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Abstract

Machine comprehension (MC) and question answering (QA) are NLP tasks which
have seen increased interest and development with the release of the Stanford
Question Answering Dataset (SQuAD). In this paper, we explore neural architec-
tures for the QA task focused around the attention mechanisms; specifically, Bi-
Directional Attention Flow and Self-Matching Attention. Our best single model
achieves an F1 score of 69% and EM score of 54% on the SQuAD dev dataset.

1 Introduction

In Machine Comprehension (MC) and Question Answering (QA), machines are given a query from
a corresponding piece of writing and attempts to predict a particular span of text representing the
correct answer. Trained QA systems have a variety of theoretical and real-world applications-most
readily apparent to the public in information retrieval via personal assistants like Alexa or Siri. This
area of research has remained challenging despite an upsurge in popularity, as proposed systems
must model complex question-context relations while excelling at coreference resolution, common
sense reasoning, causal relations, spatiotemporal relationships, and other complex skills [1].

To motivate further research in the area, researchers in 2016 released the Stanford Question Answer-
ing Dataset (SQuAD): a training set composed of over 100,000 triples (question, context, answer)
drawn from 536 Wikipedia articles, with 10,000 examples held in secret to be used as a test set
[2]. SQuAD also includes a public leaderboard, on which teams can post results as compared to a
crowdsourced human dataset.

Since the release of SQuAD, QA systems have improved quickly, incorporating developments from
recurrent neural network architectures to develop systems that have matched (and exceeded, in recent
submissions by teams at Alibaba and Microsoft) human response. We focus our project on one
burgeoning topic of research: the attention mechanism.

2 Background/Related Work

The original SQuAD paper [2] proposed two basic approaches: a sliding window baseline, as well as
a logistic regression model. These models achieve 20% and 51% F1 scores, respectively (compare
to an F1 score of 86.8% in the human dataset). In later work, Wang et al. provided a Match-
LSTM model with Answer Point architecture [3], using stacked LSTM-RNNs to encode question
and context, and another RNN for probability distributions on each additional word in a proposed
answer. In their work, they also determined that a boundary model (finding the first and last words
of an answer) is superior to a sequence model (selecting words for an answer sequentially).



Later came Xiong et al.s work on Dynamic Coattention, providing a major foray into attention
while encoding context and question [5]. Dynamic Coattention computed an affinity matrix between
pairwise comparisons of words in context and question; those weights were later used to weight
continuous representations of the two documents. Decoding alternatingly optimized estimates of
start and end locations of answers (building on Wang et al.s work) to better handle any local minima
in the search space. This paper achieved an 80.4% F1 score on the SQuAD dataset.

More recently, Seo et al. published the Bi-Directional Attention Flow (BiDAF model) [3]. This
paper used an affinity matrix similar to that of Dynamic Coattention for context-to-query (C2Q)
and query-to-context (Q2C) attention; then, the paper simplified previous work by passing the fi-
nal context paragraph representation to an RNN and converting the resulting vectors to a score via
dot product. This paper achieved an F1 score of 81.5% (approaching human performance, and
third-highest submission to the public leaderboard at time of publicaion). Finally, Microsofts Nat-
ural Language Computing Group released a paper describing the R-NET model [7]. Among other
features, R-NET introduced the Self-Matching Attention architecture amidst combining a BILSTM
encoding layer, C2Q self-attention layer, BILSTM modeling layer, and fully connected output layer.
The Self-Matching Attention architecture allowed for question-aware contexts to simultaneously be
context aware. We explore concepts presented in these last two papers in our work.

3 Approach

We begin with the outlined baseline framework: single-layer BiGRU encoder + context-to-query
attention layer + fully connected output layer. As suggested by BiDAF, we convert GRUCells to
LSTMCells, and extend the baseline framework with two additional attention architectures: Bi-
Directional Attention Flow (BiDAF) and Self-Matching Attention with partial R-NET output. We
incorporate these architectures in various combinations outlined below. All models feed into a soft-
max prediction layer trained with an Adam optimizer minimizing cross-entropy loss.

3.1 BIiDAF architecture

We begin by implementing the BiDAF architecture outlined in Seo et. al. [3] excluding character
embeddings. This involves a BILSTM encoding layer + context-to-query (C2Q) / query-to-context
(Q2C) attention layer + two stacked BiLSTM modeling layers.

The attention layer involves:

1. Creating a similarity matrix .S, which is the concatenation of contexts C, queries (), and
C - @ weighted by similarity vector w:
T
Sij = w" [eis ¢35 - g5

2. Computing C2Q: for each context c;, determining weights ozj- indicating how similar ¢; is
to each component ¢; of the question, followed by a sum over ) weighting each g; by
similarities o*. Thus, each C2Q attention a; reflects the similarity of context ¢; across Q.

o' = softmaz(S;..)

a; = Ozjqj
J

3. Computing Q2C: for each context c;, determining weight m, indicating the most similar
component g; of the question, followed by a sum over C weighting each c; by its highest
similarity to . Thus, Q2C attention ¢’ reflects C' weighted by similarity to Q.

m; = max S;;
J
B = softmax(m)
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4. Concatenating the hidden context h outputted from the BiLSTM encoder, C2Q, k- C2Q,
and h- Q2C, then feeding into two BiLSTM modeling layers.



The BiDAF architecture improves the baseline’s attention mechanism by allowing for attention in
both C2Q and Q2C directions, compared to only C2Q in the baseline.

3.2 Self-Matching Attention architecture

We continue by implementing the Self-Matching Attention architecture outlined by Natural Lan-
guage Computing Group [7]. This involves a BILSTM encoding layer + C2Q self-attention layer +
BiLSTM modeling layer + fully connected output layer.

The attention layer involves:

1. Creating a similarity matrix S, which measures the similarity of each C2Q attention v; to
each other attention v;.

s = thanh(va]P + WP b

2. For each v;, determining weights a! indicating relative similarity of v; to attention v; com-
pared to all other attention v;.

al = exp(s))/ 3 eap(s})

3. Summing over V weighting each v; by its similarities a}. Thus, each self-similarity atten-
tion ¢; reflects the relative similarity of attention v, across V.

C; = E OJ;EUZ-P
%

4. Concatenating the hidden context H outputted from the BiLSTM encoder, C2Q, and self-
attention V, then feeding into the BiLSTM modeling layer.

The Self-Matching Attention architecture improves the baseline’s attention mechanism by allowing
for question-aware contexts to simultaneously be context aware.

3.3 R-NET output extension of Self-Matching Attention (R-NET)

We extend Self-Matching Attention by implementing the output layer outlined by Natural Language
Computing Group [4]. This involves combining the BiLSTM modeling layer from Self-Matching
Attention with an additional LSTM modeling layer on the hidden answer. The joint representation
is then fed into a fully connected output layer.

The output layer involves:
1. Summing over hidden context H? outputted by Self-Matching Attention, weighting each

h? by relative attention self-similarities a!. Thus, each context-similarity attention c; re-
flects the attention-context similarity of context h? across HP.

G = E afhf)
i

2. Passing in context-similarity attentions c; into a LSTM trained on hidden answer represen-
tations.

hi = RNN(hy_y,¢t)

3. Adding the hidden answer LSTM H* to the self-attention BILSTM HP, then feeding into
a fully connected layer.

sh = u}T150L71h(W,fDiL§D + Wgehi q)

R-NET output extends Self-Matching Attention by incorporating similarity to the answer represen-
tation.



3.4 BiDAF + Self-Matching Attention feed-in architecture
We combine BiDAF with Self-Matching Attention by:

1. Feeding the BiDAF blended representation as input to the Self-Matching Attention layer.

2. Feeding the Self-Matching Attention blended representation into two BiLSTM modeling
layers, followed by a fully connected output layer.

The feed-in structure overloads the self-attention layer with too many representations to attend to at
once, leading to empirically worse performance.

3.5 BIiDAF + Self-Matching Attention / R-NET piped architecture
We combine BiDAF with Self-Matching Attention by:

1. Running the entirety of BiDAF: Acquiring the blended representation, then feeding into
two BiLSTM modeling layers.

2. Feeding the BiDAF blended representation as input to the Self-Matching Attention layer.

3. Feeding the stacked output of the BiDAF BiLSTM modeling layers and Self-Matching
Attention blended representation into another BILSTM modeling layer (+ hidden answer
LSTM modeling layer for R-NET), followed by a full connected output layer.

While the piped structure exhibited superior performance to feed-in, its linear combination similarly
led to sub-par performance.

3.6 BIiDAF + Self-Matching Attention / R-NET parallel architecture
We combine BiDAF with Self-Matching Attention by:

1. Running the entirety of BiDAF: Acquiring the blended representation, then feeding into
two BiLSTM modeling layers.

2. Running Self-Matching Attention without the final BiLSTM modeling layer to obtain the
blended representation.

3. Feeding the stacked output of BiDAF and Self-Matching Attention blended representation
into a BILSTM modeling layer (+ hidden answer LSTM modeling layer for R-NET), fol-
lowed by a full connected output layer.

The parallel structure effectively creates an ensemble modeling effect, combining the predictive
power of two architectures.

3.7 BiDAF + R-NET combined structure
We combine BiDAF with Self-Matching Attention by:

1. Acquiring the blended representations from BiDAF and Self-Matching Attention.

2. Feeding the stacked blended representations into two BiLSTM modeling layers (+ hidden
answer LSTM modeling layer for R-NET), followed by a fully connected output layer.

The combined structure allows for the predictive power of the BILSTM to be trained on all possible
attention representations simultaneously.

4 Experiments and Results

4.1 Dataset

The SQuUAD dataset is composed of 107,785 training set triples (question, context, answer) drawn
from 536 Wikipedia articles, with 10,000 examples held in secret to be used as a test set [2]. Answers



are crowdsourced and span a portion of the context. The SQuAD leaderboard considers two metrics
for submissions: Exact Match (EM) and F1 score. EM provides the percentage of predictions that
match one of the three ground truth answers exactly. F1 measures the harmonic mean between the
prediction and ground truth answer (overlap). We use pre-trained 100-dimension GloVe embeddings
to represent words in each of question, context, answer.

4.2 Hyperparameter Tuning

In order to better tune parameters, we ran histogram analyses on lengths, relative lengths, indices,
and relative indices of questions, contexts, and answers. Salient takeaways include:

e Almost all context lengths are <400 words - this allowed us to reduce hyperparameter
context_1len from 600 to 400 without losing context representation.

e Almost all question lengths are <30 words - this allowed us to confirm that hyperparameter
question_len set at the default 30 was reasonable.

o Almost all answer lengths are <20 words, with the majority <10 words. Almost all answers
start and end before the 200th index. In addition, almost all answers are <10% of their
context lengths, and <2 times their question lengths. This allowed us to improve upon
finding start and end positions of the answers, further descried in Evaluation.
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Figure 1: Histogram analyses of various hyperparameters

In addition, we ran experiments on hidden_size and learning_rate. We discovered a hid-
den size of 100 was optimal (compared to the default 200). We experimented with increasing learn-
ing rate to 0.005, which performed sub-optimally compared to the default 0.001. We added one new
hyperparameter self_ attn_dim that we discovered to be optimal when set to 1, representing
shared weights between the various context attentions.



4.3 Experiments

We ran the following 12 experiments modeled after the various architectures described in Approach.
Experiments were ran across four Mirosoft Azure servers until dev/loss began increasing which
indicated overfitting. This typically occurs around 14,000 iterations into training.

Baseline

BiDAF

Self-Matching Attention

Self-Matching Attention + R-NET output

BiDAF feed-in Self-Matching Attention

BiDAF piped Self-Matching Attention

BiDAF parallel Self-Matching Attention (+R-NET output) (+ 0.005 learning rate)
BiDAF combined Self-Matching Attention + R-NET output (+ 0.005 learning rate)
BiDAF* combined Self-Matching Attention* + R-NET output

X g =1 9 g 9 e

BiDAF* and Self-Matching Attention* indicate slight modifications to prior implementations that
more closely reflect the architectures described in Approach.

4.4 Answer Window Evaluation

Both scoring metrics rely on accurately identifying the start and end positions of answers. The
default implementation of get_start_end_pos is a simple argmax across all start and end
position probabilities. We achieve 1-2% improvement on EM and F1 scores through the following
method:

1. Consider the top 10 highest probability start and end positions as joint pairs (100 possible
start-end pairs).

2. Check that end position comes >= start position in each pair.

3. Based on empirical evidence, answers >15 words or starting >200th index or ending
>250th index are rare. Down-weight the joint probability of a pair by 0.8 in any of these
cases.

4. Choose the start-end pair with highest joint probability after possible penalization.

4.5 Results

We provide the EM and F1 scores for 8 of our 12 experiments. The scores reported are prior to
improvements made to get_start_end_pos. We denote Self-Matching Attention as SM-A and
Self-Matching Attention + R-NET output as R-NET. Four experiments were stopped early due to
clearly inferior performance relative to their peers: BiDAF + SM-A feed-in, BiDAF + SM-A piped,
and both experiments ran with 0.005 learning rate.

Table 1: EM and F1 dev scores across architectures

Architecture EM F1
Baseline 29 40
BiDAF 46 .60
SM-A 50 .65
R-NET 50 .65
BiDAF + SM-A parallel 50 .66
BiDAF + R-NET parallel 52 .67

BiDAF + R-NET combined 52 .67
BiDAF* + R-NET* combined .54 .69
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Figure 2: Tensorboard visualization of model performance on dev set

4.6 Results: Error Analysis

To further explore our models, we also randomly selected 50 examples and analyzed model errors.
We classify our most common errors into the following broad categories, and provide an example of
an incorrect prediction for each type of error:

4.6.1 Imprecise Answer Boundaries

e Example: Imprecise answer boundary (predicted answer too narrow):
Question: despite being traditionally described as ” eight counties ”, how many counties
does this region actually have?
Truth: 10 counties
Incorrect Prediction: 10

e Example: Imprecise answer boundary (predicted answer too wide):
Question: What did itv increase their yearly offer for control of the rights to broadcast the
primer[sic] league to ?
Truth: 34m
Incorrect Prediction: 34m per year

Here, the predicted answer span is slightly mismatched from ground truth. While in some cases,
the prediction is not specific enough, in other cases, the prediction may be effectively equivalent to
ground truth, but still be penalized by EM.

In all examples of this error, our models have found the right general answer span, but give imprecise
answer boundaries to the tune of 2-3 mistakenly-included/omitted words. This distribution matches
Seo et al.’s findings, which show that a plurality (50%) of their model’s mistakes come from im-
precise answer boundaries. These mistakes are difficult to remedy, though in some cases, they may
not necessarily be mistakes at all and merely present alternate ways of presenting data (e.g. with or
without an attached article; for further discussion, see 4.6.4 False Negatives Discussion).

4.6.2 Syntactic Complications and Ambiguities

e Example: Predicted answer span has no overlap with ground truth
Truth: Organisation for Economic Co-opeation[sic] and Development
Incorrect Prediction: OECD
In cases of syntactic complications or ambiguities, the model’s answer is effectively an-
other way of answering the question; however, none of the three crowdsourced answers
match the model’s. Here, the predictions are effectively equivalent. This is often true, for
example, for acronyms. These are also difficult problems to fix, as they stem from many
possible problems (e.g. external information required to link an organization’s acronym to
itself). Finally, this specific example may have suffered from another issue as well: human
mispellings.

e Ground truth does not provide all possible permutations of correct answers:
Question: Why was NBC unable to broadcast the coronation of Queen Elizabeth 11?7

Truth: flight delays, technical problems and flight delays, technical problems and flight
delays



Incorrect Prediction: technical problems

In this specific case, the text makes no distinction between technical problems and flight
delays as being more or less important than the other. Furthermore, the three answers
indicate that giving one of the two provided causes is seen as a sufficiently reasonable
answer to the question. However, the EM score would fail a response of technical problems;
the F1 score would heavily punish that response as well (despite it not being any more or
less correct than flight delays).

4.6.3 Complete Answer Context Mismatch

e Example: Wrong Attention Position

Context: a resurgence came in the late 19th century , with the scramble for africa and
major additions in asia and the middle east . the british spirit of imperialism was expressed
by joseph chamberlain and lord _rosebury_ , and implemented in africa by cecil thodes
. the _pseudo-sciences_ of social darwinism and theories of race formed an ideological
underpinning during this time . other influential spokesmen included lord cromer , lord
curzon , general kitchner_, lord milner, and the writer rudyard kipling . the british empire
was the largest empire that the world has ever seen both in terms of landmass and population
. its power , both military and economic , remained unmatched .

Question: by the late 19th century , which country had the largest empire ever to exist in
the world ?

Truth: the british empire
Incorrect Prediction: africa

Originally, we found this to be one of the more common errors in the baseline (as well as one of the
more fixable ones, with our focus on the attention mechanism). In these errors, an incorrect region
is selected entirely. In this example (with a particularly wide context), a focus on ”19th century”
probably pulls the predicted answer context into the earlier passage’s local minima, and the model
thus has little hope of finding the right answer. We hypothesize that this is because a different region
of the text entirely becomes the subject of attention; in these cases, no tuning of answer boundaries
will save the model. Because our work primarily seeks to improve on the attention layer, we find
many fewer of these errors in our test models (compared, e.g., to imprecise answer boundary errors).

4.6.4 False Negatives Discussion

While each of our models will miss and provide incorrect answers that are clearly wrong (by in-
formed human intuition), we also conjecture that our models are scored as making errors that in-
formed human intuition would not consider as incorrect in an information retrieval sense. The
SQuAD dataset was created via a crowd-sourced poll, with little attention likely paid to selecting
experts likely to provide optimal answers to each question. In addition, mechanical Turk-type plat-
forms tend to provide an incentive structure that lends to its users optimizing for speed, rather than
accuracy. As a result, we posit that the dataset may not be pure; that is, there are some questions for
which the ground truth as determined by survey is suboptimal (e.g. multiple possible answers could
be equally valid, but the dataset only considers one of those answers as correct).

5 Conclusion

Machine comprehension (MC) and question answering (QA) are NLP tasks which have seen in-
creased interest and development with the release of the Stanford Question Answering Dataset
(SQuAD). In this paper, we propose a combination of (and adjustments for) attention mechanism-
focused neural architecture implementations (specifically, elements from Bi-Directional Attention
Flow and R-NET/Self-Matching Attention). Our results show a marked improvement in F1 (69%)
and EM scores (54%), in part due to an improvement in context window targeting. The largest re-
maining source of errors to tackle arises from imprecise answer matches, where the machine has
located the approximate answer but fails to match the human answer exactly. We propose that this
is due to a combination of fuzziness in responses, as well as a possible false negative phenomenom
from a strong, but imperfect, dataset.
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