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Abstract

With fast increase of online recommendations and reviews, labeling efficient data
in thousands of domains for natural language processing (NLP) is not feasible
in practice. As an important category of domain adaptation methods, pseudo-
labeling combined with deep neural network remains absent for those NLP tasks
in literature. Especially in the field of sentiment classification, little is understood
about the properties of pseudo label selection. How does the selected pseudo la-
bels affect the learning performance? How much can we trust the pseudo labels?
Motivated by both research and practical needs, we propose several end-to-end
deep learning frameworks to tackle the domain adaptation problem in natural lan-
guage processing. We learn to transfer a sentiment classifier trained on source
domain with sentiment annotations to target domain without any label. We quali-
tatively examine how the selection rule affects the classification performance and
evaluate the pseudo-label related approaches.

1 Introduction

With the rapid growth of social media such as online reviews and ratings, a large variety of nat-
ural language data become available, which enables tremendous applications. The numerous data
sources raise one problem — how to learn cross domain problems robustly and generally. Among
all the machine learning tasks, sentiment classification is considered as an important benchmark in
academia and a critical application in industry. The cross domain problem becomes extremely severe
for sentiment classification, which usually spans a large number of domains. For example, reviews
on kitchen may use description such as ’blunt”, delicious” and ”soft”, while reviews on book are
more likely to include ”profound”, “concise” and ”coherent”. The different data distributions make
it hard to develop a general sentiment classifier.

The most advance progress in domain adaptation has been achieved in the field of visual recog-
nition. Among recently developed methods, giving pseudo-labels to unlabeled target samples has
become an important category as it reaches state-of-the-art performance on digit recognition (Sener
et al. (2016); Saito et al. (2017)). However, current sentiment domain adaptation mainly focuses
on representation based methods, and the pseudo-labeling related approach has not been adopted in
literature.

2 Related Work.

The problem of unsupervised domain adaptation for sentiment classification in natural language
processing has been addressed by different approaches such as learning intermediate representation
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(Glorot et al. (2011); Deng et al. (2014)), active learning (Wu et al. (2017)) and adversarial training
(Ganin et al. (2016)).

Referring to the similar problem in the field of computer vision applications, domain adaptation has
achieved impressive performances combined with deep learning (Long et al. (2015)). Especially,
pseudo-label related methods are leveraged to transfer representations across domain gap (Sener
et al. (2016); Saito et al. (2017)). On the other hand, in order to solve the inefficient labeling problem
for semi-supervised learning research, temporal ensembling method (Laine & Aila (2017)), mean-
teacher model weights ensembling method (Tarvainen & Valpola (2017)) as well as the approach of
virtual adversarial training (Takeru Miyato & Ishii (2016)) have achieved impressive performance
on MNIST, CIFAR and ImageNet datasets.

Based on the related works of domain adaptation and semi-supervised learning in computer vision
tasks, we propose our methods to solve the unsupervised domain adaptation problem in natural
language processing in this paper.

3 Approach

Vanilla Baseline. Motivated by the comparative study of different deep model architecture in nat-
ural language processing in Yin et al. (2017), we propose to explore various deep networks for our
sentiment analysis task such as RNN, CNN and LSTM. In our baseline, we test the performance
of both RNN and LSTM network. For the vanilla domain task, we train an RNN/ LSTM network
based on source samples, and then evaluate model performance on target domain. Note that there is
no training data and labels from target domain for training the network.

3.1 Hard Pseudo-Labeling based Methods.

One simple but important way to deal with unlabeled data is pseudo-labeling. That is, we leverage
the currently model trained on annotated source examples to assign fake labels to the targets exam-
ples, which are then added into training dataset through iteratively update. In this sense, we propose
a straightforward pseudo-labeling method and also labeling with tri-training mechanism.

Proposed Method 1: Pseudo-labeling. Consider the particular knowledge transfer for domain
adaptation, we implement a multi-model learning architecture leveraging pseudo-labeling approach.
Specifically, in order to leverage the unlabeled data in the target domain, we use a training model to
evaluate unannotated target samples and assign pseudo labels in each training epoch. In addition, a
hyper-parameter is set here as the threshold to determine how many pseudo-labeled target samples
should be updated into the total training data set for every epoch. Finally, we test the developed
model on the target domain.

Proposed Method 2: Tri-training with Pseudo-labels. Motivated by the paper Saito et al. (2017),
in order to improve the accuracy of predicting pseudo-labels to unlabeled target samples, we train
two classifier simultaneously to work as the predictor. When we assign pseudo labels to target sam-
ples in each training epoch, a new target sample will be chosen to add into training dataset only if
two criteria are satisfied: 1) The two classifiers predict the same label; 2) Both of the two predictors
achieve a confidence score exceeding the threshold. Such more strict constraints improve the pro-
cess of pseudo-labeling by selecting predicted target samples with higher confidence. The different
initializations of two classifiers also avoid the affect resulted from the randomness in training classi-
fier on source labeled data. Therefore, tri-training will work better as an advanced pseudo-labeling
approach.

3.2 Loose Pseudo-Labeling based Methods.

The pseudo-labeling based methods introduced above directly assign the pseudo category labels to
the training examples, and the targets are hard one-hot labels which will lose the information in
probability distribution predicted from current model. In order to solve this problem, we propose
new methods based consistency loss. In other words, instead of assign hard pseudo labels to training
samples, the algorithm uses the predicted confidence score as the soft target, which is integrated as
the consistency loss into the total objective functions for training the whole network.



Algorithm 1 Tri-training with Pseudo-labels.

Require: Source data Xgyrce, Source label Vsource, Target data Xyapget
1: initial training set Xlabel = Xsourcea ylabel = ysource’ T = (A)Iabelv ylabel);
2: fori =1tondo )
3:  Train Model 4 and evaluate on target data: (Va,Sa) := Modela (T, Xiarget)
4:  Train Modelp and evaluate on target data: (Mg, Sg) := Modelp (T, Xiarget)
5 Select target samples from two evaluation results and assign pseudo-labels:
(Xselect7 ypreda Spred) = ﬁndmaX(Xtargeh yA7 SA7 yBa SB )

6: Update training dataset: Xlapel = Mabel U Ksetect; Nabel = Nabel U ypred-
7: end for

Proposed Method 3: Temporal-ensembling. In order to get a high-accuracy probability distri-
bution for the consistency loss, we need a more reliable predictor to serve as the target scores.
Motivated by the semi-supervised methods of temporal ensembling Laine & Aila (2017) and mean-
teacher modeling Tarvainen & Valpola (2017), temporal model ensemble is an efficient approach
to predict more reliable targets compared to the training model at current epoch, since the overfit-
ting along with the training process. Base on this observation, we propose a temporal ensembling
method to predict targets for unlabeled training samples on target domain. To be specific, the pre-
diction from an ensembling model is computed as the moving average values at each epoch. Then
the averaged confidence scores are leveraged to update consistency loss function for the training
process on target samples. Thus, the objective loss function for training processes are defined as
the weighted combination of classification loss on source data and consistency loss on target data as
follows.

Lobjective = w1 X Lclassification + wa X Lconsistency (1)

Where w; and ws are loss weights. Classification loss is defined as binary cross-entropy loss func-
tion for source examples and labels. Consistency loss is defined as mean-square-error loss function
for target examples and predicted pseudo labels of probability distribution.

Proposed Method 4: Tri-training with Temporal-ensemble. Similar as Method 2, tri-training is
an effective mechanism for unsupervised domain adaptation methods supported by results in Saito
etal. (2017). We also add the tri-training mechanism on the top of temporal-ensembling with consis-
tency loss for this task of unsupervised domain adaptation. Specially, the mean values of predicted
confidence scores from two classifiers are set as the targets for consistency loss function. Similarly,
when we iteratively train the model based on target domain, the target examples will be chosen into
training set only if these two criteria are satisfied: 1) The two classifiers predict the same label; 2)

Table 1: Results of our two proposed hard pseudo-label related methods (Pseudo-labeling and Tri-
training) with RNN. Here we show the test accuracy on the target domain. The vanilla approach is
baseline for comparison.

Source— Target Valinna | Pseudo-Label | Tri-Training
books—dvd 55.9 % 53.8 % 54.1 %
books— electronics 51.5 % 56.3 % 51.7
books—Kkitchen 53.1 % 56.1 % 54.5 %
dvd—books 52.8 % 52.2 % 53.5 %
dvd—electronics 51.7 % 52.8 % 52.1 %
dvd—Kkitchen 52.6 % 53.0 % 58.0 %
electronics—books 52.4 % 53.1 % 56.4 %
electronics—dvd 53.3 % 52.3 % 53.5 %
electronics—kitchen || 56.5 % 55.8 % 56.2 %
kitchen—books 56.0 % 51.5 % 53.5 %
kitchen—dvd 52.0 % 52.4 % 54.0 %
kitchen—electronics || 56.7 % 53.7 % 55.0 %




Table 2: Results of our proposed methods ("PL”, ”Tri”, ”TE” stand for Pseudo-Labeling, Tri-training
and Temporal-Ensembling respectively) with two neural network architectures (RNN and LSTM).
Here we show the test accuracy on the target domain, while different methods are trained with differ-
ent data source. The vanilla approach trained with only source data is the baseline for comparison.
(S+T) notes that the model is trained on both labeled source data and pseudo-labeled target data,
while (T) means training with only pseudo-labeled target data.

RNN LSTM
Source—Target Tri Valinna PL Tri+PL TE
(S+T) S) (S+T) | (S+T) (T) (S+T) (T)
books—dvd 541% | 685% | 69.8% | 67.6% | 649 % | 64.2 % | 64.6 %

books—electronics | 51.7% | 654 % | 66.1 % | 628 % | 51.9% | 64.1 % | 64.4 %
books—Kkitchen 545% | 696% | 682 % | 69.0% | 66.5% | 639 % | 68.5 %
dvd—books 535% | 690% | 683% | 682% | 653% | 62.4% | 65.2 %
dvd—electronics 521% | 66.6% | 66.1% | 623 % | 505% | 579 % | 60.9 %
dvd—Kkitchen 580% | 669% | 66.4% | 647% | 54.8% | 61.3 % | 63.8%
electronics—books | 56.4% | 66.4% | 659% | 66.8% | 64.4% | 603 % | 64.0 %
electronics—dvd 535% | 656% | 63.8% | 623 % | 54.8% | 590 % | 61.4 %
electronics—Kkitchen | 56.2% | 744 % | 73.6% | 73.5% | 68.5% | 683 % | 62.1 %
kitchen—books 535% | 666% | 669 % | 652% | 65.1% | 639 % | 69.9 %
kitchen—dvd 540% | 659% | 64.0% | 61.2% | 53.0% | 61.1 % | 63.8%
kitchen—electronics | 550% | 71.2% | 69.6% | 71.2% | 71.8% | 63.9 % | 68.9 %

Both of the two predictors achieve a confidence score exceeding the threshold. In such a sense,
the target samples with higher reliability are chosen for training while target examples with low
prediction confidence are filtered out.

4 Experiments

We carried out experiments for our four proposed methods with two deep neural network architec-
tures (RNN and LSTM) on a benchmark multi-domain sentiment dataset.

Dataset. Amazon product review dataset is chosen as a benchmark sentiment domain adaptation
dataset. This dataset (He & McAuley (2016)) contains 142.8 million product reviews from Amazon
in 25 various product categories, while users’ rating scores are regarded as the target labels in the
task of sentiment classification. In addition, because of richness of specific product domains, this
Amazon review dataset is widely used for evaluation in previous works related to domain adaptation
tasks Glorot et al. (2011); Chen et al. (2012); Ganin et al. (2016); Saito et al. (2017). Considering
the results comparison with these previous works, we follow the same data pre-processing and ex-
perimental setting. In particular, 12 domain adaptation scenarios are explored in our problem which
are constructed from 4 amazon review dataset: books, dvd, electronics and kitchen.

Data Pre-processing. Following the experimental setting in Saito et al. (2017), we pre-process the
dataset by regarding start 1 - 3 as negative class, while start 4 and 5 as positive for the sentiment task.
2000 labeled source samples and 2000 unlabeled target samples are generated from four categories
including "books”, ’dvd”, “electronics” and “’kitchen”. Then 12 domain adaptation tasks are studied,
such as ”dvd” — “book” where “dvd” is the source domain and “book” is the target one. Both
training and test data sets are balanced with equal number of positive and negative samples. Another
4000 samples are used for model evaluation on target domain.

Word Embedding: In order to do word embedding, we propose to leverage the word2vec method
for text representations in our problem. 1024-dimension word vectors are trained respectively with
training set using word2vec approach.

Experiment Setup. We implement our network using Keras library. The network structure con-
tains on one embedding layer, one hidden layer of RNN or LSTM, and one output layer with softmax
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Figure 1: Learning curve for pseudo label generation with different selection threshold 7 in Tri-
training. Here the source domain is electronics and target domain is kitchen.

activation. In order to train the networks, we use binary cross entropy loss function and Adam opti-
mizer, with 32 samples per mini-batch and in total 10 epochs.

Evaluation Methodology. In order to evaluate the transferability of the model across different
domains, we use the sentiment classification task as evaluation experiments, and the classification
accuracy as evaluation metrics. Under the sentiment recognition task, we train our model on labeled
data in source domain and unlabeled data in target domain. An accurate sentiment classifier on target
domain is what we expect.

5 Results

5.1 Performance.

The two architectures, RNN and LSTM, exhibit different performances with the pseudo-label related
methods. The test accuracies on the target domain for vanilla and our proposed methods are given
in Table 1 (RNN) and Table 2 (LSTM).

Network Architectures. Inthe experiment, we test our methods with both RNN and LSTM. Over-
all, LSTM has a better performance over RNN. For example, when source is books and target is
electronics, the best target test accuracy achieved by RNN is 56.3 %, while the best accuracy is
69.8 % for LSTM. Meanwhile, the pseudo label related methods also have different performance for
the two architectures.

Pseudo Label Methods Evaluation. For RNN, tri-training (Tri) performs slightly better than
pseudo-labeling (PT), while PT performs best over all methods for LSTM. First, for RNN, table
1 shows improved performance of both pseudo-label and tri-training methods. For example, the
tri-training method has the potential to improve the accuracy by 5.4 % for ”dvd—-electronics” case.
In the meantime, the contribution of LSTM is not significant, as indicated by Table 2. We note
that to this point, we only do the fine-tuning on hyper-parameters for vanilla setting. Further im-
provement is expected after hyper-parameter search and architecture tuning are done particularly
for tri-training. The loose pseudo-label methods, i.e., Temporal-ensembling, does not perform well
overall.

5.2 Pseudo-label Generation.

The assignment of pseudo labels is the core of all our methods. To this point, the properties of
pseudo label selection are not revealed. How does the selected pseudo labels affect the learning
performance? How much can we trust those pseudo labels? Here we qualitatively analyze how the
selection affects the classification performance, with tri-training as an illustration.
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Figure 2: Performance for different selection threshold 7 in Tri-training. The results are retrieved
at the end of the training, corresponding to the last epoch in Fig. 1. Here the source domain is
electronics and target domain is kitchen.

Generation of Pseudo Labels. The trends of pseudo-label generation are illustrated in Fig. 1la.
The pseudo labels begin to generate at a few epochs, and the number of assigned labels first increases
rapidly and gradually saturates. For example, when selection threshold 7 is 0.9, the tri-training
algorithm starts to accept pseudo labels at epoch 3, and the pseudo label number reaches 1000 at
the end of the training. A looser principle, i.e., a smaller confidence threshold 7, leads to a larger
pseudo label set as expected.

We further examine the quality of generated pseudo labels, as shown in Fig. 1b. Here the quality
is evaluated by correctness — the proportion of correct assigned pseudo labels. The correctness is
found to gradually decrease during the training.

Effects of Selection Rule. The influence of pseudo label selection arises from the trade-off be-
tween the quantity and quality of pseudo labels. As the selection rule becomes more strict, the
quantity increases monotonically and the quality decreases monotonically. That is, a higher con-
fidence threshold 7 results in a high-quality but smaller pseudo label set, as indicated by Fig. 2a.
When trained on pseudo-labeled data, the target test accuracy is affected by the selection threshold
7 following Fig. 2b. For example, a very large threshold 7 = 0.99 suffers from the limited pseudo
label number around 100, while a small threshold 7 = 0.6 is hindered by the low correctness about
0.7.

6 Discussion and Conclusion

In our experiments, we evaluate four pseudo-label related methods with two network architectures in
sentiment domain adaptation tasks, which have good performance and much potential. The influence
of pseudo label selection is found to arise from the trade-off between the quantity and quality of
pseudo labels. We note that there is much space for us to improve the current performance and more
analysis could be carried out.

Further Improvement. In our current experiments,we carefully fine-tuned the hyper-parameters
and network architecture for vanilla setting. Good improvement is made over the result in Milestone.
However, the tri-training setting differs a lot from the plain vanilla one. Further fine-tuning should
be made particularly for tri-training case, and improvements are expected. Moreover, we also do not
deal with the problem of overfitting. The training accuracies could always go to 100%, with the test
accuracy given in Table 2. We plan to try different approaches such as adding regularization term
and conducting early-stopping with validation datasets.

Exploration of Different Deep Models. As shown in our work, different neural network archi-
tectures could have different performance for sentiment domain adaptation tasks and different char-



acteristic could be perceived. Here we tested on RNN and LSTM, and our study could be extended
to other deep models such as GRU and CNN.
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