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Abstract

Toxic online comments are a challenge for websites that accept user-submitted
content, and human moderation is a psychologically difficult task that does not
scale well. We present a framework for using deep learning to automatically iden-
tify and categorize toxic online comments into 6 overlapping sub-categories. We
employ a bidirectional LSTM architecture with an attention mechanism to achieve
a mean ROC AUC of .9778 on a blind test set. We use the normalized attention
weights to visualize the activation of our network in response to each word within
a sentence, and find qualitative agreement with human intuition.

1 Introduction

Many websites that display user-submitted content must deal with toxic or abusive comments. Hu-
man moderation may catry psychological risk to the moderators [1], and is difficult to implement
at scale. Potential automated solutions will require not just binary classification (acceptable vs.
blocked) but fine-grained comment classifications to maintain civility without interfering with nor-
mal discourse and provide explanations to users when their posts are censored. Different websites
may wish to have different policies for dealing with different kinds of toxic content. For example, a
website may want to allow insulting comments while still blocking threats and identity-based hate
speech.

In this project, we attempt to improve the identification and fine-grained classification of toxic online
comments in a dataset provided by a Kaggle challenge ! Our dataset consists of 159,571 comments
from Wikipedia talk page edits which have been labeled by human raters for the presence of toxic
behavior. The 6 types of toxicity are: toxic, severe_toxic, obscene, threat, insult,
and identity_hate. A sample of entries from the dataset is shown in Figure 1.

In this report, we will describe a baseline approach to this multi-label classification task using a
three-layer feed-forward neural network with averages of word-vector sentence embeddings as in-
puts. We will then describe our experiments with uni- and bidirectional long short-term memory
(LSTM) and gated recurrent unit (GRU) architectures, and demonstrate a significant improvement
in performance with the addition of an attention mechanism. Finally, we present the results of apply-
ing our framework to the dataset, including visualizations of the model’s weighting of input words
via the attention mechanism.

2 Background and Related Work

The earliest work on machine learning-based detection of online harassment can be traced back
to Yin et al. [2], where they fed content, sentiment and contextual features into a support vector

1https ://www.kaggle.com/c/jigsaw-toxic—comment-classification-challenge



comment text toxic severe toxic obscene threat insult identity hate

Explanation\nWhy the edits made under my usern... 0 0 0 0 0 0
COCKSUCKER BEFORE YOU PISS AROUND ON MY WORK 1 1 1 0 1 0
“\nFair use rationale for Image:Wonju.jpg\n\nT... 0 0 0 0 0 0

Would you both shut up, you don't run wikipedi... 1 0 0 0 1 0

Hil | am back againf\nLast warning/\nStop undo... 1 0 0 1 0 0

Thanks much - however, if it's been resolved, ... 0 0 0 0 0 0

Its common sense dumbass, it was a fight in th... 0 0 1 0 1 0

Exactly my thoughts, it doesn't belong in the ... 0 0 0 0 0 0

Figure 1: A selection of comments from our training dataset, showing the large diversity of the
corpus and the ability of a comment to have multiple labels. Also, note that while toxic is a
superset of severe_toxic, it is not a superset of the other 4 labels.

machine to classify instances of harassment. More recently, a paper by the group that created the
dataset used in the Kaggle challenge [3] focused on binary identification of toxic comments (no
fine-grained classification). They found success with relatively simple n-gram NLP methods, and
left more complex methods (like LSTMs) as future work.

In last year’s CS224n class, a group of students looked at the same Wikipedia corpus and performed
binary classification (personal attacks vs non personal attacks) using an LSTM architecture and
word-level embeddings, a convolutional neural network (CNN) with word-level embeddings, and a
CNN with character-level embeddings [4]. They found the CNN with character-level embeddings
to be the most successful algorithm.

For our project, we decided to take a different approach and investigate whether applying attention
to this problem could improve the performance of word-level embeddings, inspired by Yang et al.

[5].

3 Approach

3.1 Data and Preprocessing

To convert the raw text data into usable form, we tokenize the input using the n1tk package [6].
Since each of the comments is of a different length, we pad or crop the token lists from each comment
to a uniform length and mask the (pad) tokens in the RNN output layer (or attention layer, once we
started using it).

To represent each word token in the input comments, we perform word embedding using the 300-
dimensional pretrained global vectors for word representation (GloVe) [7], which was trained using
aggregated global word-word co-occurrence statistics on 6 billion tokens from Wikipedia and Giga-
word corpora [8] with a vocabulary size of 400k.

Finally, we create input vectors of int32 word indices using the word2id mappings included
with the pretrained GloVe vectors. We held back a random 30% of the training data to use as a dev
set for testing the out-of-sample performance of our models.

Many offensive words posted online are not a part of the 400k words that form the GloVe vocabulary,
and therefore map to the (unk) token. Since identifying such offensive words should improve our
performance, if a token contains as a substring any member of a list of common vulgarities that are
not commonly found as substrings of inoffensive words (refer to our code for details), we map the
composite token to the root vulgarity.

Another observation about our dataset is the large imbalance in number of examples of each label
(see Table 1). We deal with this problem by weighting the contributions of labels inversely to their
occurrence in the training data, normalized to 1 for toxic comments (the most common label). These
weights cause larger gradients to backpropagate from mistakes on the rarer labels. In this way, we
learn more from each example of the more uncommon labels.



Category # of examples | % of dataset
No label 143346 89.8%
Toxic 15294 9.6%

Severe Toxic 1595 1.0%

Obscene 8449 5.3%
Threat 478 0.3%
Insult 7877 4.9%
Identity Hate 1405 0.9%

Table 1: Counts of occurences of each label category, and percentages of comments in the dataset
with the given label (these do not sum to 100% because a single comment can have multiple labels).

3.2 Baseline model

We implemented a fully-connected feedforward neural network as our baseline model. The inputs
of the model are the average of the 300d GloVe embeddings of all tokens in each comment. Note
that no comment padding is necessary in this model, as the averaging procedure reduces comments
of any length to a uniform size.

The neural network consists of 3 hidden layers with ReLU activation function [9], with 30, 20, 10
hidden units in each hidden layer, respectively. Since our goal is to perform multi-label classification
(i.e. the toxicity labels are not mutually exclusive), the outputs of the last hidden layer is fed into a
sigmoid output layer (rather than a softmax layer, which would force the 6 class probabilities to add
up to 1) with 6 units, which correspond to the predicted probabilities of each of the 6 labels. The
cross entropy function is used as the loss. The neural architecture can be defined as follows:

h; = ReLu(xW; + by)

hs = ReLu(hq W5 + by)

h3 = ReLu(hoW3 + bs3)
g =o0(hsWy+by)

6
J=CE(y,9) =—Y_ yilog(f)
i=1

where
= RBXSOO,hl c RBXBO,hQ c RBXQO,hg c RBXH),Q c RBXG,y c RBXG

and B is the batch size. In this baseline model and throughout this work, all bias terms are initialized
to zero, while all weight matrices are initialized using Xavier initialization [10].

With this baseline model, we found relatively good dev set performance as measured by the ROC
curves for each toxicity type (see Figure 2). The mean ROC AUC across the 6 labels on the blind
test set was 0.9490, which is good performance for a baseline, but placed us 0.04 behind the leading
Kaggle entry. The similarity between the train and dev set curves shows that we were not suffering
from severe overfitting.

Since the number of true negatives (non-toxic comments) in our dataset is large (see Table 1), and
ROC curves plot the true positive rate (I’PR = TP/(TP + FN)) vs. the false positive rate
(FPR = FP/(FP + TN)), their appearance is biased by this imbalance in our dataset. However,
since the mean AUC for these ROC curves was the official metric of the Kaggle challenge, we used
these as our primary evaulation metric.

For a more direct measure of our classifier’s performance for each label, we also plotted the precision
vs. recall performance of our baseline classifier (shown at right in Figure 2). Here we see that our
performance is better for the labels that have more training examples.

3.3 Recurrent Architectures

Our baseline model achieved relatively good performance, but we thought that we could improve
it by building a recurrent neural network (RNN) model that is able to use positional information of
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Figure 2: The ROC and precision-recall curves for our baseline model’s performance on each toxi-
city type as classified by our baseline model.

each of the words rather than an average over the entire sentence. We found that RNNs with GRU
and LSTM cells were superior to a vanilla RNN architecture, but the differences between LSTM
and GRU were minor, so we decided to focus on networks with LSTM cells.

We implemented our models in Python using tensorflow [11]. For the LSTM cells that form the
backbone of our architecture, we use the tensorflow implementation of the original LSTM equations
from [12], shown below:

it =0 (a:tW(i) + ht_lU(i)>
fi=o0 (th(f) + ht—lU(f))
o=0 (a:tW(") 4+ ht—lU(o))

&, = tanh (th@ 4 ht_lU(°)>

ci=froci_1+1 06

h; = o; o tanh(c;)

The LSTM architecture allows information to flow long distances across the unrolled network (if
ft = 1and i; = 0, the previous state flows straight through the network), but also prevent exploding
gradient problems (o; modulates strength of output at each step, and f; = 0 allows prior states to be
forgotten so backpropagation need not continue all the way back to ¢ = 0). We also investigated the
use of GRU cells (which have similar properties) for this task and found comparable performance to
LSTM cells, so we omit their equations here [13].

For a unidirectional LSTM architecture, it is possible to use the hidden state of the final time step
as the overall output state h that is fed into the final output layer. We found better performance,
however, when we use the element-wise average over the hidden states of all time steps (masking
any hidden states at time steps where the (pad) token was input) as h, the input to the final layer of
our architecture.

With a bidirectional LSTM architecture, we have one set of parameters for a forward-unrolled LSTM
and a separate set of parameters for a backward-unrolled LSTM that reads input token lists starting
at the end rather than the beginning. For each token position, we therefore have two output states
at each time step, which we either take the average of before averaging across all time steps, or
concatenate to form a single joint output state which is then feed into the the attention layer described
below.

To prevent overfitting, we add regularization to the overall output state of the LSTMs (or attention
layer) by applying dropout [14] with pgrep = 0.5:

hdropout = DTOPOUI(’.% pd.rop)



Finally, we use a fully-connected layer with sigmoid activations to convert the output of the dropout
layer to the probabilities of each label:
'g =0 (hdropoutU =+ b)

where hgopour € RE*H U € R¥*6 and § € RP*C, with H as the hidden state size of the
RNN/LSTM/GRU and B as the minibatch size.

3.4 Attention Mechanism

To extract and add importance to informative words that might be relevant to the classification, we
utilized a word attention mechanism as described by Yang et al. [5]. We implemented the attention
mechanism by modifying publicly available code [15] in order to allow for masking comments with
variable length. In our neural architecture, the attention mechanism can be optionally applied to
reduce the set of hidden vectors {h;} from every RNN/LSTM/GRU time steps t = {1,...,T'} to
an attention output vector h, as opposed to the averaging as described above. The attention output

vector h is then fed as the input to the dropout layer described above. The mathematical formulation
of this attention mechanism is described below:

vy = tanh(h;W, + b,)
Sy = veu,

exp(st)
Yoimy exp(st)

T
FL = Z oztht
t=1

In this attention mechanism, the hidden vectors of each word h; from the recurrent time step ¢ is
feed into a single tanh non-linearity to produce a new word representation v;. An attention score s;
is then computed by measuring the dot product similarity between v; and the word context vector
uq. The attention weights a; can then be computed by normalizing the attention score across all
time steps via a softmax function. Finally, an attention output vector h is computed as the weighted
sum of the original hidden states h; of each word, weighted by the normalized attention weights.

Qg

4 Experiments

4.1 Experiment Configurations

We ran a variety of models with a range of hyperparameter settings on an Azure NV6 node. We
focused on expansions to our model rather than a systematic search for optimal hyperparameter
settings, keeping the learning rate for our Adam optimizer [16] fixed at 0.0005. The steady decline of
our training loss (as shown at left in Figure 3) shows that this choice of learning rate was reasonable.

Table 2 shows the results for a set of experiments we did before implementing the attention layer,
to assess the improvement from using larger hidden states, more layers, and uni- vs. bidirectional
architectures. We found that bidirectional architectures were in all cases better than unidirectional,
more than 1 layer in each direction (if bidirectional) led to overfitting, and LSTM and GRU cells
gave nearly equivalent performance. We therefore used a single layer, bidirectional LSTM as our
fiducial model for implementing attention.

Experiments took anywhere from 1-3 hours, depending on the size of the model and number of
epochs. Initially, we ran all models for 50 epochs, but found that the model began to overfit after
~ 10 epochs (see Figure 3). We therefore implemented early stopping, where the model would
progressively save the model after each epoch if it had better dev set performance (measured by
mean column-wise ROC AUC) than any epoch before it.

We also implemented gradient clipping, to ensure that our gradients didn’t explode during back-
propagation, but due to the LSTM architecture (see discussion in section 3.3), the norm remained
low enough during training that clipping was unnecessary (see right hand panel of Figure 3).



Cell type | Directionality | # layers | Hidden size | Dev (ROC AUC) | Dev (AP)
LSTM Single 1 50 9610 .5009
LSTM Single 1 100 .9683 .5473
LSTM Single 2 50 9546 4470
LSTM Bidirectional 1 50 9747 .5788
LSTM Bidirectional 2 50 9747 .5882

GRU Single 1 50 9659 5180
GRU Bidirectional 1 50 9755 .5837
GRU Bidirectional 2 50 9761 .5619

Table 2: This table shows the results of a hyperparameter search among cell type, hidden state size,
number of layers, and directionality for our RNN model (without attention)

0.16 — ftrain 0.200
0.14 — dev 0.175
G:LE £ 0.150
0.10 =
Q 2 0.125
(@)
5008 ® 0.100
0.06 I
0.04
S 0.050
0.02
e 0.025
0.00
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 3: At left, a typical loss function from our training runs. The increase in the dev loss after
~ 10 epochs indicates overfitting, so we use early stopping to save the best model before overfitting
begins. Atright, a plot of the grad norm during training showing that we did not have any exploding
gradient problems.

4.2 Evaluation

We set up a evaluation pipeline to automatically plot ROC curves and precision-recall curve for
classification of each toxicity type. The pipeline also computed the ROC AUC and average preci-
sion (AP) for classification of each toxicity type, and the mean column-wise ROC AUC and mean
column-wise average precision across all toxicity types. We submitted our model predictions on a
test set of 153,164 comments whose true labels were withheld by Kaggle. Our online submissions
returned the mean column-wise ROC AUC (the official evaluation metric in the Kaggle challenge)
for our test set predictions.

Model Dev (AP) | Dev (ROC AUC) | Test (ROC AUC)
Baseline 5610 9669 9490
LSTM 5473 9683 9435
Bidirectional LSTM 5882 9747 9611
Bidirectional LSTM + Attention .6695 9859 9778

Table 3: A summary table of the results from the primary models we investigated, showing the mean
average precision and mean ROC AUC from the dev set, and the mean ROC AUC from the blind
test set.

The results for our four primary models are shown in Table 3, highlighting the substantial improve-
ment in our multi-label classification resulting from our implementation of word attention.

Looking at Figure 4, we see that the overall performance of our final model (bidirectional LSTM
+ attention) is very good, with the ROC very close to the upper-left corner representing perfect
classification. In the right-hand panel, we see that the classes for which we have the weakest per-
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Figure 4: The ROC and precision-recall curves for our final model.

formance are the ones for which we have the fewest training examples (threat, severe_toxic,
and identity_hate)

Some amount of overfitting is present, as evidenced by the dotted dev lines being displaced from the
solid lines representing the performance on the training data. One way to further improve this model
would be increasing the strength of the regularization beyond the dropout we have already applied.

4.3 Qualitative Evaluation via Attention

With its attention mechanism, our model is capable of computing the normalized attention weights
«; for every word given a sentence. For diagnostic purposes, we can visualize the attention weights
of selected comments in order to qualitatively understand how the classifier classified comments the
way it did. For example, here are the visualizations of the attention weights of some example true
positives - in this case, comments that got successfully classified as toxic and threat:

i 'm also a T of this account ... IISkLd ! ! -sincerely , the EEM
will track you down from the internet and kill BYell

have 'been PEYEN: , if Brdo

you in your sleep . bye ...

important you and your family shall burn [
LCILQE[l i will slaughter

The attention weights successfully highlight the words and phrases that sound threatening to the
other users.

Here is an example of a true negative:

that 's a rather feeble premise to argue showing an excessive number of photos
rominently showing 24 different women 's vaginas , compared to one human ]
D 3/4 of the way down the page on the equivalent article for male genltalla
. this demonstrates the overwhelming male bias in editorial content on
wikipedia . 86.13.182.103

Even though the attention weights highlight some potentially vulgar words, the classifier success-
fully classified it as a negative.

On the other hand, here is an example of a false positive:

" is this really a neutral article ? ca n't we at least agree that this article
is not neutral ? after all , another editor has referred to the idea of

| transphobia RN S " " jdea . at the very least , should n't this
have a " " neutrality in dispute " " tag attached to it ? ? "

The model identifies a couple of words that could potentially be toxic, as highlighted by the attention
weights, but does not pick up that the commenter is quoting someone else to make a reasonable
argument, and therefore misclassifies it as toxic and obscene.



5 Conclusions and Future Work

We have implemented a Tensorflow framework based on a bidirectional LSTM with an output at-
tention layer that successfully performs multi-label classification of various subtypes of toxic online
comments. Our final mean ROC AUC performance on the blind test set is .9778, which places
us within .011 of the leading Kaggle entry. The addition of an attention layer to our bidirectional
LSTM architecture significantly improves performance both in terms of mean column-wise ROC
AUC (.9611 to .9778) and mean column-wise average precision (.5882 to .6695).

Our performance is primarily limited by the embedding of new or rarely-used obscenities to the
(unk) token by GloVe. We tried to ameliorate this by mapping unknown composite obscenities to
the embedding of the root obscenity in our preprocessing, but further such preprocessing to elimi-
nate unknown tokens, or the use of character-level embeddings and/or convolutional methods might
further improve performance, since they would be able to recognize toxic character patterns within
an unknown word. In addition, stronger regularization beyond dropout might help increase the per-
formance of our model without overfitting.
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