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Abstract

We present a performant solution to the SQuAD question-answering chal-
lenge. Though many current question-answering systems opt for recurrent neural
network-based architectures, we follow the recent work of [1] to demonstrate an
alternative architecture built on convolution and self-attention. After architectural
experimentation and hyperparameter tuning, we achieve final scores of 62.7% F1
and 47.8% EM on the SQuAD development set.

1 Introduction

We aim to achieve competitive performance on the Stanford Question Answering Dataset (SQuAD)
[2], which presents natural language questions, along with context within which answers are to be
found (i.e. the answer phrase is always a contiguous subset of the given context, in the original
order). We quantify performance using the standard F1 (harmonic mean of precision and recall) and
EM (exact match) scores, evaluated at the token level.

The SQuAD dataset itself includes over 100,000 sets of (question, context, answer) examples, com-
prised of original text from Wikipedia subsequently labeled by humans. SQuAD’s features make it
well suited for NLP research, as it exhibits good diversity, high-quality labels, and most importantly
offers a large number of training examples.

We propose a solution to SQuAD that balances both accuracy and computational efficiency, achieved
through the coupling of self-attention mechanisms and convolutional feature processing. We borrow
intuition from both the natural language processing and computer vision domains to motivate our
experiments

2 Related Work

Previous approaches to machine question-answering have tended to rely on recurrent neural net-
work (RNN) models, combined with some form of attention mechanism. Bidirectional Attention
Flow (BiDAF) [3] is one particularly popular, recent example, and proposes a general approach of
computing attentions both from the query to context and from the context to the query. Long short-
term memory (LSTM) cells are used to improve feature embeddings before computing attention,
and also to distill the query-aware feature vectors produced by the attention stage into final output.
In both cases, the use of recurrent neural models is thought to capture more contextual information
within each token; intuitively, we want words to be considered in relation to their usage context.

However, recurrent models are somewhat less computationally efficient than another type of neural
architecture that has seen outstanding success in the field of computer vision: convolutional neural
networks (CNNs). Broadly speaking, convolution operations can be more amenable to fast compu-



tation thanks to a hierarchically local memory access pattern and high parallelization potential (no
recurrence relation) [4].

Additionally, we have seen CNN models succeed in capturing spatial context, within the domain of
image perception. As we have seen recurrent models primarily used to capture global context for
each token (i.e. relation to other words in given sequence), we intuitively consider the use of convo-
lutional models to perform a similar purpose. CNNs achieve contextual awareness through the width
of chosen convolutional filters, meaning each element maps to a definite receptive field. Generally,
image processing tasks are mostly concerned with local context, so the receptive field of any given
element tends to cover a small spatial area, with layer stacking used to gradually blend information
across the entire image. This tendency is critical to improving memory locality, and thus compu-
tational performance. We posit that this is not a significant limitation for natural language tasks,
since tokens tend to interact within relatively short sequences (e.g. descriptive modifiers, negation,
multi-word phrases). Furthermore, feature vectors in the natural language domain represent charac-
ters or words as individual elements, suggesting higher spatial information density than the large but
dimensionally shallow nature of RGB images.

3 Approach

3.1 Formal Problem Definition

The task presented by squad can be formally expressed as:
Given a pair (Q,C) of query @ and context C, find indices A; and A, within C such that the
sequence of words from C[A,] to C[A.] represents the best answer to Q.

3.2 Model Architecture

At a high level, our model maintains some of the popular architectural choices in machine com-
prehension. In particular, we adopt many of the architectural structures proposed by [1], reimple-
menting high-level ideas in the TensorFlow framework [5] (see code for inline attributions). We
can segment our architecture into 5 logically distinct ‘layers’ - sequentially, we have an embedding
layer, an embedding encoder layer, an attention layer (bidirectional; context-to-query and query-to-
context), a model encoder layer, and a final output layer. We discuss each of these layers in more
detail below.

3.2.1 Input Embedding

We employ standard methods to obtain word embeddings for each token of the context and query,
separately. Word embeddings are found from pre-trained GloVe vectors, with dimensionality of
300 [6]. Out-of-vocabulary words are simply mapped to a dedicated ‘unknown’ token, which has a
default, fixed embedding.

3.2.2 Encoding Word Embeddings

Our encoding system is comprised of convolutional encoder blocks that are repeatedly stacked to
process our word embeddings. We follow the recent work of [8] and employ depthwise separable
convolutions, which have been widely shown to reduce computational requirements while improv-
ing generalization. We experiment with various architectural hyperparameters in our embedding
encoder layer, varying the number of stacked blocks, convolution kernel field widths, and number of
convolution kernels per block. These variations are discussed further in the following experiments
section.

After the convolutions, we also apply self-attention, via multi-head attention as in [1]. This consists
of feeding the output of the convolutions into standard multihead attention as the queries, keys and
values. While attention-based models typically have the number of heads as an important hyperpa-
rameter, we found no significant change in performance of our model when the number of heads
was set to more than 1, so we have set the number of heads to 1.
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3.2.3 Bidirectional Attention

As seen in many other machine comprehension models, we employ attention mechanisms for both
context-to-query and query-to-context. For context-to-query, we take every possible pair of context
and query tokens and compute their similarity using some similarity function. As Seo et al. found
[3], a simple trilinear mapping (that is, [c, ¢, ¢ © ¢]) with a trainable weight matrix does well, so we
use that.

The context-to-query attention tries to determine which query words each word in the context is
most related to. First, for each context word, we normalize its similarities to each query word using
an application of softmax. Then, we multiply the per-context-word normalized similarity matrix to
the queries, resulting in a query attention vector for every context word.

The query-to-context attention is trickier. Intuitively, we are now finding the context words with
the highest similarity to each query word. We use the per-context-word normalized similarity ma-
trix again, but then multiply it by a per-query-normalized similarity matrix. Finally, we apply this
similarity matrix to the queries, resulting in an query attention vector for every context word.

3.24 Model Encoding

The model encoding layers are where the bulk of this model’s parameters are, and where, intuitively,
most of the learning is happening. This is where the model can use the attention and the original
input encodings to build an understanding of what the question is asking, what terms in the question
are most relevant to the answer, and where in the context an answer might be found.

We stack 7 encoder blocks in each of the 3 model encoder layers: MO, M1 and M3. These encoder
blocks have the same structure as the input encoder, but have fewer convolutions (2) and a smaller
kernel size (5). All 3 model encoders share weights, taming the number of parameters and forcing
the model to squeeze more information into its limited hidden state. We use MO and M1 to produce
the start probabilities, and MO and M2 to produce the end probabilities. The idea here is to allow
the network to share the information relevant to both the start and end probabilities in MO, and then
have M1 and M2 contain the information particularly relevant to the start and end, respectively.



3.2.5 Final Output

In the output layers, the start and end logits are formed via a linear layer on top of the model
encoder’s outputs. These logits are fed to standard softmax with cross-entropy loss, and the start
loss and end loss are summed.

4 Experiments

4.1 Experimental Setup

We performed all experiments on a modern Nvidia Pascal GPU (GP102) with 11GB of onboard
memory; from this standard architecture, we expect our performance observations to generalize

well to contemporary machines. For software, we use Tensorflow 1.5 compiled against Nvidia’s
cuDNN 7 library.

We use standard L2 regularization, dropout between all layers and sublayers, and layer dropout as
in [7], making deeper layers progressively more likely to be dropped. We also used, as suggested in
[1], the ADAM optimizer ([9]) with B; = 0.8, By = 0.999, and e = 10~ ".

4.2 Computational Performance

Major motivation for this work comes from the observation that, on modern hardware, convolu-
tions tend to be more efficient than recurrent operations. We find this to be generally true in our
experimental setup, observing the following throughput statistics during training:

| Training (examples/sec) Inference (examples/sec)

Our model 81.2 220.4
CS224n Baseline 55.7 108.1

Table 1: Performance of our convolution based model, vs. the CS224n baseline SQuAD implemen-
tation.

4.3 Model Accuracy

We evaluate our model on the SQuAD dataset, as provided and segmented by the CS224n course
administrators. We train on the default training set without augmentation, and evaluate accuracy on
the default dev set. At the time of writing, we regrettably do not have a result on the official CS224n
test set, pending recent issues with the CodaLab platform.

| F1 Score (Dev) EM Score (Dev)

Our model 62.7 47.8
CS224n Baseline 43.9 34.7

Table 2: Comparison of model accuracy, after 10 epochs of training.

4.4 Error Analysis

Across several example runs of our model, we notice two common failure modes: .

Firstly, it was repeatedly marking the end as occurring before the start. This is because the prediction
procedure was to simply take the maximally probable start and end positions independently and
simply return them. The model was unable to learn in an end-to-end fashion that marking the end
before the start would always be incorrect. We suspect this is due to how loss was calculated.
Unfortunately, adjusting the loss to account for the strict ordering is very tricky - it essentially
requires some kind of search algorithm (or even possibly dynamic programming) within the network
itself, since we’d need to take the probability distributions outputted and search for the highest start
and end pair that had the start prior to the end. Making this compatible with backpropagation is
difficult, since the search problem seems to have no simple gradient.



Instead, we can use search probability distributions at prediction time, looking for the maximal
product of a pair of start and end probabilities satisfying some constraints. In our case, we chose
two constraints: first, that the start occur before the end, and second, that the answer be no longer
than 30 tokens. Using a relatively simple search algorithm, we can then find the best pair, and return
these as our prediction.

4.5 Length Penalization
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Figure 2: Histogram of true answer lengths, vs. our model’s predicted answer lengths. Evaluated on
a (consistent) 100-sample ‘experiment’ set.

Our initial model exhibited a strong preference to one-word answers, with a long tail of extremely
lengthy answers (up to 30 words). We are especially concerned by the latter case, since longer
answers erode our F1 score while also calling into question the learning performance of our model -
intuitively, it is far easier to simply regurgitate context than to achieve semantic understanding of the
input. Furthermore, we notice that many of the ground truth human examples choose short answer
lengths, suggesting that some heuristic preferring shorter answers could bring our model’s output
more in line with human judge opinions.

Thus, we apply a simple penalty to answer length when selecting a best answer. It is important
to note that this selection preference is applied downstream of the loss function; the model is still
being trained to output the most likely probability distributions for start and end indices. Instead of
simply selecting the most likely start and end, however, we compute a heuristic fitness score that may
choose a less likely pair on the basis of having a shorter, and thus probably more human-friendly,
answer. Fitness is computed exhaustively across all possible word pairs - while the computational
complexity is unfortunately quadratic in the length of the context, we find the constant terms to be
small enough to execute in negligible time on modern hardware.
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Figure 3: Histogram predicted answer lengths, after length penalization. Evaluated on a (consistent)
100-sample ‘experiment’ set.

We find our length penalization scheme to be extremely effective at reducing the occurrence of long
answers. However, we now notice significantly more one-word answers, instead of the smoother
answer length falloff exhibited by human judges.

4.6 Ablation Test: No Convolution

We wanted to test the extent to which convolutions were essential to this model’s success. We ran
an experiment in which all convolutions in each of the encoder blocks were disabled. Without these,
the model’s ability to learn was significantly impaired - without convolutions, the model could only
achieve an F1 score of 32.8 and an EM score of 19.1. Clearly, convolutions were essential to this
model’s success. This is notably different than the result of [1], where removing all convolutions
only reduced the F1 score by about 3 points. We suspect that our model relies much more heavily
on convolutions, perhaps because we lack the character embeddings that they used and trained for
shorter amounts of time.

4.7 Convolution Receptive Field Sensitivity

To further test the extent to which convolutions were being used to aggregate data about neighboring
words, we ran an experiment with reduced kernel sizes: we changed the input encoder’s kernel size
from 7 to 3. This model was slightly faster to train, and achieved an F1 score of 55.5 and an EM
score of 39.8. This indicates to us that words have perhaps surprisingly local effects; that is, they
mostly changed the meaning of words within a fairly narrow window around them. However, we
find the small (j 10%) performance gain insufficiently favorable for the significant accuracy loss
incurred.

5 Discussion and Future Work

We find it very interesting that convolutions can effectively replace recurrent modules in machine
comprehension models. Using experiments to test our hypotheses about how machine learning mod-
els are actually working has been rewarding. It’s led to some intriguing new ideas about language:
for example, our work suggests that words can be approximated as acting in a nearly local manner,



and that the vast majority of information contained in a sentence can be recovered without using a
recurrent architecture.

5.1 Performance Studies

One broadly appealing feature of convolutions is their ease of parallelization, especially as machine
architectures become increasingly wide and distributed. Since we test on a single node, single-GPU
research system, we suspect the performance speedup we observe is actually an underestimate of
speedup on larger, production-scale systems. In future work, we’d like to better characterize the
performance advantages of convolutional models, and explore similar tradeoffs between speed and
accuracy.

5.2 Brevity Penalization

While our length penalization experiments proved effective in reducing answer length, we now
find that our model is often too brief with its answers, despite drawing from roughly the correct
contextual area. Again, we impose a ‘human preference’ prior to declare such answers unpalatably
brief, and would consider penalizing single-word answers in future experiments.
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