce Network depth/size
● Reduce input feature dimensionality
● Early Stopping
● Others: Max-Norm, L1 penalty, DropConnect etc.



Handling Underfitting

● Increase model complexity/size
● Decreasing regularization effects
● Reducing L2 penalty weight
● Reducing Dropout probability
● Usually opposite of overfitting solutions



Other Helpful Techniques

● Ensembling
○ Combine separately trained models for more robust predictions 

● Data Preprocessing
○ Mean-centering data 

● Batch Normalization
○ Encourage outputs after hidden layer to have zero mean, unit variance

● Curriculum Learning
○ During training, present examples in a certain order to speed up optimization

● Data Augmentation
○ Can augment training set with additional examples by applying transformations to input



Backpropagation / Gradient Calculation
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Matrix Calculus Primer

(We can transpose it to convert it 
to column shape)



Backpropagation Shape Rule and Dimension Balancing

● Dimension balancing is the “cheap” but efficient way to calculate gradients in most 
practical settings

● Read gradient computation notes to understand how to derive matrix expressions for 
gradients from first principles

● Dimension balancing approach should be used with a good understanding of what is 
happening behind it





Activation Function



Backpropagation

1. Identify intermediate functions (forward prop)

2. Compute local gradients

3. Combine with downstream error signal to get full gradient



Backpropagation

Loss Function:

Intermediate Variables:
(forward propagation)



Intermediate Variables:
(forward propagation)

Let’s do it for x first:



Intermediate Variables:
(forward propagation)

 Let’s continue with: 







Summary

● Identify intermediate functions (forward prop)

● Compute local gradients from top to bottom

● Use Dimension Balancing to double check ( or use it to achieve the final result 
in “hacky” way :) )



Dependency Parsing

CS224N Midterm Review

Rex Ying



Two views of Linguistic Structure

Constituency Structure uses phrase 
structure grammar to organize words 
into nested constituents.

Dependency Structure uses 
dependency grammar to identify 
which words depend on which other 
words (and how).



Dependency Parsing

● Asymmetric relations between words (head of the dependency to the 
dependent).

● Typed with the name of the grammatical relation.
● Usually forms a connected, single-head tree.
● Ambiguities exist



Greedy deterministic transition based 
parsing
● Bottom up actions analogous to shift-reduce parser
● States defined as a triple of words in buffer, words in stack and set of 

parsed dependencies.
● Discriminative classification
● Evaluation metrics: UAS,  LAS
● MaltParser



Projectivity

Projective arcs have no crossing arcs when the words are laid in linear order. 

However, some sentences have non-projective dependency structure



Handling non-projectivity

● Declare defeat
● Use post-processor to identify and resolve these non-projective dependencies
● Add extra transitions
● Use a parsing mechanism that doesn’t have projectivity constraint.



Neural Dependency Parsing
● Instead of sparse, one-hot vector representations used in the previous 

methods, we use embedded vector representations for each feature.
● Features used:

○ Vector representation of first few words in buffer and stack and their dependents
○ POS tags for those words
○ Arc labels for dependents



RNNs

CS224N Midterm Review

Sam Kim



Overview

● Language models

● Applications of RNNs

● Backpropagation of RNNs

● Vanishing gradient problem

● GRUs and LSTMs



A fixed-window neural Language Model

output distribution

hidden layer

concatenated word embeddings 

words / one-hots



A fixed-window neural Language Model
Improvements over n-gram LM:
• No sparsity problem
• Model size is O(n) not O(exp(n))

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 
• Window can never be large 

enough!
• Each         uses different rows 

of      . We don’t share weights 
across the window.



Recurrent Neural Networks (RNN) Core idea: Apply 
the same weights 
repeatedly

hidden states 

input 
sequence 

(any length)

…

…

…outputs 
(optional)



RNN Language Model

the students opened their

books
laptops

a zoo
output distribution 

hidden states 

is the initial hidden state

word embeddings

words / one-hot vectors



RNN Language Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Model size doesn’t increase for 

longer input
• Computation for step t can (in 

theory) use information from 
     many steps back
• Weights are shared across 

timesteps → representations are 
shared

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access 

information from many steps back 



RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT VBN NN



RNNs can be used for classification
e.g. sentiment analysis

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

equals

How to compute 
sentence encoding?

Basic way: 
Use final hidden state



RNNs can be used for classification
e.g. sentiment analysis

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise max 

or mean of all hidden 
states



RNNs can be used to generate text
e.g. speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

<START>

Can use a RNN Language Model to generate text by repeated 

sampling. Sampled output is next step’s input, typically by taking 

the argmax of each probability distribution.



Multivariable Chain Rule

Source:  
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-ve
rsion



Backpropagation for RNNs

Source:  
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-ve
rsion

…

In our 
example:

equalsequals

equals

Apply the multivariable chain 
rule:

= 1



Backpropagation for RNNs

…… Recall         appears at every time 
step. Calculate the sum of  

gradients w.r.t each time it appearsQuestion: Consider only the last two 
time steps, t and t-1.  
What’s the derivative           ? Leave 
as a chain rule



Backpropagation for RNNs

…… Recall         appears at every time 
step. Calculate the sum of  

gradients w.r.t each time it appears

Answer:

Question: Consider only the last two 
time steps, t and t-1.  
What’s the derivative           ? Leave 
as a chain rule



Backpropagation for RNNs

…… Recall         appears at every time 
step. Calculate the sum of  

gradients w.r.t each time it appears

Answer:

Question: Consider only the last two 
time steps, t and t-1.  
What’s the derivative           ? Leave 
as a chain rule

Looks scary!



Backpropagation for RNNs

……

However, similarly in HW2, let                               and

This simplifies to,
  



Backpropagation for RNNs

……

However, similarly in HW2, let                               and

This simplifies to,
  

Can see how the 
gradient can be unrolled 

for T time steps



Backpropagation for RNNs

……

can lead to vanishing or 
exploding gradients!



Gradient Problems
● Backprop in RNNs have a recursive gradient call for hidden layer
● Magnitude of gradients of typical activation functions (sigmoid, 

tanh) lie between 0 and 1. Also depends on repeated 
multiplications of W matrix.

● If gradient magnitude is small/big, increasing timesteps 
decreases/increases the final magnitude. 

● RNNs fail to learn long term dependencies. 
How to solve:
Exploding Gradients
● gradient clipping

Vanishing Gradients
● use GRUs or LSTMs



Vanishing Gradients

Question: (True/False) Adding L2-regularization will help with 
vanishing gradients



Vanishing Gradients

Question: (True/False) Adding L2-regularization will help with 
vanishing gradients

Answer: False. This will pull the weights toward 0, which can make 
vanishing gradients worse



Vanishing Gradients

Question: (True/False) Adding L2-regularization will help with 
vanishing gradients



Vanishing Gradients

Question: (True/False) Adding more hidden layers will solve the 
vanishing gradient problem for a 2 layer neural network

Answer: False. Making the network deeper by adding hidden layers 
will increase the chance of vanishing gradient problems



Gated Recurrent Units (GRU)
● Reset gate, rt
● Update gate, zt
● Intuition: 

○ High rt => Short-term 
dependencies

● High zt => Long-term 
dependencies (solves 
vanishing gradients problem) 



Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt  is close to 1, the net 
does not update its current state significantly

      



Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt  is close to 1, the net 
does not update its current state significantly

Answer: True. In this case, ht ≈ ht−1



Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt is close to 0 and the 
reset gate rt is close to 0, the net remembers the past state very well.



Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt is close to 1 and the 
reset gate rt is close to 0, the net remembers the past state very well.

Answer: False. In this case, ht  depends strongly on xt and not on 
ht−1



Long-Short-Term-Memories (LSTM)
● it: Input gate - How much 

does current input matter
● ft: Forget gate - How much 

does past matter
● ot: Output gate - How much 

should current cell be 
exposed

● ct: New memory - Memory 
from current cell 



Long-Short-Term-Memories (LSTM)

Source:  
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Backpropagation from ct to ct-1 only elementwise 
multiplication by ft. No longer only depends on 
dht/dht-1



Long-Short-Term-Memories (LSTM)

Question: (True/False) If ft is very small or zero, then error will not be 
back-propagated to earlier time steps

      



Long-Short-Term-Memories (LSTM)

Question: (True/False) If ft is very small or zero, then error will not be 
back-propagated to earlier time steps

Answer: False. it and ~ct also still depend on ht-1 



Long-Short-Term-Memories (LSTM)

Question: (True/False) The entries of ft, it and ot are non-negative.



Long-Short-Term-Memories (LSTM)

Question: (True/False) The entries of ft, it and ot are non-negative.

Answer: True. The range of sigmoid is (0,1)



Long-Short-Term-Memories (LSTM)

Question: (True/False) ft, it and ot can be viewed as probability 
distributions (entries sum to 1 and each entry is between 0 and 1)



Long-Short-Term-Memories (LSTM)

Question: (True/False)  ft, it and ot can be viewed as probability 
distributions (entries sum to 1 and each entry is between 0 and 1)

Answer: False. Sigmoid is applied independently element-wise. The 
sum need not be 1.


