Reading Comprehension with the SQuAD

Hugo Valdivia Miguel Garcia
Department of Computer Science Department of Computer Science
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305
hugov65@stanford.edu miguell6@stanford.edu
Codalab: valdivia4 Codalab: miguell6
Abstract

For this reading comprehension task with the SQuUAD, we’ve looked at two high-achieving models
from the literature: Bi-Directional Attention Flow (BiDAF) and Coattention. With respect to our
two main evaluation metrics, F1 and EM, our best model closely followed the architecture of the
original BiDAF model and received a 74.4% F1 score and a 64.7% EM score.

1 Introduction

SQuAD is a reading comprehension dataset [1]. The task is to answer questions about provided documents. This
task is difficult and sometimes impossible for developing deep learning models for because of constraints on available
question answering datasets, both in quality and quantity. However, SQuAD presents us with a vast, crowd-sourced
dataset that has already allowed us to make advances in developing expressive models for this task. We drew inspiration
from two state-of-the-art models, coattention and BiDAF, to augment a baseline model and compare results.

2 Background and Related Works

The Dynamic Coattention Network (DCN) is a state-of-the art deep learning model for accomplishing the SQuAD task
[2]. It takes advantage of the intrinsic relationship between questions and answers to by fusing them into codependent
representations through an encoding process (which is described as one of our approaches). After this step, the
attention outputs are passed on to a dynamic pointing encoder, which utilizes an iterative process to recover from
local maxima: the dynamic pointing encoder switches between start and end index prediction with a Highway Maxout
Network that pools across different model variations, effectively accounting for variations in question and answer
types. The process only halts when the estimated indexes no longer change, or upon a maximum number of iterations.
We decided to, in a sense, ablatively analyze the effectiveness of the coattention attention layer itself by inserting it
into our baseline model.

Another high-performing deep learning model for this machine comprehensions task is known as Bi-Directional At-
tention Flow (BiDAF). The main idea of the BiDAF model is that it creates a context representation that makes use
of different degrees of information (character, word, and context), is aware of the query, and does not summarize the
information early [3]. The attention flows from the attention layer to the modeling layer, and the authors believe that
this allows for the work to be split between the attention and the modeling layers [3].

3 Approach

3.1 Baseline

This baseline approach is thoroughly described in the assignment handout. The summary of the methods in this section
will all be taken from the project handout [1]. The provided baseline model can be broken down into 4 layers, which
are as follows:

1. Word Embedding Layer
2. RNN Encoding Layer
3. Basic Attention Layer
4. Output Layer

The word embedding layer takes words and maps them to pre-trained GloVe vectors; these word vectors are meant
to capture meaningful syntactic and semantic relationships between words [4]. For each (context, question, answer)
3-tuple which makes up a single example, the context and question are turned into lists of GloVe embeddings. These
embeddings then serve as inputs to a bidirectional GRU, which returns a list of forward and backward hidden states.
These are then concatenated to give us the context hidden states and the question hidden states. Now, with these as
inputs, the basic attention layer uses dot product attention. At the end of this layer, the context hidden states are con-
catenated with the attention outputs to get blended representations. The last layer takes these blended representations,
passes them through a fully connected layer and runs them through a ReLU function. To compute the start position
distribution, it then assigns a score to each word in the context and then passes this through a softmax layer to get a
probability distribution. The same technique is used to get a distribution for the end position.

3.2 Coattention

This model follows closely the coattention layer described in Xiong et al. (2016) and implements it using the baseline
model’s architecture. Essentially, we substitute out the baseline attention layer for a coattention layer that involves a
second-level attention computation. We call this the Slightly Less Dynamic Coattention Network, or SLDCN.

RNN encoder
Questions

concat
Figure 1: Coattention layer

The first difference between this model and the baseline happens when we apply a linear layer with tanh nonlinearity
to the question hidden states to compute projected hidden states:

q. = tanh(Wgq; + b) € R Vie{l,...,M}
After this step, we add trainable sentinel vectors cgp, qa € R! to each row of context and question hidden state matrices

C and Q’, respectively. Using these encodings, we compute the affinity matrix L = CTQ’ € RWHDx(M+1) Now
we compute the Context-to-Question (row-wise) and Question-to-Context (column-wise) attention outputs.

For Context-to-Question (C2Q), we use the attention distribution L, = softmax(L);w—wise t0 compute the atten-
tion output A such that A = L,.Q’ € RIN+DxL,

For Question-to-Context (Q2C), we use the attention distribution L. = softmaz(L)coiumn—wise t0O compute the
attention output B such that B = LTC € R(M+1xL,

Next, we compute the second-level attention outputs S = L,.B € RN %! Note that the row corresponding to sentinels
has been masked out. Finally, we concatenate [S; A] (row-wise) and feed this input into a biLSTM to obtain the
coattention encodings in U € RVN*2!, This is then passed onto the rest of the baseline architecture and the model
continues training.

3.3 BiDAF
Start End Query2Context
Softmax
Outpul Layer | Dense + Softmax | I LST™ + Softmax | YT aTraTratesl uJ
N N o I
3 4 m 2 | LEHEETTH o,
1]] MDD
2 oo COCD
Modeling Layer
A W [] nhe
g 92 g
:) Context2Query
Attention Flow Query2Context and Context2Query
kaver Attention rRirslealralralel Uy
s LTI
bl he . " IR,
PhrastyEer:\bed EI__—I [:I D I———l ED I———l .Jng]L-_JL_JeJl_'J Uy
hy hy ht
Cre| =] = = = = O
Character Word Character
Embed Layer - . . O]] Embedding Embedding

X4 Xz X3 X of] Qu
L J L J GLOVE Char-CNN
Context Query

Figure 2: BiDAF Architecture [5]

We very closely follow the approach given in [3]. The summary that makes up this section will be taken from the
original BiDAF publication [3] and from the default project handout [1]. For the BiDAF model, we have a 6 layer
architecture, which is as follows:

Character Embedding Layer

Word Embedding Layer

Contextual Embedding Layer

Attention Flow Layer

Modeling Layer

OV th Bk =

Output Layer

For this project, we’ve implemented all of these layers, with the exception of the character embedding layer. The
word embedding layer is precisely as it is for the baseline. From here, we get two matrices C € R***¥ for the
context and @ € R?"*M After this, the attention flow layer tries to capture the interactions between the context and
question words. The inputs to this layer are the previously mentioned C' and (). This layers computes two attentions:
context-to-question and question-to-context. Given context hidden states ci, co,...,cN € R?" and question hidden
states q1, qo, .., g7 € R?", we compute a similarity matrix S € RV > The elements of S are given by:
T
Sij = Weimlci; g3 ¢i © 5]

where w,;,, € RS is a trainable weight vector. Once S is computed, we can compute the context-to-question attention
in a manner quite like is done in the baseline. The attention distributions o* are computed by:

ot = softmax(S;..)

These are then used as weights to compute the context-to-question attention outputs a;:

M
a; = ajqj
g1

Then, to compute the question-to-context attention output ¢’, we follow the following sequence of equations:

m; = max;S;;
B = softmax(m)

N
d = Z Bidi
i=1

In words, we take the max over the rows of the similarity matrix, pass this through a softmax layer, and then use these
as weights to compute c’.

To combine these two attentions, we get our blended representations b; as follows:
bi = [ci3ai5¢5 0 az5¢;0C]

We have one for each i € {1,2, ..., N}, and we combine these into a matrix G € R3"*",

This G is the input to the next layer, the modeling layer. In this layer, we run G through two layers of bi-directional
LSTMs to obtain M; € R2"*N_ We also pass this M; through one last bi-directional LSTM layer to get Mo.

Now, we move to the last layer, the output layer. With M;, we compute the probability distribution for the start index
as follows:

pstaT‘t — Softmaflf(w;;tart [G7 Ml])

Similarly, with M5, we compute the probability distribution for the end index:
P = softmax(w;nd [G; M)

These are then used to compute start and end positions that are used at test time. In our case, we use the argmax of the
distributions to compute the start and end indices.

4 Experiments

The following contains a description about the dataset, our various model configurations, the evaluation metrics used,
and the results obtained.

4.1 Dataset

Training and evaluation was done over the SQuAD reading comprehension dataset, released by Rajpukar et al. (2016),
which is split into context, question, and answer triples. The contexts are excerpts from Wikipedia, and the answers
to the about 100k questions are spans within these contexts. The SQuAD dataset constrains the answer space by
requiring answers to be spans from contexts, and it prevents the model from learning a different task (such as named-
entity recognition) by asking questions varied in the type of reasoning needed to answer [2].

4.2 Model configurations

Across all models, the maximum gradient norm was 5.0, the learning rate was kept at 0.001, maximum context length
was 600, maximum question length was 30, and the word embedding size was 100. All models utilized the Adam
optimizer. The coattention layer utilized more memory than our VM provided to compute second level attention
outputs. We experimented with a smaller batch size and the smallest embedding size, but eventually had to upgrade
our VM to a more powerful machine. The following table shows the hyperparameters that we tuned through trial and
error (and for BiDAF, following the advice from the original publication [3] as much as possible).

Model batch size hidden size dropout (drop probability)
Baseline 100 200 0.15
Coattention 50 200 0.15
BiDAF 60 100 0.2

4.3 Evaluation metrics

We used F1 and EM scores to evaluate the performance of our models. As defined in the assignment handout, F1 is
the harmonic mean of precision and recall, and EM, or exact match, is a binary measure of whether predicted answers
exactly match the ground truth answer [1]. Evaluation is made more forgiving by allowing the model to choose any 1
of 3 correct ground truth answers.

Model F1 % EM

Baseline 37.27 27.10
BiDAF (Attention Only) 43.31 31.87
Coattention 66.917 55.009

BiDAF (Our Implementation) 74.437 64.754

The values for the first two models come from our local Tensorboard data and could differ by a few percentage points
when pushed onto the leaderboards. The values for the last two models come from the official test leaderboard.

4.4 Results

Show below are the Tensorboard graphs of the model loss and F1/EM scores across our models running on the dev
dataset.

QAModel/loss/loss

7.00
6.00
5.00
400

3.00

2.00

0.00

0.000 5.000k 10.00k 15.00k 20.00k 25.00k 30.00k

Figure 3: Model loss vs number of iterations for our BIDAF implementation (burgundy), baseline w/coattention (blue),
baseline w/ BiDAF attention (orange), and baseline (pink) models.

dev/F1

0.000 5.000k 10.00k 16.00k 20.00k 25.00k 30.00k

Figure 4: F1 scores for our models across the dev set

dev/EM

0.000 5.000k 10.00k 16.00k 20.00k 25.00k 30.00k

Figure 5: EM scores for our models across the dev set

4.5 Error Analysis

We performed an analysis similar to the one done in [3], with a few categories changed. Given the examples that we
saw from our models, we thought the errors could be better classified in the table attached:

Error Type

Baseline
w/coattention BiDAF %
%

Examples (25 examples sampled for each model)

Imprecise (true) an-
swer boundaries

Syntactic complica-
tions and ambiguities

(Plausible) answer,
different boundaries

Incorrect preprocess-
ing

52 48
36 44
8 4
4 4

Context: “... summing these component forces using vec-
tor addition yields the original force . resolving force vec-
tors into components of a set of basis vectors is often a
more mathematically clean way to describe forces than us-
ing magnitudes and directions . this is because , for orthog-
onal components , the components of the vector sum are
uniquely determined by the scalar addition of the compo-
nents of the individual vectors .”

Question: “what are the independant components of a vec-
tor sum that has been determined by scalar addition of indi-
vidual vectors ?”

True Answer: “orthogonal”

Predicted Answer: “yields the original force . resolving
force vectors into components of a set of basis vectors is
often a more mathematically clean way to describe forces
than using magnitudes and directions . this is because , for
orthogonal components , the components of the vector sum
are uniquely determined”

Context: “during that year , tesla worked in pittsburgh ,
helping to create an alternating current system to power the
city ’s streetcars . he found the time there frustrating be-
cause of conflicts between him and the other westinghouse
engineers over how best to implement ac power . ”
Question: “what did tesla work on in 1888 ?”

True answer: “system to power the city ’s streetcars”
Predicted answer: “pittsburgh”

Context “while genghis khan never conquered all of china
, his grandson kublai khan completed that conquest and es-
tablished the yuan dynasty that is often credited with re-
uniting china . there has been much artwork and literature
praising genghis as a great military leader and political ge-
nius . the years of the mongol-established yuan dynasty left
an indelible imprint on chinese political and social struc-
tures for subsequent generations with literature during the
jin dynasty relatively fewer .”

Question: “what chinese dynasty did the mongols found ?”
True Answer: “yuan”

Predicted Answer: “mongol-established yuan dynasty”

Context: “on january 7, 2016 , pepsi confirmed to the as-
sociated press that beyonce , who headlined the super bowl
xlvii halftime show and collaborated with coldplay on the
single ”” hymn for the weekend ” , would be making an ap-
pearance . bruno mars , who headlined the super bowl xlviii
halftime show , and mark ronson also performed .
Question: on january 7, 2016, it was confirmed that which
start would join coldplay for the halftime show ?”

True Answer: “beyonce”

Predicted Answer: “pepsi”

4.6 Evaluation of Results

As we see in our results, the baseline model with the coattention layer far surpasses basic attention when we take
a look at their F1-EM scores of 66.917%-55.009% and 37.27%-27.10%, respectively. This is expected because the
coattention outputs are an improvement over the simple dot-product attention in the baseline. However, baseline model
with coattention still trails the high performing full coattention implementation done by Zhong et al. (2016), which
reached F1 and EM scores of 75.6% and 65.4% with a pool size of 16 for the Highway Maxout Network.

This approximate 10% gap in scores is probably explained by the inclusion of the HMN in the architecture that follows
the coattention layer. We performed a rudimentary test to see whether the difference was in the architecture before
the coattention layer, namely in encoding the question and context hidden states that are passed to coattention. The
baseline obtains these hidden states with a GRU cell, while [2] accomplished their results with an LSTM. Our results
interestingly show that the LSTM is subpar to the GRU implementation, even though it deviates from that in the paper.
However, more tests would need to be performed to provide thorough analysis.

Turning to BiDAF, quite differently, we see that swapping out the basic attention layer with the BiDAF attention layer
in the baseline implementation does not lead to huge gains in performance. We see a jump from 37.27 to 43.31 in
F1 and from 27.10 to 31.87 in EM. This highlights the importance of the rest of the layers that share the work in the
BiDAF. Taking out the modeling layer, in particular, led to huge drops in performance. In working on this project, a
ton of time was spent solely trying to debug the BiDAF attention layer since we felt as though there had to be a bug if
the results were practically the same as the baseline’s. The gap of a few performance points from the original paper (F1
of 77.3, EM of 68.0) comes from the things that were left for us to implement; additionally, through more thorough
testing and tuning and taking inspiration from the common errors, we could better fit our model to this particular
dataset whilst possibly sacrificing performance on similar tasks.

5 Conclusions

For this project, we implemented features from two high-achieving architectures found in the literature: the BiDAF
and Coattention models. In the end, our best-performing model achieved an F1 score of 74.437 and an EM score of
64.754.

In terms of future improvements, the next path that we would take is to create an ensemble model. As was shown in
the BiDAF paper, this could lead to a big improvement in the EM score and an improvement in the F1 score [3].

Acknowledgments

We would like to thank the teaching staff for making this class a possibility.

References
[1] “Cs 224n default final project: Question answering.” http://web.stanford.edu/class/cs224n/
default_project/default_project_v2.pdf. Accessed: 2018-03-18.

[2] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for question answering,” CoRR,
vol. abs/1611.01604, 2016.

[3] M.J. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow for machine comprehension,”
CoRR, vol. abs/1611.01603, 2016.

[4] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Empirical
Methods in Natural Language Processing (EMNLP), pp. 1532-1543, 2014.

[5] “Bidaf.” https://allenai.github.io/bi-att-flow/BiDAF.png. Accessed: 2018-03-18.

