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Abstract

Question answering is a challenging NLP task with wide-ranging applications.
This paper analyzes what deep learning model architectures and hyperparameters
are effective for this task based on model performance on the Stanford Question
Answering Dataset (SQuAD). The results highlight the importance of careful hy-
perparameter tuning. The best F1 and exact match scores achieved were 51 and
41 respectively, however there is likely room for performance improvement with
adding new input features, incorporating iterative reasoning, creating an ensemble
model, and fixing my coattention implementation.

1 Introduction

Question answering is a difficult NLP task that tests to what extent machines can learn to understand
language. In question answering, models are provided with two inputs: a question and a context
paragraph that contains the question’s answer. The models must return the answer through selecting
the span of text from the context paragraph that corresponds to the answer. This is challenging
because there is no clear mapping from the question to the answer. Instead, the model must pick
up on “clues” for where the answer is in the context paragraph, which requires recognizes their
underlying meaning.

The first recorded travels by Europeans to China and back date from this time.
The most famous traveler of the period was the Venetian Marco Polo, whose
account of his trip to "Cambaluc," the capital of the Great Khan, and of life there
astounded the people of Europe. The account of his travels, Il milione (or, The
Million, known in English as the Travels of Marco Polo), appeared about the year
1299. Some argue over the accuracy of Marco Polo's accounts due to the lack of
mentioning the Great Wall of China, tea houses, which would have been a
prominent sight since Europeans had yet to adopt a tea culture, as well the
practice of foot binding by the women in capital of the Great Khan. Some
suggest that Marco Polo acquired much of his knowledge through contact with
Persian traders since many of the places he named were in Persian.

How did some suspect that Polo learned about
China instead of by actually visiting it?

Answer: through contact with Persian traders

Figure 1: Example context paragraph, question, and answer from the SQuAD dataset. Source:
Stanford NLP Blog (https://nlp.stanford.edu/blog/cs224n-competition-on-the-stanford-question-
answering-dataset-with-codalab/)



Using techniques from the most successful question answering models, this paper experiments with
various neural network architectures and hyperparameters. Model improvements in two phases are
tested. The first phase uses an optimized model architecture and hyperparameters with basic atten-
tion and the second phase uses an optimized model with a second attention mechanism, specifically
coattention.

2 Background

With the introduction of the Stanford Question Answering Dataset (SQuAD) dataset and online
leaderboard in June 2016, there has been significant industry and academic research activity around
question answering. This literature review focused on the top SQuAD models.

Rank Model EM F1

Human Performance 82.304 91.221
Stanford University
(Rajpurkar et al. '16)

Hybrid AoA Reader (ensemble) 82.482 89.281
Joint Laboratory of HIT and iFLYTEK Research

QANet (ensemble) 82.744 89.045
Mar 06, 2018 Google Brain & CMU

Reinforced Mnemonic Reader + A2D (ensemble 82.849 88.764
Feb 19, 2018 model)
Microsoft Research Asia & NUDT

Reinforced Mnemonic Reader (ensemble model) ~ 82.283 88.533
NUDT and Fudan University
https://arxiv.org/abs/1705.02798

r-net+ (ensemble) 82.650 88.493
Microsoft Research Asia

SLQA+ (ensemble) 82.440 88.607
Alibaba iDST NLP
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Figure 2: SQuAD Leaderboard on March 18, 2017. Source:  SQuAD website
(https://rajpurkar.github.io/SQuAD-explorer/)

As on March 18, 2017, the Hybrid AoA Reader Ensemble model has the highest F1 score at 82.482.
This is the only model that has exceeded human performance. The Hybrid AoA Reader Ensemble
model has an attention-over-attention neural net architecture as described in Cui et al 2017.

The attention-over-attention portion of the architecture includes a second attention mechanism to
weight the importance of the attentions from the initial basic attention mechanism. Coattention
from Xiong et al 2016 uses a second attention mechanism that is based on attention-over-attention
and accomplishes a similar purpose. Similarly, R-net from Wang et al 2017 also uses a second
attention mechanism, self-matching attention.

From the submissions in the SQuAD leaderboard, it is also clear that ensemble models outperform
individual models. All of the top 5 models are ensemble models. In particular, the F1 score for the
Hybrid AoA Reader Ensemble model was 2 higher than the Hybrid AoA Reader Single model.

Looking beyond the leaderboard, other papers demonstrate other techniques for question answering
models. Chen et al 2017 improve performance for a simple model with new input features for the
context paragraph. Among the features they considered, exact match, whether a word in the context
appears in the question, and aligned question embedding, an attention score that measures similarity
between context and question words, provided the largest performance improvements. Xiong et
al 2016 use iterative reasoning to make their answer predictions. In iterative reasoning, multiple
potential predicted answer spans are considered to avoid choosing a local maxima.

3 Approach

At a high-level, question answering models convert a question and context paragraph input into
a predicted span output (i.e. predicted start position and predicted end position) of the context



paragraph that correspond to the answer. This paper’s model relies on a neural net architecture,
coattention, and other optimizations to identify the prediction span output. Each part of the model
is described in detail below.

RNN Encoder Layer. The questions and context paragraph are represented by 300-dimensional
GloVe embeddings. Both the question and context embeddings are fed into a 1-layer bidirectional
LSTM with shared weights. This produces the context hidden states and question hidden states.
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Figure 3: Coattention Layer Diagram

Attention Layer. This paper includes models trained models with either basic attention or coattention.
The basic attention layer calculates the attention distribution from the column-wise softmax of the
product of the context hidden states. The attention output is the attention distribution weighted by
the question hidden states.

The coattention layer starts by calculating an affinity matrix from the context hidden states and
projected question hidden states, which are created from question hidden states by applying a fully
connected linear layer with a tanh nonlinearity. Separate trainable sentinel vectors are added to both
sets of hidden states. The hidden states with sentinels are multiplied together to calculate the affinity
matrix. Each entry in the affinity matrix represents the affinity score for a context hidden state,
projected question hidden state pair.

The affinity matrix is used to calculate the intermediate and final attention outputs. Context-to-
question (C2Q) attention is the row-wise softmax of the affinity matrix weighted by the projected
question hidden states. Similarly, the question to context (Q2C) attention is the column-wise softmax
of the affinity matrix weighted by the context hidden states. The second-level attention outputs are
the Q2C attention outputs weighted by the C2Q attention outputs. The final coattention output are
calculated by concatenating the C2Q attention and second-level attention outputs and then feeding
them through a bidirectional LSTM.

Output Layer. Separate softmax layers are used to calculate the start position probability distribution
and end position probability distribution from the final blended representation. The final blended
representation is created by concatenating the context hidden states and coattention output and then
feeding it through two fully connected linear layers with ReLu nonlinearities.

Loss. The loss is calculated as the sum of the cross-entropy losses for the gold start and end posi-
tions in each training example, averaged across all training examples in a training batch, and then
minimized with the Adam optimizer.

Prediction. Based on the approach in Chen et al 2017, the predicted span is chosen to maximize
the product of the predicted probability for the start position and the predicted probability for the
end position. The relevant algorithm considers all start positions in the context paragraph and then
all end positions that are up to 20 positions after a particular start position. This ensures that the
predicted end position is not before the predicted start position.



4 Experiments

Based on extensive experiments run with the SQuAD dataset, improvements to this paper’s model
were made in two phases. The first phase transitioned from the baseline model provided to the
optimized model with basic attention and the second phase transitioned from the optimized model
with basic attention to the optimized model with coattention.

The primary purpose of first phase changes is improving model performance by learning more de-
tailed and relevant hidden features. A secondary consideration was improving training efficiency
and reducing the memory required to store parameters.

e Embedding size - The embedding size was increased from 50 to 300 (the largest size avail-
able). Larger embeddings allow for more nuanced word information to be provided in the
inputs to the model.

e Dropout rate - The dropout rate was increased from 0.15 to 0.5. 0.5 dropout rate is consid-
ered best practice and, in general, higher dropout rates help prevent overfitting.

e Hidden size - The hidden size was increased from 200 to 500. Larger hidden sizes can
encode more granular hidden features, which often lead to improved model performance.

e Bidirectional LSTM for RNN Encoding - The baseline model used a bidirectional GRU
for the RNN encoding. The GRU was replaced with LSTM, which is considered a better
default choice and allows for more flexibility.

e More nonlinearity for blended representation output - A second fully connected layer with
ReLu nonlinearities was added to the model’s output layer. Through introducing additional
nonlinearities more complex hidden features can be represented. This complexity may be
helpful since the same blended representations are used to calculate both the start and end
position probability distributions.

e Maximizing joint start and end predicted probability - Instead of maximizing the probabil-
ity for the predicted start position and predicted end position separately, the model maxi-
mizes the joint predicted probability for both the start and end position across a range of
potential start and end positions. (More details are in the approach section.) As mentioned
earlier, this eliminated the baseline model’s problem that the predicted end position would
often occur before the predicted start position.

o Context length and question length - Context length was shortened from 600 to 300 while
the question length was shortened from 30 to 20. This reflected the actual lengths in the
training data. Over 97% of context paragraphs included less than 300 words. Similarly,
over 96% of questions included less than 20 words. Using shorter lengths reduces the num-
ber of embeddings required to represent either context paragraphs or questions, allowing
for smaller trainable parameters and less computation required for each training iteration.

The second phase substitute coattention for basic attention in the optimized model described above.
Due to space limitation, the hidden size had to be reduced to 300. All other changes versus the
baseline model were retained.

Results for all three models are listed below. As expected, optimizing the architecture and hyper-
parameters increased both the F1 and exact match scores. Error analysis (in the appendix) shows
that the predicted answers are plausible while still not the best possible or correct answers. This
motivated the improvements listed in the conclusion.

However, contrary to my expectations, the second phase did not improve F1 and exact match scores.
I believe this is due to a problem with my coattention implementation that I was not able to fix over
many iterations of the code. Either the coattention model has a bug or does not fit well with the
rest of the model. Based on the large amount of research supporting second attention mechanisms,
coattention should have improved model performance if implemented correctly.



Model Dataset F1 Score Exact Match Score

Baseline Model Test 44.225 34.784
Optimized Model with Basic Attention Test 50.571 40.921
Optimized Model with Coattention Dev 28.502 22.460

Table 1: Model Results on SQuUAD Data (Codalab issues prevented testing all models on the test
data)

5 Conclusion

With its optimized model architecture and hyperparameters, this paper’s best model only produces
moderately better results than the provided baseline model. This leads me to believe this paper’s
model would likely benefit from numerous improvements. Based on the literature review, additional
input features like exact match or aligned question embeddings could be introduced for the context
paragraphs and would help the model learn even more detailed hidden states. Iterative reasoning
could improve predicted span selection. And, ensemble models could leverage several separately
trained models for a final boost to F1 and exact match scores. Of course, I also would want to iron
out my coattention layer implementation and conduct more extensive hyperparameter tuning.

It is a quest to find high-performance question answering neural net models. Due to the day-long
training time and GPU resource constraints, a NLP research must travel along a long and unclear
path to make a model change and to see its impact on F1 and exact match scores. For me, this
emphasizes the importance of building efficient, fast running models. Not only does speed improve
prediction runtime, but it also improves the researcher’s ability to iterate on the model architecture
and hyperparamters and build a fundamentally better model. On my next neural net model quest,
I’ll weight speed and efficiency more heavily in making model architecture decisions, hoping this
may allow for more fine-tuning and ultimately better model performance.
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7 Appendix: Error Analysis

Figure 4: Example 1: Predicted span is too long (i.e. it includes the answer along with other words).



CONTEXT: (green text is true answer, [NSNBMMMNSNONMN is precictec start, [NEMENNNNN is orecictes end, _ungerscores_ are unknown tokens). Length: 116

abc also owns the tines square studios at 1506 broagway on land in tines suare ownes by a development fund for Il 42na strect MM ; opened in 1595 , gooo sorving smarics an ight
Line are broadcast fron this particular facility . abc news has premises a little further on mest 66th street , in a six-story building occupying a 196 feet ( 66 m ) x_ 379 feet ( 116
™) plot st 321130 weet and avewe . the Block of west end avemus: housing The s nees bil1ing wes semsmed peter Juminge ey in 2086  hova of the Tecancly decessed aongtine abe

Figure 5: Error Example 2: Predicted span misses that the answer should be a person.

COVTEXT: (groen toxt is true answer, ISNESNNENNNNNNN i orcoicteo scort, NN :s orecictes ond, _underscores. are wnknown tokens). Length 39
southem califomia is fore to oy s e siserices . concesd Sovinass aistricea Ml ) include cewncom 1ov angeles  downtom son G1ogo. Gowntow san bernarsing | domntomn
Sakeratielo | - o Gountoun riversice

Figure 6: Error Example 3: Predicted span chose the wrong location (although that location techni-
cally meets the criteria).

CONTEXT: (green text is true answer, |SNEMMMMMGRENNNN 15 precicteo stort, MMM is precictes eno, underscores. are unknown tokens). Length: 188

not only are all the major british architects of the last four hundred years represented , but many european ( especially italian ) and american architects ‘ Grawings are held in the co
Llection . the riba 's holoings of over 33 crawings by are the largest in the world , other europeans well represented are Jacoues gentilnstre. and antondo visentind .
british architects whose orawings , and in some cases models of their builoings , in the collection , include : inigo jones , sir chr: wron , sir john vanbrugh , nicholas hawksn
G0e. o wA1Com KBNE s Jomm G ¢ Lobkrt Sdm ¢ 41 wiT1Ee, ctadbare: Jomis SYALE . hoity TLLATa.. 36, abh o E1r o Souw o, o1s. STGYIeS reys Shetiss sbest couturetl)) Suguety
s welby northnore pugin , sir george gilbert scott , john loughborough pearson , george ecmund street , richard norman shaw , alfred waterhouse , sir edwin lutyens , charles rennie mack
intosh , charles holden , frank hoar , lora richard rogers , lor norman foster , sir nicholas grimshaw , zaha hagid and alick horsnell .

Figure 7: Error Example 4: Predicted span chose the wrong person.
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Figure 8: Error Example 5: Predicted span identifies the opposite of the answer.



