
Midterm Review

CS224N/Ling284: Natural Language Processing with Deep Learning
Feb 8, 2018

Midterm
● Feb 13, 4:30-5:50, Memorial Auditorium
● Alternate exam: Feb 9(tomorrow), 4:00 - 5:20 pm, 200-303 (Lane

History Corner)
● One cheatsheet allowed (letter sized, double-sided)
● Bring a pencil and eraser to the midterm
● Covers all the lectures so far
● Approximate questions breakdown:

○ multiple choice and true false
○ short answers
○ more involved questions

● SCPD: Either show up or have an exam monitor pre-registered with
SCPD!!

Review Outline

● Word Vector Representations
● Neural Networks
● Backpropagation / Gradient Calculation
● Dependency Parsing
● RNNs

Word Vector Representations

CS224N Midterm Review

Michelle Mei

Word Vectors

Definition: A vector that captures the meaning of a word.

Sometimes can also be called as word embeddings or word representations.

We will be reviewing: Word2Vec and GloVe.

Word2Vec

Task: Learn word vectors to encode the probability of a word given its context.

Consider the following example with context window size = 2:

"I understand the word2vec model now”

Center word Context wordsContext words

Word2Vec

Task: Learn word vectors to encode the probability of a word given its context.

For each word, we want to learn 2 vectors:

v : input vector u : output vector

Two algorithms:

● Skipgram: predicts the probability of context words from a center word.
● Continuous Bag-of-Words (CBOW): predicts a center word from the

surrounding context in terms of word vectors.

Word2Vec - Skipgram

● Predicts the probability of context words from a center word.

● Let’s look at the previous example again:

"I understand the word2vec model now”

Center word Context wordsContext words

Word2Vec - Skipgram

● Predicts the probability of context words from a center word.

● Let’s look at the previous example again:

"I ? ? word2vec ? ?”

Center word Context wordsContext words

Word2Vec - Skipgram

"I ? ? word2vec ? ?”

● Generate a one-hot vector, wc of the center word, “word2vec”. It is a

|VocabSize|-dim vector with a 1 at the word index and 0 elsewhere.

● Look up the input vector, vc in V using wc. V is the input vector matrix.

● Generate a score vector, z = Uvc where U is the output vector matrix.

Word2Vec - Skipgram

"I ? ? word2vec ? ?”

● Turn the score vector into probabilities, ŷ = softmax(z).

● [ŷc - m , … , ŷc - 1, ŷc + 1 , … ,ŷc + m] : probabilities of observing each context word

(m is the context window size)

● Minimize cost given by: (F can be neg-sample or softmax-CE)

Word2Vec - Continuous Bag-Of-Words (CBOW)

● Predicts a center word from the surrounding context
● Let’s look at the previous example again:

"I understand the word2vec model now”

Center word Context wordsContext words

Word2Vec - Continuous Bag-Of-Words (CBOW)

● Predicts a center word from the surrounding context
● Let’s look at the previous example again:

"I understand the ? model now”

Center word Context wordsContext words

Word2Vec - Continuous Bag-Of-Words (CBOW)

"I understand the ? model now”

● Generate one-hot vectors, wc-m, … , wc - 1, wc + 1 , … ,wc + m for the context

words.

● Look up the input vectors, vc-m, … , vc - 1, vc + 1 , … ,vc + m in V using the one-hot

vectors. V is the input vector matrix.

● Average these vectors to get vavg = (vc-m + … + vc - 1 + vc + 1 + … + vc + m)/2m

Word2Vec - Continuous Bag-Of-Words (CBOW)

"I understand the ? model now”

● Generate a score vector, z = Uvavg where U is the output vector matrix.

● Turn the score vector into probabilities, ŷ = softmax(z).

● ŷ: probability of the center word.

● Minimize cost given by: (F can be neg-sample or softmax-CE)

GloVe

● Like Word2Vec, GloVe is a set of vectors that capture the semantic

information (i.e. meaning) about words.

● Unlike Word2Vec, Glove makes use of global co-occurrence statistics.

● Fast Training

● Scalable to huge corpora

● Good Performance even with small corpus and small vectors

“GloVe consists of a weighted least squares model that trains on global

word-word co-occurrence counts.”

GloVe

Co-occurrence Matrix (window-based):

Corpus:

● I like Deep Learning.

● I like NLP.

● I enjoy flying.

GloVe

● Let X be the word-word co-occurrence counts matrix.
○ Xi is the number of times any word k appears in the context of word i.
○ Xij is the number of times word j occurs in the context of word i.

● Like the case in Word2Vec, each word has 2 vectors, input (v) and output (u).

● The cost function:

GloVe

● In the end, we have V and U from all the input and output vectors, v and u.

● Both capture similar co-occurrence information, and so the word vector for a

word can be simply obtained by summing u and v up!

Evaluate Word Vectors

● Intrinsic Method

○ Word Vector Analogies: Evaluate word vectors by how well their cosine distance after addition

captures intuitive semantic and syntactic analogy questions.

● Extrinsic Method

○ Entity recognition

Neural Networks

CS224N Midterm Review

Amani V. Peddada

Loss Functions
● Prediction of category or label (classification)

○ Softmax + Cross-Entropy Loss: optimize correct class probability

○ Max-Margin Loss: optimize margin between correct class score and incorrect
class scores.

● Prediction of real values or continuous outputs (regression)

○ L2 Loss:

○ Others: L1, etc.

Network Structure
● Recall: forward pass of a neural network.

Hidden layers computed as follows:

● Number of hidden layers/size of each hidden
layer affects representational power. More
parameters => more expressive model.

● Initialization is important
○ Small random numbers (e.g. Xavier/Glorot)

for weight matrices.

Linear Model

Multilayer Neural Network

Non-Linearities

● Responsible for network’s expressiveness -- otherwise just a linear model
● Beware of saturation and “dead” neurons
● Other variants: PreLu, Maxout, Hard Tanh

Gradient Check

● Used to verify correctness of the analytic gradient

● Compute numerical gradient using the central difference formula:

● Vary one dimension of parameters at a time, observe change in output
function (loss)

● Potentially very expensive to compute over large numbers of parameters; can
sanity check by checking only a few dimensions a time

Optimization
● Optimize loss function with Gradient Descent to compute parameter updates:

● Taking gradient over entire training set is expensive, so use mini-batches
(Stochastic Gradient Descent)

● In addition to SGD, there are more complicated updates: Adam (see PA2),
AdaGrad, RMSProp, Nesterov Momentum, etc.

● Sanity check: If network is working properly, should be able to get close to 0 loss
on small subset of training data.

● May be helpful to randomize order of examples

Monitoring Learning Curves

● Plot training loss as a function of
iteration/time.

● Adjusting learning rate
○ Training loss increases => learning rate too

high
○ Training loss plateaus at high value => learning

rate too high
○ Linear decrease in training loss => learning

rate too low
○ May be helpful to anneal learning rate over

time

Monitoring Learning Curves
● Also should compare training and validation

loss/accuracies

● Large gap => Overfitting: Model does not
generalize well to unseen data

● Bad training performance=> Underfitting:
Model is not powerful enough to learn the
training data, resulting in bad performance on
both training and validation datasets.

● Note: do not compare to test set, which is
reserved for final evaluation.

Handling Overfitting
● Add Dropout

○ Constrain each neuron to learn more meaningful
information.

○ Can also be interpreted as an “ensemble” of smaller
networks.

○ Need to scale activations to maintain expected value
(see PA2)

● L2 Regularization
○ Add with tunable lambda for non-bias

parameters
○ Encourages weights to be more spread out, place

less emphasis on any one input dimension

● Reduce Network depth/size
● Reduce input feature dimensionality
● Early Stopping
● Others: Max-Norm, L1 penalty, DropConnect etc.

Handling Underfitting

● Increase model complexity/size
● Decreasing regularization effects
● Reducing L2 penalty weight
● Reducing Dropout probability
● Usually opposite of overfitting solutions

Other Helpful Techniques

● Ensembling
○ Combine separately trained models for more robust predictions

● Data Preprocessing
○ Mean-centering data

● Batch Normalization
○ Encourage outputs after hidden layer to have zero mean, unit variance

● Curriculum Learning
○ During training, present examples in a certain order to speed up optimization

● Data Augmentation
○ Can augment training set with additional examples by applying transformations to input

Backpropagation / Gradient Calculation

CS224N Midterm Review

Huseyin A. Inan

Matrix Calculus Primer

(We can transpose it to convert it
to column shape)

Backpropagation Shape Rule and Dimension Balancing

● Dimension balancing is the “cheap” but efficient way to calculate gradients in most
practical settings

● Read gradient computation notes to understand how to derive matrix expressions for
gradients from first principles

● Dimension balancing approach should be used with a good understanding of what is
happening behind it

Activation Function

Backpropagation

1. Identify intermediate functions (forward prop)

2. Compute local gradients

3. Combine with downstream error signal to get full gradient

Backpropagation

Loss Function:

Intermediate Variables:
(forward propagation)

Intermediate Variables:
(forward propagation)

Let’s do it for x first:

Intermediate Variables:
(forward propagation)

 Let’s continue with:

Summary

● Identify intermediate functions (forward prop)

● Compute local gradients from top to bottom

● Use Dimension Balancing to double check (or use it to achieve the final result
in “hacky” way :))

Dependency Parsing

CS224N Midterm Review

Rex Ying

Two views of Linguistic Structure

Constituency Structure uses phrase
structure grammar to organize words
into nested constituents.

Dependency Structure uses
dependency grammar to identify
which words depend on which other
words (and how).

Dependency Parsing

● Asymmetric relations between words (head of the dependency to the
dependent).

● Typed with the name of the grammatical relation.
● Usually forms a connected, single-head tree.
● Ambiguities exist

Greedy deterministic transition based
parsing
● Bottom up actions analogous to shift-reduce parser
● States defined as a triple of words in buffer, words in stack and set of

parsed dependencies.
● Discriminative classification
● Evaluation metrics: UAS, LAS
● MaltParser

Projectivity

Projective arcs have no crossing arcs when the words are laid in linear order.

However, some sentences have non-projective dependency structure

Handling non-projectivity

● Declare defeat
● Use post-processor to identify and resolve these non-projective dependencies
● Add extra transitions
● Use a parsing mechanism that doesn’t have projectivity constraint.

Neural Dependency Parsing
● Instead of sparse, one-hot vector representations used in the previous

methods, we use embedded vector representations for each feature.
● Features used:

○ Vector representation of first few words in buffer and stack and their dependents
○ POS tags for those words
○ Arc labels for dependents

RNNs

CS224N Midterm Review

Sam Kim

Overview

● Language models

● Applications of RNNs

● Backpropagation of RNNs

● Vanishing gradient problem

● GRUs and LSTMs

A fixed-window neural Language Model

output distribution

hidden layer

concatenated word embeddings

words / one-hots

A fixed-window neural Language Model
Improvements over n-gram LM:
• No sparsity problem
• Model size is O(n) not O(exp(n))

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges
• Window can never be large

enough!
• Each uses different rows

of . We don’t share weights
across the window.

Recurrent Neural Networks (RNN) Core idea: Apply
the same weights
repeatedly

hidden states

input
sequence

(any length)

…

…

…outputs
(optional)

RNN Language Model

the students opened their

books
laptops

a zoo
output distribution

hidden states

is the initial hidden state

word embeddings

words / one-hot vectors

RNN Language Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Model size doesn’t increase for

longer input
• Computation for step t can (in

theory) use information from
 many steps back
• Weights are shared across

timesteps → representations are
shared

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

information from many steps back

RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT VBN NN

RNNs can be used for classification
e.g. sentiment analysis

the movie a lotoverall I enjoyed

positive

Sentence
encoding

equals

How to compute
sentence encoding?

Basic way:
Use final hidden state

RNNs can be used for classification
e.g. sentiment analysis

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise max

or mean of all hidden
states

RNNs can be used to generate text
e.g. speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

<START>

Can use a RNN Language Model to generate text by repeated

sampling. Sampled output is next step’s input, typically by taking

the argmax of each probability distribution.

Multivariable Chain Rule

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-ve
rsion

Backpropagation for RNNs

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-ve
rsion

…

In our
example:

equalsequals

equals

Apply the multivariable chain
rule:

= 1

Backpropagation for RNNs

…… Recall appears at every time
step. Calculate the sum of

gradients w.r.t each time it appearsQuestion: Consider only the last two
time steps, t and t-1.
What’s the derivative ? Leave
as a chain rule

Backpropagation for RNNs

…… Recall appears at every time
step. Calculate the sum of

gradients w.r.t each time it appears

Answer:

Question: Consider only the last two
time steps, t and t-1.
What’s the derivative ? Leave
as a chain rule

Backpropagation for RNNs

…… Recall appears at every time
step. Calculate the sum of

gradients w.r.t each time it appears

Answer:

Question: Consider only the last two
time steps, t and t-1.
What’s the derivative ? Leave
as a chain rule

Looks scary!

Backpropagation for RNNs

……

However, similarly in HW2, let and

This simplifies to,

Backpropagation for RNNs

……

However, similarly in HW2, let and

This simplifies to,

Can see how the
gradient can be unrolled

for T time steps

Backpropagation for RNNs

……

can lead to vanishing or
exploding gradients!

Gradient Problems
● Backprop in RNNs have a recursive gradient call for hidden layer
● Magnitude of gradients of typical activation functions (sigmoid,

tanh) lie between 0 and 1. Also depends on repeated
multiplications of W matrix.

● If gradient magnitude is small/big, increasing timesteps
decreases/increases the final magnitude.

● RNNs fail to learn long term dependencies.
How to solve:
Exploding Gradients
● gradient clipping

Vanishing Gradients
● use GRUs or LSTMs

Vanishing Gradients

Question: (True/False) Adding L2-regularization will help with
vanishing gradients

Vanishing Gradients

Question: (True/False) Adding L2-regularization will help with
vanishing gradients

Answer: False. This will pull the weights toward 0, which can make
vanishing gradients worse

Vanishing Gradients

Question: (True/False) Adding L2-regularization will help with
vanishing gradients

Vanishing Gradients

Question: (True/False) Adding more hidden layers will solve the
vanishing gradient problem for a 2 layer neural network

Answer: False. Making the network deeper by adding hidden layers
will increase the chance of vanishing gradient problems

Gated Recurrent Units (GRU)
● Reset gate, rt
● Update gate, zt
● Intuition:

○ High rt => Short-term
dependencies

● High zt => Long-term
dependencies (solves
vanishing gradients problem)

Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt is close to 1, the net
does not update its current state significantly

Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt is close to 1, the net
does not update its current state significantly

Answer: True. In this case, ht ≈ ht−1

Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt is close to 0 and the
reset gate rt is close to 0, the net remembers the past state very well.

Gated Recurrent Units (GRU)

Question: (True/False) If the update gate zt is close to 1 and the
reset gate rt is close to 0, the net remembers the past state very well.

Answer: False. In this case, ht depends strongly on xt and not on
ht−1

Long-Short-Term-Memories (LSTM)
● it: Input gate - How much

does current input matter
● ft: Forget gate - How much

does past matter
● ot: Output gate - How much

should current cell be
exposed

● ct: New memory - Memory
from current cell

Long-Short-Term-Memories (LSTM)

Source:
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Backpropagation from ct to ct-1 only elementwise
multiplication by ft. No longer only depends on
dht/dht-1

Long-Short-Term-Memories (LSTM)

Question: (True/False) If ft is very small or zero, then error will not be
back-propagated to earlier time steps

Long-Short-Term-Memories (LSTM)

Question: (True/False) If ft is very small or zero, then error will not be
back-propagated to earlier time steps

Answer: False. it and ~ct also still depend on ht-1

Long-Short-Term-Memories (LSTM)

Question: (True/False) The entries of ft, it and ot are non-negative.

Long-Short-Term-Memories (LSTM)

Question: (True/False) The entries of ft, it and ot are non-negative.

Answer: True. The range of sigmoid is (0,1)

Long-Short-Term-Memories (LSTM)

Question: (True/False) ft, it and ot can be viewed as probability
distributions (entries sum to 1 and each entry is between 0 and 1)

Long-Short-Term-Memories (LSTM)

Question: (True/False) ft, it and ot can be viewed as probability
distributions (entries sum to 1 and each entry is between 0 and 1)

Answer: False. Sigmoid is applied independently element-wise. The
sum need not be 1.

