Deep Learning Approaches to Classifying Types of
Toxicity in Wikipedia Comments

Ashe Magalhaes Howard Small
ashe@cs.stanford.edu hsmall@stanford.edu

Abstract

The increase in the accessibility and use of written expression on the Internet over
the past decade has brought an alarming increase in toxic communication. This
antisocial behavior has negative psychological effects and triggers more antiso-
cial behavior. Thus, the task of identifying and removing toxic communication
from public forums is critical. The task of analyzing a large corpus of comments
is infeasible for human moderators. As a result, researchers are incentivized to
automate the task of detecting inappropriate content. In this paper, we discuss
our approach for using Natural Language Processing (NLP) techniques to develop
a series of Deep Learning models capable of predicting whether or not internet
comments contain various forms of toxicity. We begin by exploring the accuracy
of a number of models in detecting toxicity on a test set classified by humans. We
then tune the best model in order to achieve competitive results.

1 Introduction

1.1 Background

Today a substantial amount of user activity on the Internet involves antisocial behavior. According to
a 2014 survey, 40% of Internet users were victims of online harassment [1]. An analysis of personal
attacks at scale demonstrates that the majority of personal attacks on Wikipedia are not the result
of a few malicious users nor the consequence of allowing anonymous contributions. Rather, it has
been shown that people can be influenced by their environment to act aggressively; that is to say, a
forum which includes toxic comments is likely to provoke more toxic comments from its users [2].

This complicates the problem of toxic comment classification, as it suggests that online moderators
must detect toxicity early in order to mitigate situational factors that may influence users to react
negatively. Moreover, many platforms struggle to effectively facilitate conversations. It has been
shown that less than a fifth of personal attacks currently trigger any action for violating Wikipedia’s

policy [3].

1.2 Related Work

Prior work from the Conversation Al team, a research initiative within Alphabet, focuses on classi-
fying toxic comments through a range of models served through the Perspective API [4]. However,
the current models still make errors and they do not allow users to select which types of toxicity
they are interested in finding. This limits online discussion; for example, some platforms may be
fine with profanity that is not malicious.

We build on the work of Kolhatkar and Taboada [5] who generated a long short term memory
model (LSTM) “constructiveness classifier” for news comments by extending their work to focus
on the inverse, toxicity. Similar to their general architecture, we initialize the embedding layer with
pretrained GloVe vectors that are fed into a bidirectional LSTM.

2 Approach

Our project focused on developing a series of Neural Network models to compete in the Toxic
Comment Classification Challenge on Kaggle. The goal of this competition is to build a model which
can, for a given set of Wikipedia comments, predict the probability that each comment contains each
of 6 different forms of toxicity (described in more detail in the Experiments section). We chose
this particular field to work in because it provided us with a large dataset of labeled comments,
allowing us to focus on Deep Learning and NLP instead of web scraping and hand labeling our own
data. Additionally, the Kaggle infrastructure gave us a concrete way to judge how well our models
performed relative to some state-of-the-art models.

The primary goal of our project was to learn about the strengths and weakness of different Deep
NLP models on text classification tasks. We naturally wanted to develop the best model possible,
but winning the Kaggle competition was secondary to our goal of exploring a breadth of Deep NLP
techniques and building up our intuitions for research we will do in the future. The specific models
we developed for this project are as follows:

1. Convolutional Neural Network (CNN)

2. Recurrent Neural Network (RNN) with Long Short Term Memory (LSTM) cells
3. Multi-Layer, Bidirectional RNN with LSTM cells

4. Character-Level RNN

We now describe the specifics of the network architectures we used for each of these models.

2.1 Structures Shared By All Models

2.1.1 Model Input/Output

Although the models vary, the input for each of the Word-Level models was a fixed-size list of the
first 100 words of a Wikipedia comment. Comments shorter than 100 words were padded with
NULL words. We chose to use 100 words, as this was approximately the largest number of words
we could use without running into consistent “Out of Memory” errors. For the Character-Level
RNN the input was 500 characters. The output for each model was a 6-unit layer with a sigmoid
activation to represent the predicted probabilities of each of the 6 types of toxicity. We use a cross
entropy loss. We use the Adam Optimizer for training, a learning rate of le-4, and a batch size of
100.

2.1.2 Word Embeddings

We experimented with two types of word embeddings, random and GloVe. We also experimented
with one-hot character embeddings. We chose our vocabulary to be all words which occurred at
least 20 times in the dataset in order to limit it to words which the models can learn from. All other
words were treated as the same “unknown word” (UNK). We chose our word embedding size to be
200 since this was the largest GloVe vector size available. For the random word embeddings, the
entire embedding matrix was initialized using Xavier Initialization. For the GloVe initialization, we
augmented our vocabulary to also include every word that appears in both the GloVe dataset and our
comments, regardless of word count. The intuition is that the models can still extrapolate to words
which it saw rarely due to the initialization. We then assigned the word embedding for each word to
be the GloVe vector if there was one, and a random initialization with the same mean and standard
deviation as the GloVe vectors otherwise. An important note about the GloVe vectors is that we
chose to use the Twitter GloVe vectors since they better account for misspellings and the type of
informal language that is used on the Internet [6].

We also decided to include a second component in our word embeddings, capitalization. For each
word, we appended a 3-dimensional representing whether the word was lower case, mixed case, or
upper case. We did this so that the network would not lose information about capitalization, which
is often important in determining the tone of an online comment. This resulted in a final word
embedding size of 203.

2.2 Model Structures
2.2.1 CNN

The CNN model we built consists of one 1-dimensional convolutional layer across the concatenated
word embeddings for each of the 100 words in the input comment. The convolutional layer has 64
filters, a kernel size of 5 x 203 and a stride of 203 so that each convolution will consider a window of
5 word embeddings. This layer is followed by a fully-connected layer with 50 units, which is then
followed by the output layer.

222 LSTM

The LSTM model is attractive because it the individual cell states in the model have the ability to
remove or add information to the cell state through gates layers. This is useful in practice because
it allows the model to remember insights derived from words throughout the comment [7]. The
LSTM model consisted of one densely connected layer with 50 units and 24 hidden states across the
concatenated word vectors for each of the 100 words in the comment.

2.2.3 Bidirectional LSTM

The Bidirectional LSTM model we build consists of 3 layers of bidirectional LSTM cells with 256
units each. The output of the third layer is fed into a max-pool layer to take the maximum activation
across all timesteps for each unit. The max-pool layer is then fed into a fully-connected layer with
64 units and ELU activation, which is then followed by the output layer.

2.24 Character-level modeling

A character level model will use the character as the smallest entity. In general, character-level
modeling can help deal with common misspellings, different permutations of words, and languages
that rely on context for word conjugations [8]. The model reads characters one by one, including
spaces, and creates a one-hot embedding of the comment. We choose 500 characters as our max
entity length and tested it with our LSTM model.

3 Experiments

3.1 Dataset

The dataset we used for our project comes directly from the Toxic Comment Classification Chal-
lenge. Competitors are provided with a training set consisting 159,572 Wikipedia comments
labeled by human raters as containing any number of the 6 types of toxicity.

1. Toxic
2. Severe Toxic
3. Obscene
4. Threat
5. Insult
6. Identity Hate
Competitors are also provided with a test set consisting of 153,165 unlabeled Wikipedia com-
ments, which is used by the competition to evaluate the relative performance of competitor models.
All of the comments in both the training and test sets are provided in raw text format, meaning that
they include the comments exactly as they are on Wikipedia (with misspellings, spacing, formatting,

etc.). Data like this requires a bit of preprocessing so that our models can be given more consistent
data to learn from.

3.2 Preprocessing

For preprocessing, we needed to convert each comment into an ordered list of the words it contains.
A trivial way to do this is to just split the comment on whitespace, but this does not account for
punctuation. For example, using this method would mean that almost every word at the end of
a sentence would have a period appended to the end. However, we do not want to treat these
words as different because they are obviously the same word. To handle this we decided to split
up comments using the following regular expression: [“\W’-]+ | [.,!?;]”°, which captures all words
(with apostrophes and/or dashes included) and also treats the most common types of punctuation
as words. This breaks up words in the same way that most English-speakers would think to do so,
and isolates punctuation so that it does not get mixed up with words and also allows the model to
utilize more syntactic information. One limitation of the dataset is that, because consists of Internet
comments, there are a fair amount of misspelled words in the dataset. We, however, decided not to
directly address this problem as we felt it would be quite tedious to come up with a set of rules to
do spell correction and provide fairly marginal benefit.

3.3 Evaluation Metrics

Intrinsically, we evaluate our models using the mean Area Under the Receiver Operating Char-
acteristic (mean-AURQC) across the 6 toxicity classes on a held-out development set. We chose
this metric because, due to the imbalanced nature of the labels in the dataset, accuracy is a poor
metric to gauge performance while having a high mean-AUROC requires our classifier to have high
precision and recall. Additionally, this is the metric used by the Kaggle competition, which helps
us optimize our results for doing well in the competition. Extrinsically, we evaluate our models by
using the scores generated by Kaggle’s leaderboard and our relative leaderboard positioning.

3.4 Experimental Setup

For the purposes of development, we train our models on 140,000 of the comments in the training
set, and evaluate performance on the remaining 19,572 comments. Given that NLP tasks usually
require a huge amount of training data, we wanted to maximize the size of our training set while
still maintaining a large enough development set to have a statistically significant evaluation of how
well our model generalizes.

The training process for each of our models involves minimizing the mean binary cross entropy
loss across the training set, the formula for which is:

1

=]

N
> [ynloggn + (1 — yn) log(1 — §n)] (1
n=1

Initially we thought to use mean squared error as our loss function, but found trouble in that our
models would frequently converge to predicting near zero for every single class for every single
input. Mean binary cross entropy loss avoided this problem by better handling each toxicity class
independently instead of as a 6-dimensional vector.

3.5 Tuning the Best Model

Bidirectional LSTM: We found that our single layer, bidirectional LSTM model slightly outper-
formed our basic LSTM and CNN models. Because of this, we decided to focus more of our effort
on tuning the bidirectional model.

The main steps we took were to try different ways of combining the output of the LSTM layer
across all of the timesteps. We tried taking an average over the the outputs, a concatenation of the
first and last timesteps, and an element-wise max of the outputs. The difference in performance
was marginal between the 3, but the max-pooling consistently achieved a mean-AUROC score of
about 0.01 above the other two methods. We suspect that this is maybe because max-pooling better
captures the extremes across all of the timesteps, which facilitates the network learning to recognize
extreme language.

Table 1: Performance of our Models on the Development Set with Various Word Embeddings

Random Word Embeddings

GloVe Word Embeddings

Non-Trainable

Trainable

Non-Trainable

Trainable

CNN

AUROC: 0.9145
Dev Loss: 0.0868

AUROC: 0.9769
Dev Loss: 0.0506

AUROC: 0.9174
Dev Loss: 0.0876

AUROC: 0.9749
Dev Loss: 0.0525

LSTM

AUROC: 0.8841
Dev Loss: 0.1007

AUROC: 0.9718
Dev Loss: 0.0545

AUROC: 0.9396
Dev Loss: 0.0749

AUROC: 0.9653
Dev Loss: 0.0575

Bidirectional

LSTM

AUROC: 0.9222
Dev Loss: 0.0801

AUROC: 0.9764
Dev Loss: 0.0508

AUROC: 0.9756
Dev Loss: 0.0559

AUROC: 0.9802
Dev Loss: 0.0493

One-Hot Embeddings

Character-Level

LSTM

AUROC: 0.6715
Dev Loss: 0.1321

AUROC: 0.6692
Dev Loss: 0.1314

AUROC: 0.6709
Dev Loss: 0.1318

After tuning the basic LSTM structure, we experimented with adding more bidirectional LSTM lay-
ers to see how it would improve the performance. We trained models with 1, 2, 3, and 4 bidirectional
LSTM layers, and found significantly diminishing returns as we added more layers. Before adding
dropout to the networks, the 2 layer model outperformed all of the others, as the 3 and 4 layer mod-
els were highly susceptible to overfitting. However, after adding a dropout of 50% throughout the
entirety of the network, with the exception of the input and output layers, the 3 layer network was
able to outperform all of the other networks by at least a 0.005 in terms of mean-AUROC scores.

3.6 Discussion of Results

To get a good sense of how the model type and word embedding initialization affect the performance
on our task of toxic comment classification, we evalutated each of our models with each of our word
embedding initializations. For each type of word embedding, we also experimented with making
the word embeddings trainable and non-trainable to see how much impact this had on the model
performance. The results of these experiements can be seen in Table 1. The bolded cell in each row
denotes the word embedding initialization which performed best for each model.

What we found to be the biggest surprise was that our CNN model consistently outperformed our
LSTM model. We know that LSTMs (or some variant) are generally the go-to network structure
for most NLP related problems, so to see the CNN get better performance at first seems unintuitive.
Our intuition for this result has to do with the specific nature of our problem, compared to general
NLP tasks. What makes LSTMs so powerful is that they are able to capture long-term dependencies
by mitigating the vanishing gradient problem. On the other hand, what makes CNNs so powerful is
that they allow you to generalize knowledge about local dependencies in the input to many different
areas in the input. The fact that the CNN model outperformed the LSTM model implies that the
local information is more important in this task than the long term information. This actually makes
a good amount of sense because most toxic comments are characterized by outbursts of obscene
language. This means that toxicity can be often be identified locally from a few offensive phrases
or curse words in a comment, rather than needing the more global view of the comment. 1t is
important to note, however, that the difference in performance between these two models is marginal,
as they both do an excellent job of identifying toxicity. The CNN however required significantly less
training and evaluation time, implying that it is generally the better choice for this task.

Our Bidirectional LSTM model outperforms all of our other models and this is largely due to it
consisting of more layers than the other networks. Before we added multiple layers to increase its

expressive power, we found that its performance was barely distinguishable from that of the CNN.
After increasing the number of layers, the training time for the Bidirectional LSTM was dramatically
more than the CNN, and the performance increase was still marginal. The Bidirectional LSTM,
however, was better able to handle the issue of overfitting when we added dropout than the CNN
was, implying that the CNN architecture is more prone to overfitting.

Another thing we found interesting was that for the CNN and LSTM models the Random word
embedding initialization was better, while for the Bidirectional LSTM the GloVe word embeddings
performed better. Perhaps the added complexity of the Bidirectional LSTM allowed it to take better
use of the GloVe vectors, or this is just due to random noise, we are definitely not sure. We were
unsurprised though to see that allowing the word vectors to be trainable made a big difference in
performance. The difference was much larger for Random initialization, which is logical since the
GloVe initialization provides a better initial starting point.

Our Character-Level LSTM had disappointing, but unsurprising results. Looking a the input
character-by-character instead of word-by-word means that the model has to first reason about how
to combine characters into words, and then reason about the implication of those words. This obvi-
ously makes the task more difficult in a significant way, so character level models are not effective
for this task.

N LSTM

Il CNN
I Bidirectional LSTM

0.98 -

0.96

AUROC

0.94 +

0.92

0.90
Toxic Severe Toxic Obscene Threat Insult Identity Hate

Figure 1: Performance of our best models on each toxicity class

Finally, as can be seen in Figure 1, certain classes of toxicity proved to be more easily identified
by our models than others. Namely, the severe foxic and obscene classes had higher AUROC scores
across the models than the toxic and identity hate classes. This makes sense because in general it
should be easier to identify more extreme types of toxicity since it will require the use of extreme
language, and obscene language is largely characterized by a handful of bad words. However, while
identity hate is similarly related to a set of words about someones sexuality, religion, race, etc.,
words like “gay" or “jew" can be used in non-toxic contexts just as easily as non-toxic contexts,
making it more difficult for models to identify whether it should be toxic or not.

4 Conclusion

In doing this project, we were able to get a much better appreciation for how to build, tune, and
analyze the performance of a Deep NLP model. By working with different types of models and word
embedding initializations, we were also able to learn about which models may be better suited for
the task of toxic comment classification. We found that our best model was a bidirectional LSTM,
however, its performance was only marginally better than our CNN model which required much less

training and evaluation time. In situations where speed and availability of a model are critical, such
as monitoring comments posted on a large website, it may make sense to have a more light-weight
CNN model so that website traffic is not hindered. The high performance of our CNN model relative
to our LSTM models was initially surprising, but upon thinking about the specific problem of toxic
comment classification, we realized that the locality constraint of CNNss fits well with the way that
toxicity is generally formatted as short outbursts of rage. Finally, we confirmed our hypothesis about
the ineffective nature of Character-Level modeling for toxic comment classification.

Acknowledgments

We would like to thank our project mentor Kevin Clark for consistently answering our questions and
guiding us towards relevant literature.

References

[1] Duggan, M., Rainie, L., Smith, A., Fuck, C., Lenhart, A., & Madden, M. (2014). Online harassment. Pew
research center.

[2] Cheng, J., Bernstein, M., Danescu-Niculescu-Mizil, C., & Leskovec, J. (2017). Anyone can become a troll:
Causes of trolling behavior in online discussions. arXiv preprint arXiv:1702.01119.

[3] Wulczyn, E., Thain, N., & Dixon, L. (2017, April). Ex machina: Personal attacks seen at scale. In Proceed-
ings of the 26th International Conference on World Wide Web (pp. 1391-1399). International World Wide Web
Conferences Steering Committee.

[4] "Perspective." Perspective. Accessed March 17, 2018. https://perspectiveapi.com/#/.

[5] Kolhatkar, Varada, and Maite Taboada. "Constructive Language in News Comments." In Proceedings of
the First Workshop on Abusive Language Online, pp. 11-17. 2017.

[6] Pennington, Jeffrey. GloVe: Global Vectors for Word Representation. Accessed March 17, 2018.
https://nlp.stanford.edu/projects/glove/.

[7] "Understanding LSTM Networks." Understanding LSTM Networks — Colah’s Blog. Accessed March 17,
2018. http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[8] Chiu, Jason PC, and Eric Nichols. "Named entity recognition with bidirectional LSTM-CNNs." arXiv
preprint arXiv:1511.08308 (2015).

