Toxic Comment detection with bi-directional LSTM

Fei Liu* Xiaoyan Wu
Machine Learning Engineer Department of Computer Science
Pinterest Stanford University
fliu5@stanford.edu xwl@stanford.edu
Abstract

This article elaborates several approaches built on bi-directional LSTM to tackle
Toxic Comment Classification problem. Strategies tried include pre-trained word
embeddings, data augmentation, attentions, char-CNN model, neural ensemble of
models with different configs, parameter regularization, and more ReLU layers
on top of recurrent states. We found that bi-LSTM with 2 ReLU layers is the best
performing model, which achieves an average AUC of 0.9782 over the labels. This
model significantly out-performs the baseline NBSVM model which achieves an
average AUC of 0.9533 over the labels.

1 Kaggle Challenge

The kaggle competition! for toxic comment classification is an ongoing competition about detect-
ing different types of toxic comments by classifying them into one or more labels from ’toxic’,
’severe_toxic’, ’obscene’, 'threat’, ’insult’, and ’identity_hate’.

The challenge is particularly interesting because of the heated discussion that toxic contents online
have influenced the overall health of the society. It is also interesting in the sense that the service
providers are finally leveraging deep learning to supervise their service in a scalable way.

The baseline is an NBSVM model, which achieves an average AUC score of 0.9533. Other methods
attempted include attention, character-level CNN layer beneath LSTM, neural ensemble, and data
augmentation. The best performing model is Bi-directional LSTM with pre-trained embeddings,
combined with two ReLU layers built on top of the recurrent states of LSTM. A small L2 regularizer
on the model parameters is also applied to prevent overfitting. It achieves best result with data
generated from data augmentation for “identity hate” labeled data. Our best score is 0.9782, which
is a big improvement from the baseline above.

1.1 Dataset and example

The competition data is consist of approximately 160,000 entries of training data and the comments
are of various length raw text. We found approximately 50,000 unique words used. The data is the
standard dataset in the competition. The goal is to assign each comment a multi-category label that
can be one or more of the following categories ’toxic’, ’severe_toxic’, ’obscene’, ’threat’, ’insult’,
and ’identity_hate’.

For example, the setence that contains the lines i CAN STILL POST WITH THIS COMPUTER...I
SAID BLOCK ME, COME THE FUCK DOWN HERE AND ARREST ME...SAN DIEGO CAL-
IFORNIA, CHULA VISTA, FUCKING GET YOUR INFORMATION RIGHT FAGGOT SHIT-
HEAD!!” repeated hundreds of times was labled as ’toxic’, ’obscene’, and ’insult’.

*My mother, Qianjun, always says that Fei, you go and you do what you want to do. Life motto starts
among her lines. Thanks!
'Kaggle online competition: https://www.kaggle.com

Table 1: Data Statistics
Label Name Count of Lines

toxic 15294
severe_toxic 1595
obscene 8449
threat 478
insult 7877

identify_hate 1405

1.2 Data statistics

Data stats are presented in Table 1. The “threat” and “identity_hate” labels are weak spots because
their numbers of comments in the raw data are the fewest. We train our model on 90% of the original
training data, and validate on the remainder, so we can collect AUC scores for each label. From the
AUC curves, we identify the tags that are not generalizing well, and try to solve these bottlenecks.

2 Preprocessing

The max length of the comment can be 5000 but they are mostly repetation of the same string due to
some really angry comments. The meaningful comments rarely exceed 200 words. However, many
comments are very short, so we have to pad the sequence and make the input of the same length.
Then for the words with pre-trained embeddings, we are having size of dimensions up to 300. For
the ones we tried without pre-trained embeddings, we have 35 dimensions efficient update.

3 Benchmark

The benchmark is implemented by using Naive Bayesian log-count ratios as features into Support
Vector Machine ? according to the paper[5]. NBSVM is an improvement on SVM that is better and
more stable than SVM and Naive Bayes. The benchmark result is summarized in Table 2.

Table 2: NBSVM benchmark
Label Name AUC Score

toxic 0.9324
severe_toxic 0.9736
obscene 0.9544
threat 0.9623
insult 0.9482

identify_hate 0.9490

This model achieves an average AUC score of 0.9533, and the plot of AUC curves is shown in the
following figure. From the plot, we can see that “toxic” and “identity hate” are the lower curves.
We identify these two as bottlenecks, and then implement different methods to improve on their
accuracy.

2NBSVM: https://www.kaggle.com/jhoward/nb-svm-strong-linear-baseline

ROC curve of toxic (area = 0.93)
ROC curve of severe_toxic (area = 0.97)
ROC curve of obscene (area = 0.95)
—— ROC curve of threat (area = 0.96)
ROC curve of insult (area = 0.95)
— ROC curve of identity_hate (area = 0.95)

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: AUC plot for NBSVM

4 Motivations for implementation

The data is very unbalanced and small in size, and the baseline is strong. We tried even-sampling
so that the dataset is balanced, but the performance decreased. We want to use Augmentation to
correct the behavior and use embeddings to make more sense of the words than the vocabulary in
the dataset.

We also want to utilize the LSTM internal states to extract information out of the sequence, so we are
building ReL.U layer on top. Regularizer and neural ensembling are the other attempts to increase
performance. We were successful to beat the benchmark by combining embeddings and more ReLU
layers on recurrent LSTM states. We also use regularizer to stabilize the performance.

We were then recommended to use char-CNN and attention, so these are also implemented to com-
pare the performance of different models.

5 Model Implementation

The bidirectional LSTM is the basis of our model, and all other attempts are built on top of
this LSTM. We break the implementation process into modules, including preprocessing, training,
prediciton, evaluation, and submission. Preprocessing handles the augmentation and partition of the
data. Training is about isolating each model into its own module and load only what is needed, plug
in and run. Prediciton step applies the trained model to generate predictions. The local evaluation
with a split of data is important in understanding the source of error and identify the bottlenecks.
Finally, we generate submission files and submit to Kaggle competition. Figure 2 shows a system
map of our implementation.

5.1 Measure of good of fitting

Since groundtruth labels are only provided for the training set, we need to use 10% of training data
as validation set in order to have a measure of how good each label is predicted. We calculate AUC
scores of each label on this set to use as a local approximation to the competition score. After the
local training and testing, we submit to Kaggle to get an evaluation on the hidden test data.

5.2 Baseline LSTM Implementation

The baseline Bi-LSTM is trained without pretained word embeddings. In order to have enough
meaningful updates, the dimension of the word embeddings needs to be small. In our case, the size

Comments Embeddings Model Predictions Tests

£ YN

Data Preprocess Train Predict Evaluate Submit

/ N !

Data

Augmentation BELSIM RelU layers AUC

Pre-trained

embeddings L2 Regularizer Char-CNN Confusion Matrix

Attention Neural Ensample

Figure 2: System Pipeline

is 35. We are generating the dense layer right out of the recurrent states of LSTM of length 100.
The result of the baseline is summarized in Table 3, and the average AUC score is 0.7612. The
performance is not as good as NBSVM in the benchmark.

Table 3: bi-LSTM baseline + 35 embedding (not pre-trained)
Label Name AUC Score

toxic 0.7329
severe_toxic (0.8053
obscene 0.7500
threat 0.7620
insult 0.7628

identify_hate 0.7542

5.3 More ReLU layers

We realize that a dense layer right on top of LSTM is linear in nature. We want to capture as much
non-linear complexity as possible. So, we attempted ReL.U to capture the non-linear aspects of the
LSTM recurrent states. We tried 1, 2, and 3 layers and it turned out that 2 layers produce good result
for dimension 100 and dense dimension 30. This alone is not improving the result because we do
not have good enough features coming in. We will have to combine this with embeddings to produce
good result.

5.4 Pre-trained embeddings

In order to solve the problem that our data is small, we use 300 dimension GloVe vectors trained on
6B tokens® as pre-trained embeddings into our model. This approach is combined with the ReLU
layer approach in the previous subsection and produces the result in Table 4. The Kaggle score for
this model is 0.9728 and it is close to our best model.

3Pretrained embeddings: https://nlp.stanford.edu/projects/glove/

Table 4: bi-LSTM baseline + 300D GloVe + 2 ReLU layers
Label Name AUC Score

toxic 0.9876
severe_toxic 0.9911
obscene 0.9921
threat 0.9812
insult 0.9881

identify_hate 0.9845

5.5 L2 regularizer

We found that our training score is much higher than the Kaggle evaluation score and we are overfit-
ting, so we applied L2 regularizer. The hard thing is how small we should set this value to be and we
were not experienced enough to utilize this to close the gap between training and testing accuracy.
The smallest value we tried was 0.01, which is giving us 0.9648 on Kaggle. Trying smaller value
regularizers could be our future work if we have more time.

5.6 Char-CNN input layer

We were advised that Character-level Convolutional Neural Networks can help with words that
are not appearing in the dictionary. We then tried this approach by building on top of an online
implementation of Char-CNN #, but it was slow to run and consumed two much memory. We only
ran it with LSTM of length 50 and one convolutional layer. It was giving us a AUC of near 0.4991
on Kaggle. We decided not to explore further on this approach.

5.7 Attention mechanism

The attention mechanism is built on top of LSTM recurrent state outputs as well. We want to
know which of the states should be paid more attention. We implemented this based on an online
approach®. It uses linear weighting on top of the recurrent states, so in terms of the ability to capture
non-linear behaviors, it may not exceed non-linear methods such as multi-layer ReLU. The AUC
score on Kaggle is 0.7505, so we did not explore further.

5.8 Neural ensemble

We have trained multiple LSTM models with different configurations, so we want to see if com-
bining them together will help. Therefore, we combined 6 LSTMs with averaging and a one-layer
feed-forward network, but the result is as mediocre as any of these models. It is the end to end
process in the model that does the trick, and ensembling here is not as helpful as in the traditional
Machine Learning models such as Random Forest Trees and Gradient Boosted Trees.

5.9 Data augmentation

Since “threat” and “identity_hate” have much less data than other labels, we use data augmentation
[1] to generate more data for these two labels. We first select the comments that are labeled as
“threat”, extract word entities from these comments by using Stanford Named Entity Recognizer
(NER)[3]. This will give us a list of "PERSON”, "ORGANIZATION” or "LOCATION” words.
Then we randomly substitute some of these words back into the original sentence. For example, a
sentence that contains "New York City” could be changed to ”Los Angelos”, and the comment may
still be labeled as “threat”. In this way, each comment could be replicated multiple times and we
could have more training data on the weaker labels. One assumption is that many of these words

*Char level CNN: https://github.com/blues-lin/Char-level-CNN-for-Text-Classification-in-Keras
3 Attention model https://github.com/richliao/textClassifier

do not affect toxic comment classification, so generating more data in this way could let the model
place less weight on the name entities but more on the context.

We found that using PERSON name entities on “identity_hate” label is helpful. However, the
“threat” label is not that sensitive to the augmentation. The reason may be that some of the per-
son or location names have political meanings, and are useful in identifying “threat”, so substituting
these words will damage the performance. Therefore, our best model only uses PERSON name
entity augmentation on “identity_hate” label and achieves 0.55% increase in Kaggle AUC score
(defeated 385 teams with this strike).

6 Model of choice and Error Analysis

Our best model uses 2 ReLU layer on Bi-LSTM with small (0.01) L2 regularizer, GloVe pretrained
embeddings plus augmentation on PERSON name entity on identity_hate” labeled data. And the
highest Kaggle AUC score with this model is 0.9782. The AUC’s for validation split locally is in
Table 5.

Table 5: bi-LSTM + 300D GloVe + 2 ReLU layers + Augmentation on id_hate
Label Name AUC Score

toxic 0.9918
severe_toxic (0.9907
obscene 0.9946
threat 0.9609
insult 0.9901

identify_hate 0.9712

Sigmoid
/ N\
RelU RelU RelLU RelLU
/ N\
RelLU RelLU RelLU RelLU
AN
LSTM LST™M LSTM Bi-LSTM
\
EL E2 E3 Embeddings (Glove)

Figure 3: Best model flow

We use this model to make predictions on the training set to see what it does well and what goes
wrong. From the AUC curves we can see that ”obscene” is the label that has the highest accuracy,
and “threat” is not performing well.

1.0
0.8 4
0.6 4
0.4}
ROC curve of toxic (area = 0.99)
ROC curve of severe_toxic (area = 0.99)
—— ROC curve of obscene (area = 1.00)
0:2 —— ROC curve of threat (area = 0.99)
ROC curve of insult (area = 0.99)
— ROC curve of identity_hate (area = 0.99)
0'0 n L L L
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Caption

By comparing the true labels and our predictions on "threat” label, we found specific examples that
predict wrong. In the following example (figure 5), we see that the comment contains lots of special
characters, and these words may not have pretrained embeddings. Our model learns very little from
these words, which results in wrong prediction.

Hello, you turd.

First, | am going to tie you up and keep you gonsgious during the following progess
through the use of ammonia. Next, | Will mutilate Jour genital$ and forge you to eat them.
Then | Will gut off bits of Jour $kin and make a glove out of the skin from Jour hand. I Will
then ¢ut open Jour gut and pull out Jour golon. | Will ue Jour golon for masturbation, and
When | am done | Will $hove it down Jour throat. Finally, | Will diSpose of Jour body by
depositing it in a dump Where it belongs.

Figure 5: Example wrong prediction of threat”

7 Summary and Future work

The embedding and Bi-LSTM recurrent states are proven to be great source of information because
the symantic information for the toxic words and phrases are well captured. Multiple layers of ReLU
is the best way to capture the non-linear behavior on top of such features.

However, the number of layers added do not translate into better performance and that extra layers
are causing the regularizer of moderately large scale to damage the AUC score a lot. The gap
between the best result on leaderboard and us is about 1 percent. It is very likely that hyper parameter
training and additional data augmentation will help but we could not afford the time and resources
for multiple rounds of training process at this time.

Our future work that may be meaningful is to do the hyper parameter tuning on regularizer, adjuste
the dense dimensions of ReLU layers and calibrating the length of bi-directional LSTM layers.
These steps require plenty of time and hardware resources, but may be helpful to further improve
our Kaggle score.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Tanner, Martin A., and Wing Hung Wong. ”The calculation of posterior distributions by data augmenta-
tion.” Journal of the American statistical Association 82.398 (1987): 528-540.

Hochreiter, Sepp & Schmidhuber, Jrgen (1997) Long Short-term Memory Neural Computation 9(8):1735-
80

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating Non-local Informa-
tion into Information Extraction Systems by Gibbs Sampling. Proceedings of the 43nd Annual Meeting
of the Association for Computational Linguistics (ACL 2005), pp. 363-370. http://nlp.stanford.edu/ man-
ning/papers/gibbscrf3.pdf

Nair, Vinod & Hinton, Geoffrey E. (2010) Rectified Linear Units Improve Restricted Boltzmann Machines
International Conference on Machine Learning pages 807-814

Wang, Sida, and Christopher D. Manning. “Baselines and bigrams: Simple, good sentiment and topic
classification.” Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2. Association for Computational Linguistics, 2012.

Pennington, Jeffrey & Socher, Richard & and Manning, Christopher D. (2014) GloVe: Global Vectors for
Word Representationhttps://nlp.stanford.edu/pubs/glove.pdf

Luong, Minh Thang & Pham, Hieu & Manning, Christopher (2015) Effective Approaches to Attention-
based Neural Machine Translation. , https://nlp.stanford.edu/pubs/emnlp15_attn.pdf7

Ma, Xuezhe & Hovy, Eduard (2016) End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
https://arxiv.org/pdf/1603.01354.pdf

