BN W —

93]

Machine Comprehension Task with

BiDirectional Attention Flow on SQuAD Dataset

Shim-Young Lee
Department of Statistics
Stanford University
sylee l @stanfordedu

Abstract

In this default project (assignment 4) for the course CS224n Natural
Language Processing with Deep Learning, a challenging NLP task called
machine comprehension was explored in the form of question answering. The
SQuAD dataset provides the contexts and corresponding questions, and the
task is to correctly highlight, or mark the beginning and the end of, a word
sequence in the context paragraph that answers the question. I augmented the
baseline model with the attention mechanism of the BiDrectional Attention
Flow and Bidirectional LSTMs in the contextual embed layer and modeling
layer of the neural network. A single model achieved THIS F1 and THIS EM.

1 Introduction

The goal of this project is to explore a natural language processing (NLP) task of machine
comprehension in the form of question answering, where the level of comprehensive capability
of a machine is assessed by evaluating the machine generated answers given a context
paragraph and a question about the context. Machine comprehension is a challenging task, as
the machine must be able to extract information from a relatively long sequence of words and
represent, or summarize that information in a form that will allow the machine to use when
answering a question. It shares many challenges of machine translation as it must understand
the relationship between words and sentences; however, instead of mapping a word sequence
in one language to another, it also must extract useful information in both the context and the
question and model the complex interaction between them in order to come up with a correct
answer. The “answer” in this specific task with SQuAD dataset[4] is given by marking the
start and the end position of a word sequence in the context paragraph.

In this project, a baseline model with GRUJ[1] cells in the encoding layer and a basic attention
mechanism was provided. The task was to replace or augment this provided baseline model in
a single or multiple modules of the network architecture to achieve better performance. I chose
to implement Bidirectional Attention Flow (BiDAF) [5] whose architecture has the similar
modularization/hierarchy as the baseline model. BiDAF is one of the highest performing
model for this task one SQuUAD dataset.

69

70

71
72

2 Related Work

As previously stated, the related work that was most influential to this project is the
Bidirectional Attention Flow model, whose attention mechanism was implemented here. The
general organization of components or layers other than the attention layer is also very similar
for the BIDAF and the version I implemented for this project. The full BIDAF model has other
extensions such as character-level CNN embedding layer.

Other important model that performed well on SQuAD dataset is Dynamic Coattention
Network by Xiong et al[7]. Similarly to the BIDAF model, one of the major contributions of
the Coattention Network is its attention mechanism in the Coattention layer, which uses a two-
way attention between the context and the question, as well as the second-level attention
computation that attends over attention outputs.

3 Dataset and Features

The dataset used for the question answering task here is the Stanford Question Answering
Dataset (SQuAD). SQuAD is a reading comprehension dataset; it consists of about 100,000
context paragraph-question pairs extracted from Wikipedia articles as well as the answers to
the questions, built through crowdsourcing. From the perspective of a model, each input is a
pair of context paragraph and a question about that paragraph, and the goal is to answer the
question correctly. The training set has roughly 85,000 context-question pairs, and the dev set
has about 10,000 pairs. The test set is similar to the dev set in terms of size, and I did not have
direct access to the test set, and it was used only for the final evaluation/submission.

To make the assessment of the correctness of the machine generated answers easy, the answers
are always taken directly from the context paragraph. Specifically, the answer is specified by
marking the start and the end positions of the word sequence in the context paragraph, so the
question answering system needs not generate a new word sequence. The accuracy of the
answers are evaluated simply by comparing these machine generated start and end positions
with the answers provided by the dataset.

train set context length distribution train set question length distribution

14000
14000
12000
12000

10000
10000

8000

Frequency
Frequency

6000

N T T T T T T T T
0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60
Length Length

train set answer length distribution

50000

40000

=]
=]
=]
=)

Frequency

20000

10000

0 10 20 30 40
Length

Figure 1: Histogram of sequence lengths for context paragraphs, questions and answers in
training set.

73
74

75

Table 1: 95 and 99 percentile of the sequence lengths for context paragraphs, questions and
answers in training set.

Word 95 99
sequence percentile percentile
type length length
Context 245 325
Question 18 23
Answer 10 18

The training and inference with the model involve tensor multiplications, so the maximum
sequence lengths of a context paragraph and a question are hyperparameters to be set. To
determine the cut-off length for each effectively, histograms of sequence lengths were used.
The figure 1 and table 1 summarize the distributions of lengths for context paragraphs,
questions and answers. Based on these statistics, the maximum length for context paragraphs
was set to 300 and for questions 25.

4 Model Architecture

First, I provide the higher level description of the modularization and hierarchy of the model
architectures that all models tested follow.

Both the baseline model and the BiDAF models consist of three major components, or layers.
The first layer (besides the very first word embedding layer) is the RNN encoder layer, which
takes in the word level embedding vectors of the sentence and uses some RNN encoder (GRU
or LSTM) to encode the word sequence into hidden states. In this layer, context paragraph and
question are encoded with the same RNN cell, so the weights are shared.

The next layer is the attention layer. The interaction/similarity between context and question
hidden states are computed, with dot-product in the simplest case, and the score is turned into
a distribution by applying softmax to the scores. The distribution is then used as a weight in
the weighted sum of either context or question hidden states, which is blended together to be
fed into following layers.

The layer following the attention layer is the output layer, where the blended representation
of reweighted context and question vectors are fed into the usual fully connected layers.
Specifically, affine transformation followed by nonlinear activation (ReLU was used for all
models discussed) is applied to the blended representation, and the output once again goes
through another affine transformation and then the softmax is applied to turn these logits into
a probability distribution. Note that the probability distribution here is the probability of each
word in the context paragraph being the start/end position of the highlight span, so two output
layers are needed, each for computing the distribution for the start position, and the end
position. The final prediction is made simply by taking the argmax of the probability
distribution.

Next, the implementation details for each component of respective models are dicussed.

108
109

110

111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129

130
131

132

ol ol ol il Start End
U
3
€
e e ul
- = | Dense+ Softmax | | Dense+ Softmax | Output Layer
hy h, hy
11 0 0
é I U Modeling Layer
£ y; L
3 S
T
u
' O O I 1
h h N | QueryZContextlaanContethQuery | Attention Flow Layer
1 2 hr attention
T A
Ui Yj h, h, [hr
L |
S
T < | |<—-| |<—> Contextual Embed
M Layer
i a ‘ Word Embed Layer
a1 a Cy C Cr
Figure 2: Model Architecture diagram for BiDirectional Attention Flow model
4.1 Baseline model

Embedding Layer: The GloVe [3] word embedding vectors of size 100 was used.

RNN Encoder Layer: A bidirectional GRU was used for both context and the question. An
embedded sequence (GloVe) of context and query vectors ¢ = [¢y, ¢y, ..., cp] and

q= [ql,qz, s q/] are fed into the RNN cell and the representation matrix H € R™*?" and
U € R/*?" each for context and question are output (2h since bidirectional, where h is the
size of a single hidden state).

Attention Layer: A simple dot-product attention was used: similarity matrix S = H,, U]T ,
attention weight vector a, = softmax(S;.) € R/ was computed and used to reweight the
question vectors, yielding U, = ¥ a,; U] € R™?",

Output Layer: A simple output layer described above was used.

4.2 Bidirectional Attention Flow

Embedding Layer: The GloVe word embedding vectors of size 100 was used. GloVe vectors
of higher dimension were not used nor tested due to the training speed and the GPU memory
limitation.

RNN Encoder Layer: Two layers of bidirectional LSTM was used. This is the contextual
embed layer in the figure 2 (as the authors of BiDAF called it).

133
134
135

136
137

138
139
140

141
142
143

144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172

173
174
175
176

Attention Layer: The similarity matrix Sy = wl. [Ht:,U]-:; H,. o U]-:] € R was computed, then
the Context2Question attention, a' = softmax(S.)€ R/, U, = Z]=j=1 af U, and the
Question2Context attention m, = maxS;; € R, B = softmax(m) € RY, h=}T,B.H,
and H is constructed by tiling h to Ilnatch the dimension of the final blended representation,
B=[H;U;HoU,H-H|

Modeling Layer: This is a layer not described in the higher lever overview in the beginning
of the section. Instead of feeding the blended representation right into the output layer, two
layers of bidirectional LSTM were used to encode the representation.

Output Layer: A simple output layer described above (same as the baseline model) was used.

The figure 2 summarizes the overall architecture and flow of computation.

4 Result and Discussion

In assessment of the performance of question answering task, F1 score and Exact Match
(EM) score are used. F1 score is the harmonic mean of precision and recall, and Exact Match
is a simple accuracy score that computes the proportion of predictions that exactly match the
answer span (given by the start and the end positions).

The baseline model achieves F1 score of 43.027 and the EM score of 34.134 in the dev set
with about 16k iterations of training step with batch size 100.

The first augmented model trained was the BiDAF model without the modeling layer
(BiDAF1), that is, the baseline model with replaced attention mechanism (one layer of GRU
RNN Encoder layer, BIDAF attention layer, and output layer). This model achieved the F1
score of 48.77 and EM score of 35.47 in the dev set with over 20k iterations of training steps
with batch size 100. The improvement in performance was fairly minor given the increase in
the complexity of the attention layer.

Fnally, the BIDAF model with one layer of bidirectional LSTM and two layers of
bidirectional LSTM in the contextual embed layer and the modeling layer respectively, and
the BiDAF attention mechanism (BiDAF2), achieved the F1 score of 73.115 and EM score
of 63.084 in the dev set, and F1 score of 73.553 and EM score of 64.219 in the test set with
only about 12k iterations of batch size 64.

Table 2: The F1 and EM scores of each model.

Model F1 EM
Baseline(dev) 43.027 34.134
BiDAF1(dev) 48.77 35.47
BiDAF2(test) 73.553 64.219

177

178
179

180

181
182

183
184
185

186
187
188
189

190
191
192

193
194
195
196
197
198
199
200
201

202
203

204
205
206
207
208

dev/F1
dev/EM

Ok 4000k B00K BOOk 100k 1200k 1400k 1600k 1800k 2000k 2200 000 2000k 4000k BOJOK B0 1000 1200k 14

Figure 3: Dev set F1 score (left) and Dev set EM score (right) as a function of iterations.
Orange: baseline, navy: GRU BiDAF model with no modeling layer,

sky blue: LSTM BiDAF with a modeling layer

dev/loss

5.00

0000 2000k 4000k 6000k 8000k 1000k 1200k 1400k 1600k 1800k 2000k 2200k

Figure 4: Dev set loss as a function of iterations.
Orange: baseline, navy: GRU BiDAF model with no modeling layer,
sky blue: LSTM BiDAF with a modeling layer

The figures above show the dev set evaluation of F1 and EM scores as well as the loss of
three models as a function of iterations. (I did not save the loss and F1/EM scores separately,
so I took the figures directly from the TensorBoard visualization tool.)

All three plots show that BiDAF2 achieves loss and performance in only a few thousand
iterations the other two models couldn’t achieve in more than twice the training steps. Also
keep in mind that the batch size was smaller for BIDAF2, due to the GPU memory constraint.

The overwhelming difference in the performance of BiDAF1 and BiDAF2 suggests that
BiDAF’s attention mechanism alone cannot improve the performance of the baseline model
without the modeling layer. Even with the increase in model complexity in BiIDAF2 due to the
change in the RNN encoder from GRU to LSTM and two layers of modeling layer, overfitting
was much more severe in BIDAF1, where the training F1 and EM scores went up as high as
over 85. On the other hand, for BIDAF1, the F1 and EM scores for training set and dev set
remained roughly similar throughout the training, and the model performed better on the test
set than on the dev set. This might be due to the decrease in the size of hidden states for all
RNN encoders (was forced to do so due to the memory constraint).

5 Conclusion and Future Work

For this default project, I implemented some of the components of the BiDirectional Attention
Flow to augment the baseline model, and was able to achieve improvement of about 25 in F1
score and 30(%) in EM score. The more complex attention mechanism, however, improves the
model significantly only when the contextual embed layer and the modeling layer are
sufficiently complex.

209
210
211

212

213
214
215
216

217
218

219
220
221

222
223
224
225
226
227

228
229
230

231
232
233

One possible, obvious extension to the current model is the character-level CNN, which uses
the character embedding to represent the characters and provides more subtle and refined
interaction of word sequences in character level in addition to the word level embedding.

References

[1] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” ArXiv
eprints, Jun. 2014.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8,
pp.1735-1780, Nov. 1997.[Online]. Available: http://dx.doi.org/10/1162/nec0.1997.9.8.1735

[3] Pennington, J., Socher, R., & Manning, C. D. “GloVe: Global Vectors for Word Representation,” 1532—
1543. Retrieved from http://www.aclweb.org/anthology/D14-1162, 2015

[4] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ Questions for Machine
Comprehension of Text,” ArXiv e-prints, Jun. 2016.

[5]M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow for machine
comprehension,” arXiv preprint arXiv:1611.01603, 2016.

[6] Sutskever, 1., Vinyals, O., and Le, Q.. “Sequence to sequence learning with neural networks,” In Advances
in Neural Information Processing Systems. 2014

[7] C. Xiong, V. Zhong, and R. Socher, “Dynamic Coattention Networks For Question Answering,” ArXiv e-
prints, Nov. 2016.

