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Abstract

Language modeling is likely the most fundamental task of deep natural language
processing, and it has numerous practical applications from facilitating text gen-
eration by humans to helping researchers evaluate the progress and “intelligence”
of Al As a result, language modeling is a fertile ground for experimenting with
new architectures and variations on existing ones. In this paper we expand on the
idea of incorporating long-term memory into standard recurrent neural networks
by including a cache that stores the hidden states of previous training examples.
Predictions incorporating cached information can be made using an additional at-
tention mechanism that operates over the cache. We conclude that cache attention
does indeed improve the accuracy of standard attention-based recurrent language
models by about 5 percentage points. We finally address inefficiencies and poten-
tial improvements to our cache implementation.

1 Introduction

Sentence completion is perhaps one of the most fundamental tasks of artificial intelligence-driven
natural language processing. Its obvious applications are already included in ubiquitous products,
such as iMessage and Google Search. In some contexts, however, sentence completion is not a trivial
task, as it requires considerable of both syntactic and semantic knowledge, as well as a general “’real-
world” knowledge. As an example, consider the sentence, ”Aizac is a town and commune of the
Ardche dpartement, in the southern part of _.” The correct response is “France,” but this requires the
knowledge that Aizac and Ardche belong in France, and not in Belgium, for example. At the very
least, it requires an understanding that Aizac and Ardche are ”French-sounding” words.

Our aim in this work is to improve on the baseline recurrent neural network, which has shown
considerable effectiveness for natural language applications [1]. We will do this by adding two
attention mechanisms, the first of which is a self-attentive mechanism following Vaswani et al. [2].
The second is an attention mechanism that operates over a cache of a constant number of previously
seen training examples. While the effectiveness of attention has been well established, we will seek
to evaluate the performance of cache attention in this work.

Our motivation for exploring cache attention is the observation that in attempting to complete the
last word in a sentence, the necessary information is often not included in the sentence itself. To
make accurate predictions, a model must not only be trained on a corpus of broad human knowledge
(such as Wikipedia), but it must also store relevant facts about the world. Given a limited volume
of memory space, we can of course only store the most relevant pieces of information. Thus, we
believe that by storing information about important sentences the model has previously trained on,
we may enhance future prediction accuracy.



2 Related Work

There has been considerable research into neural sentence completion, although not all of it focuses
on predicting the last word. A traditional approach uses N-gram modeling [3] but this approach
suffers from a limited context and sparse data for larger contexts. More recently, language modeling
has been approached using neural networks, specifically, the large family of recurrent neural net-
works (RNN’s) [4]. Mikolov et al. [5] made one of the most significant breakthroughs in this field,
although in their case language modeling served as merely an objective task in learning word vector
representations. The basic recurrent model has been improved significantly by additions such as
long short-term memory (LSTM) cells and gated recurrent units (GRU) [6] and the attention mech-
anism [2]. For the task of sentence completion, various classes of models may even be merged; for
example, by incorporating the output of a neural dependency parse [7].

Besides using word prediction as a task for generating word vectors, sentence completion also has
many extrinsic applications. Zweig et al. [4] for example, apply sentence completion to fill-in-the-
blank SAT vocabulary questions.

Language models that include some form of long-term memory have similarly been introduced in
various forms. The most basic cache model simply saves a unigram representation of previous exam-
ples and uses them to predict the current example [8]. A more modern extension of this principle is
proposed by Grave et al. [9], who store hidden states and word predictions as tuples in a dictionary-
like structure. These states are then used to define a probability distribution for retrieving a stored
word from memory.

More complex architectures include Memory Networks [10] and their variants such as Dynamic
Memory Networks [11]. The former proposes a general method for inserting each input into an
external memory, and prediction can be conducted by using a subset of the memory as input for
a neural network. The latter trains distinct RNN’s for four separate modules - the input, question,
episodic memory, and answer. This architecture proposes a solution to the difficulties experienced
by a single RNN on documents with a large number of timesteps. However, given our limited
resources, the computational burden of training such a network is impractical, particularly since the
episodic memory module requires multiple iterations to update its state. Additionally, this model
differs from the approach we will detail below in that assumes the input information is structured in
a long list of sentences.

3 Approach

3.1 Neural Network

Our basic approach uses a recurrent neural network to predict the last word in a sentence. We omit
the prediction of the successor word at every timestep for simplicity. Formally, given a sentence of
length n, our input is the vector [x1, ..., %, _1] and we aim to predict x,,. Here, each z; is a word
embedding. At each timestep, a hidden state h; is computed given the current word z; and the
previous hidden state h;_;. In our specific implementation, h; is computed using a standard LSTM
cell. Finally, the last hidden state h,,_ is transformed into a |V'|-dimensional vector over which a
softmax is taken.

3.2 Attention

We also incorporate an attention mechanism that uses a nonlinear transformation of the final hidden
state with all previous hidden states. In other words, h,,_; is compared against every other h;<;—1
to generate an attention weight for each timestep. In this implementation we use additive attention.
For a timestep ¢, the attention weight is given by

a; = v tanh(Why)

where tanh is applied element-wise. The weights are normalized into a probability distribution using
a softmax function. The last hidden state h,,_; is then updated incorporating attention by setting

n—1
hi—1 = E ahg
t=1



The word prediction may then proceed as described above. Although attention was developed for
sequence-to-sequence learning to counter the bottleneck problem in extrapolating an entire sentence
from a single hidden state, attention is also useful in our case assist the RNN in maintaining a
longer memory. Although LSTM cells help mitigate a traditional RNN’s bias towards recent inputs,
attention helps the model consider all past states more equally.
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Figure 1: An LSTM RNN incorporating attention as described in (3.1) and (3.2)

3.3 External Memory

The external cache used by our model can be conceptualized in two different ways depending on
whether the memory is being written to or read from.

At prediction time, when the model is reading from the cache, the cache can be viewed as a matrix
C. Each row contains the last hidden state h,,_; of some previous training example. Hidden states
stored in the cache incorporate the attention mechanism detailed above. At prediction time, the
attention weights for each cache entry are computed using the same attention mechanism described
above on a sentence level, where
a; = vztanh(WcCi)

for a cache entry . Whereas the sentence-level attention weights can be conceptualized as lending
importance to particular words, the cache-level weights lend importance to particular entries in the
matrix. The attention weighted cache is then multiplied by another weight variable and added to the
final hidden state of the sentence currently being predicted.

After a prediction is made, we must now decide whether to store the final hidden state of the current
input sentence or discard it. As described above, the cache attention score for a particular hidden
state is easily interpretable as an “importance” metric for the sentence in question, and thus may be
used to store only the highest-scoring hidden states in the cache.

At write-time, the model’s memory may be conceptualized as a binary min-heap. In this construc-
tion, each node, corresponding to a hidden state, must have a lower cache attention weight than
either of its children. After the model computes a hidden state for the current training example, the



state will be discarded if its score is less than the score of the root. Otherwise, the current state
will replace the root and then sift-down until reaching its proper location. Maintaining the cache in
this manner allows us to approximate a O (logn) runtime for insertions, assuming the cache has size
O(n). This also assumes the hidden state size, h, is much smaller than n, otherwise the insertion
time is O(hlogn).

Unfortunately, since W, and v, are variables subject to continual update, the min-ordering properties
and runtime cannot be guaranteed, but merely approximated. This limitation may also inhibit the
model from learning appropriate weights for each cache entry; we expect the weights to increase
for the lower branches of the heap, but if the heap is not well-ordered, the weights may be uniform
instead.

(t-1)
h;

/\

t-1
( ) h(t 1)

/\ e

Figure 2: A binary min-heap storing hidden states from previous training examples. We
hope to approximate the property that v tanh(W.h{""")) is less than vCTtanh(Wch;t_l)) and
vItanh(W, h(t 1))

4 Experiments

4.1 Data and Implementation

Our data is taken from Zhu et al. [12] which use the data for a sentence simplification task. We
originally intended to perform experiments with increasing the verbosity of sentences, for which a
parallel sentence corpus was necessary, but we later switched to our current task. We selected the
subset of the corpus that was drawn from Wikipedia (the other half of the corpus was drawn from
the Simple English Wikipedia.) We trained on a random subset of 70% of the data, evaluated on
10%, and tested on the remaining 20%.

The project was implemented using Tensorflow. All experiments were performed using a single
GPU on the Microsoft Azure platform.

4.2 Evaluation Methods

Cross-entropy loss was chosen as an optimization metric for the model. For an individual training
example ¢, the loss is computed as
4

LO = =3y Plog(35")
j=1

where (7)(*) is the predicted label and y(*) is a one-hot encoding of the true label. |V| denotes the
size of the vocabulary.



Aside from the optimization function, our primary evaluation metric is accuracy, even though this
has many flaws. For example, consider the sentence, “In general relativity, gravitational radiation
is made at times where the curvature of spacetime is moving in waves, such as is the case with
co-orbiting _.” The correct answer from Wikipedia is “objects,” but it is obvious that some other
responses, such as “bodies,” “planets,” or stars” are equally plausible. If either a machine or a
human responds inaccurately, it is because accuracy is an unfair metric. However, on average, we
expect accuracy to capture the relative skills of humans and machines in performing the modeling
task.

4.3 Results

First, to center expectations for our results, we evaluated human performance on the same task. We
randomly selected a subset of 100 sentences from the entire corpus, removed the last word, and
asked a group of 8 Stanford students to predict the missing word for each example. On average, this
group achieved a 36% accuracy rate. While our sample size is indeed limited, and the results may
be higher than those of the population at large, we believe this represents a satisfactory benchmark
with which to evaluate our model’s performance.

Our first experiment attempted to predict the last word of a sentence using a basic LSTM RNN
without the attention mechanism. This model constitutes our baseline. To reduce computational
effort, we limit RNN unrolling to 40 timesteps for the baseline model and all other extended models
presented below. We use the Adam optimization algorithm [13] with a learning rate of 0.01. We
also initialize word embeddings with pre-trained 100-dimensional GloVe vectors [14] trained on a
Wikipedia corpus. Unless otherwise specified, all models also use a hidden layer size of 128 and
a single stacked layer. We incorporate gradient clipping to counter the possibility of exploding
gradients by clipping each gradient to a maximum norm of 5.0.

The vanilla RNN performs the task adequately, but does not achieve a cross-entropy validation loss
lower than approximately 8.0, which corresponds to an accuracy of 7.02%. See Figure 3 for a graph
of the learning progress of the vanilla model.
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Figure 3: The training progress of the vanilla LSTM RNN. Note that learning plateaus at a validation
cross-entropy loss of about 8.0. This corresponds to an accuracy of approximately 7%.

To improve performance, our next experiment incorporated a standard attention mechanism. At first,
this addition provided no improvement over the previous vanilla model. Learning still plateaued
after a relatively short amount of time. We attempted therefore to incorporate various forms of reg-
ularization such as dropout and the addition of an L2 norm penalty. Dropout, however, proved to
be remarkably ineffective, and did not mitigate the model’s propensity to overfit at all. In fact, in-
creasing the drop probability appears to have increased the level of overfitting, while simultaneously
slowing the learning rate.

We met with more success by adding an L2 norm penalty for all trainable variables to the cross-
entropy objective function. Although adding a regularization penalty makes the ending loss value
somewhat less interpretable, we found that a weight of 1e — 5 resulted in the best accuracy. Accuracy
rates for each of the three weights attempted are displayed below.



Figure 4: The training progress of an RNN with attention. Note the similarity with the previous
figure in that learning plateaus in about the same place.

Table 1: Model accuracy with L2 regularization
WEIGHT VALIDATION

le—6 18.0%
le—5 28.2%
le—4 8.7%

Finally, we present our experiments with cache attention. For all following models, we use the
best regularization weight from above, 1le — 5. We experimented with cache sizes of 100, 1,000,
and 10,000. The accuracy results are presented below. As our final experiment, we also present
accuracy on the test set, which is comparable to the validation accuracy. Only the size 1,000 cache
outperforms the standard model with attention, but it does so by a significant margin. We believe
that for a cache of size 100, not enough information can be retained to improve performance by a
significant degree, while for a cache of size 10,000, overfitting is induced. After all, the size of our
training data is only some 80,000 observations, so a cache of size 10,000 stores over 12% of the
total data.

Table 2: Model accuracy with caching
CACHE SIZE VALIDATION TEST

100 28.9% 28.1%
1,000 33.6% 32.9%
10,000 28.7% 28.0%

We also present a visualization of the attention scores for hidden states stored in the cache at the end
of training. The results were quite surprising to us. We expected the weights to approximately re-
semble a step-wise function, where the attention score would gradually increase towards the bottom
of the cache. Assuming the min-heap property holds, we should indeed see lower scoring elements
towards the top and higher scoring elements towards the bottom. The figure shows that this is par-
tially the case; we observe a subtle step upwards as the cache index increases. However, we also
note a more interesting pattern, which is why we chose to present the graph on a logarithmic scale.
Observe the regular spacing of the peaks in the distribution, and observe that the distribution is
sparse precisely at consecutive powers of two. If we assume that the min-heap property is upheld,
this result is unexpected, since we expect elements with the same tree depth to have approximately
the same weight. Instead, it is clear that the model assigns a very low weight to elements on the side
edges of the tree structure.
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Figure 5: The training progress of an RNN with attention. Note the similarity with the previous
figure in that learning plateaus in about the same place.

We lack an adequate explanation for this result, but we propose a probabilistic interpretation. First,
note that our implementation is such that at the beginning of training, each successive example is
inserted into the heap until there is no more room. Since the cache becomes filled relatively early
in the training process, at the point when the cache attention weights are still relatively random, the
attention scores of the elements in the cache are essentially random compared to their later values
once the weights have been updated. As a result, when inserting a new state into the heap and sifting
it down to maintain the min-heap property, it becomes exponentially more likely that the inserted
state will land in the center of the tree rather than the edges. As a result, the model quickly learns to
a assign a low weight to elements on the sides of the tree.

5 Conclusion and Future Work

In this paper we have shown that an external cached memory has the capacity to improve the per-
formance of deep recurrent language models. Our extension to the construct of a long-term cache
uses a standard additive attention mechanism to assign weight to distinct cache entries. This mech-
anism allows the model to incorporate information from previously seen examples into the current
prediction in a more explicit way.

We find that incorporating a cache of size 1,000 (about 1% of the size of our training corpus) im-
proves accuracy on a word prediction task by nearly 5 percentage points relative to a baseline RNN
with attention.

In the future, we may seek a more adequate explanation for the intriguing pattern of cache use noted
in the section above. Assuming our proposed explanation is correct, a potential solution may be
to periodically “sweep” the cache by removing low weight elements from the sides of the heap.
It would also be interesting to apply the same cache attention design to different cache elements.
In other words, we could experiment with storing vector representations of n-grams. Our imple-
mentation stores sentence representations, but sub-optimally, it may be argued, since the stored
representations omit the last word. Instead, perhaps we could store sentence embeddings trained
using a ’skip-thought” model.

Please find code at https://github.com/cpgaffneyl/cs224n_proj.
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