Question Answering on SQuAD

Evan Darke Jake Smola
Department of Computer Science Department of Computer Science
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305
edarke@stanford.edu jsmola@stanford.edu
Abstract

Open domain question answering is a complex and widely applicable task in NLP
where a machine attempts to answer a query by selecting a relevant phrase from
a given context. This paper will examine techniques for question answering on
the Stanford Question Answer Dataset (SQuAD) by combining Bidirectional At-
tention Flow (BiDAF) with feature engineering and propose an improved span
selection method.

1 Introduction

An exciting problem in the field of Natural Langauge Processing concerns the task of reading com-
prehension, commonly implemented in the form of question answering. A simple yet well-trained
model can take a paragraph (context) and question as input, and output indices corresponding to the
start and end points of the answer as found in the context.

The Stanford Question Answering Dataset (SQuAD) is a public source of data comprised of roughly
100,000 contexts, questions, and answers, which facilitate the training and evaluation of NLP models
in reading comprehension. Table 7 shows an example of a context, question, and answer tuple.
Figures 1 and 2 illustrate the distribution of question types and the mean question length by type
respectively.

Distribution of Question Types
0.6 Mean Question Length by Question Type

what who when how other which where why 0
what who when how other which where why

Figure 1: Categorization of question types in

tramingset Figure 2: Question length by type in training set

The ”SQuAD Challenge” is a public competition which rewards machine learning models based on
their performance on two criteria: [4]

e F1 Score: Computed as the harmonic mean of the precision and recall scores.

e Exact Match (EM) Score: Yields 1 if the answer prediction matches the ground truth ex-
actly, and 0 otherwise.

We start with a baseline model consisting of the system depicted in Figure 3.

In this paper, we describe our own models and experiments in seeking to maximize the aforemen-
tioned metrics. Our investigation explored the following model features as modular improvements
to the given baseline:

o Character-level embedding layer

— Convolution & max pool layers

Bidirectional attention flow (Bidaf) layer
Exact match feature

Span representation feature

Our comprehensive model appears in Figure 4.

start start end end start start end
[A pr ... PN i .. PN

P1

Softmax Softmax & Softmax Softmax
A
................................ ':’,” o, e, Y
5 Sl e e
mﬁl --------------------- 53 ------------
S?’ Fully Connected o % 3 x Bidirectional
S'Q Nodes fa£’ LSTM
o ~
&
S
Basic Attention ob'z’ Bidirectional
A 'S "
,sga l\{lod.el S fng Atten‘tlor: Flow .
TR R T
é?° é“o ______________________
g’ A Encoder Encoder é’ A Encoder Encoder
< g
A v £
Ny N
$ r $ r
& . : & Embedding | Exact Embedding | Exact
I i bedd &
é‘, &"7 E g Lookup E Lookup é‘, &,‘; loolin |Match iookip Nt
2 o
§ & § &
Qé’ G c Pretrained Word q au éz,’ c ¢ Pretrained Word q am
& 1 e N Embeddings L e & 1 - L Embeddings L s o
& &

Figure 3: Baseline model. Figure 4: Full model.

2 Previous Work

Much successful work on question answering has resulted from applying attention mechanisms to
recurrent neural networks. Attention mechanisms help the network identify which words in the con-
text are most relevant to which words in the query. In particular BIDAF, which combines context-to-
query and query-to-context attention, achieved state of the art results on multiple question answering
datasets [5].

Although word embeddings alone are sufficient to obtain good performance on this task, [3] showed
that networks can benefit significantly by supplementing word embeddings with hand-engineered
features. The authors define feqact_maten(w;) for context words as a binary feature which has value
1 if the word w; also appears in the question.

Both papers compute start and end pointers that correspond to the index of the first and last word of
the answer in the context. This is done by a softmax layer for each pointer with number of classes
equal to length of the context.

Another approach involves the use of passage-aligned question representations, which are computed
using query-to-context attention [2]. These representations can enhance question-answering done
using passage-independent representations alone as they allow the model to “align” the question
with the context to focus on the region of the context most likely containing the answer.

Other approaches include leveraging character-level embeddings. The model in [5] tokenizes ques-
tion and context inputs at the character level prior to computing character-level embeddings. These
embeddings are later passed through a convolution layer and a max-pooling layer to assemble the
character-embeddings into word-embeddings which are then concatenated with pre-trained word
embeddings.

3 Approach

3.1 Baseline model

Our baseline model uses 100-dimensional pre-trained GloVe embeddings to encode each batch of
contexts (maximum N words) and questions (maximum)M words). The embeddings are fed into
a bidirectional RNN layer which produces hidden states associated with the embeddings in each
cohort. We then compute basic dot product attention with the context hidden states attending to the
question hidden states. The attention distribution is concatenated with the context hidden states and
is fed into a dense layer with a ReL.U activation function. This output is then fed into two softmax
layers which compute the probability distribution over start and end positions, denoted p**®"* and
p™. The span is selected by taking the argmax of p**®"* and p°™?.

This model requires fixed size context length N and question length M. M and N were initially
chosen to be 600 and 30 respectively. Inputs are padded or truncated as necessary.

3.2 Improvements

As in [3], we append to every word embedding the binary feature fe;qct matcn, Which has value 1
if the word appears in the question and 0 otherwise. We define ferqctmatcn as 1 for all question
word embeddings to ensure that context and question embeddings have equal dimension. Whereas
[3] considers word to match if their original forms, their lemma forms, or lowercase forms match,
we only consider words to match if they have the same word ID, for computational efficiency.

Additionally, we investigated using a character-level CNN to extract features from each word and
append these to their word vector representation. We trained a character embedding matrix repre-
senting 79 alphanumeric characters and symbols commonly found in text (including mathematical
operators, punctuation, parentheses, braces, and units) with an embedding size of 20. For each word,
we computed a char embedding matrix for the word and ran 100 1-dimensional convolutional filters
with kernel size 5 to extract character level features for each word. We then take an row-wise max
over these features and append the resulting vector to our word embeddings. These character level
features help distinguish tokens for which there are no word embeddings.

We also replace our basic dot product attention with Bidirection Attention Flow (BiDAF) as de-
scribed in [5]. For context hidden states ¢; and question hidden states g;, we compute the following
for a learned parameter w € RS [1]

S5 = w” [ci; g5 ¢ © g

o' = softmaz(S;.)

M
a; = Z Ot;—q]'
j=1
m; = mjax Sij
B = softmax(m)
N
d=Y Be
i=1
output; = [c;;a45¢; 0 a;;¢; 0]

We also replace the dense ReLLU layer with a stack of 3 BiILSTMs. We will refer to this module as
the modeling layer of the network.

Additionally, we append the softmax output of the start distribution to the input for the output layer
for pe4. This way, the network is able to predict the end index based on its prediction of the start.

We optimize the computational efficiency of the model by plotting the distribution of question and

context lengths in figures 5 and 6. We chose to decrease our context length N to 400 because this

handles nearly all examples without truncation. We allow M to remain 30, although this may be
1

more conservative than necessary. This optimization speeds up iterations by a factor of ~ 3.

Complementary Cumulative Distribution of Question Lengths Complementary Cumulative Distribution of Context Lengths

10 —— Question Length 10 —— Context Length

0 10 20 30 40 50 60 70 o 100 200 300 400 500 600 700 800
Length Length

Figure 5: Plot of P(Question length > X) Figure 6: Plot of P(Context length > X)

Finally, we explore alternative span selection techniques described in 3.3

3.3 Improved span selection

The baseline model selects a span that maximizes pfta”pjnd. In [3], the selected span also maxi-
mizes the above expression with the additional constraint that 0 <=7 <= j <= ¢ + 15. However,
these selection methods can do poorly if the network identifies two candidate answers, in which case
taking the argmax of this product may not correspond to selecting either candidate answer.

To address this shortcoming, we propose a new span selection approach that incorporates a prior
belief over the expected length of the correct answer. Our span selection algorithm is parameterized
by an upper triangular matrix P € RV*Y where P;. ;j represents the probability of a correct answer
having length j — 7 + 1. At test time, we select our span as follows:

T
span = argmaxpftartp?ndﬂﬁj — argmax(pstartpend o P)i,j

1,] ,J

Compared to the baseline model which selects the optimal span in O(NV) time given the start and
end pointer distributions, our method requires O(N?) time.

Span selection in [3] is a special case of this model where the underlying distribution is assumed
to be uniform over positive integers less than 16. In this paper, we propose two alternative ways to
define P. First, we measure the empirical distribution of answer lengths from the training set shown
in figures 7 and 8 and initialize P accordingly with Laplace smoothing. We will refer to this P as our
empirical prior.

Secondly, we note that the answer length is not independent of the question content. For exam-
ple, figure 8 shows that answers to why’ questions are significantly longer than answers to *who’
questions, which are often just a first and last name. Therefore, we also have the model learn to
predict the length of the answer given the question. We do this by taking the elementwise max of the
question embeddings over each timestep and feeding the resulting vector into a softmax layer that is
trained to predict the answer length. The output of this softmax is used to construct an independent
P matrix for each example during span selection. We will refer to this P as our learned prior.

Probability Density of Answer Lengths Mean Answer Length by Question Type

—— Answer Length 8

0 5 10 15 20 25 30
Length

what who when how other which where why

Figure 7 Figure 8

4 Experiments

Before arriving at a comprehensive model, we conducted a variety of experiments to tune and im-
prove the baseline. Initially, we investigated the improvements detailed in section 3.2. Our initial
analysis yielded an improved training baseline upon which we could conduct further experiments.
This improved baseline consisted of an exact match feature, bidirectional attention flow, a convolu-
tion layer, 200 hidden units, and 15% dropout.

4.1 Comparative Analysis

In table 1, we detail a comparative analysis which covers incremental changes to the static, improved
baseline. Given the training and development set statistics collected during this experiment and our
initial investigation, we knew the improved baseline tended to overfit to the training data.

This precipitated our investigation of some regularization methods which could potentially improve
our results. Table 2 details our experiments with L2-regularization and dropout.

Table 1: Comparative Analysis after 14000 iterations for improved baseline consisting of: Exact
Match feature, BiDAF, 2 BiLSTMs, Conv. layer, 200 hidden units

Model DevF1l DevEM
Improved baseline 67.53 52.79
150 hidden units +0.12 % -0.86 %
100 hidden units +0.58 % +0.26 %
50 hidden units 206% -3.12%
Ignore non-alpha-numeric characters +0.24 % -0.29 %

Replace Convolution with Dense Layer -032% -0.44 %
Add Char-Level Embeddings w/ CNN -291% -4.63 %

Table 2: Regularization Comparative Analysis after 14000 iterations for baseline consisting of:
Exact Match feature, BiDAF, 2 BiLSTMs, Conv. layer, 200 hidden units

Model Train F1 Train EM DevF1 DevEM
Improved baseline (15% dropout) 91.26 81.8 67.53 52.79
L2-Regularization (8 = 0.01) 54.65 37.00 52.16 35.38
L2-Regularization (8 = 0.01) 10% dropout 56.27 38.50 53.01 36.73
L2-Regularization (3 = 0.01) 5% dropout 56.70 40.00 54.01 37.40
L2-Regularization (8 = 0.001) 10% dropout ~ 73.49 58.80 65.93 50.56
L2-Regularization (3 = 0.0001) 10% dropout 89.87 78.5 67.41 53.37

Additional investigation concerned a variety of other hyperparameters including the number of BiL-
STM’s, embedding size, and others. These analyses showed that including more LSTM’s tended to
improve accuracy while slowing training.

4.2 Ablative Analysis

Continued investigation and the aforementioned experiments, combined with periodic official eval-
uation in our CodalLab environment, facilitated our arrival at a final model. Table 3 shows the effect
of removing features one at a time from this model until we are left with the LSTM baseline in terms
of the cost to the F1 score on the development set. Independent indices refers to removing p*¥"t as
an input feature for the p"? calculation. This shows that the primary benefit of our improvements
come from the 3 BiLSTM layers that compose the modeling layer.

4.3 Span selection

Table 4 shows the results of four span selection methods applied to the same trained network at
test time. This shows that incorporating a prior distribution gives better results, especially on the
exact match metric, than simply taking the argmax as in the baseline or constraining answers length
to be bound by some hyperparameter as in DrQA. Surprisingly, the learned prior did worse than
using a uniform prior. We believe this is the result of overfitting due the to rich feature space of
the question embedding. Furthermore, we found that applying the empirical prior to the training set
decreases the F1 and exact match score from 95% and 88% to 92% and 82% respectively. We believe
incorporating a prior belief over the answer length has a regularizing effect on the model because
the end pointer output layer is implicitly learning to predict answer lengths from the contents of the
question and context.

Eable.s Ablauye ARETSTE Table 4: Performance of Span Selection

Model DevF1 Cost Methods
Full Model 72.31 --
No empirical prior ~ 70.81 1.50 ___ Nlodel Dey 3L DewEM
K Baseline 70.81 64.07
Independent indices 70.06 0.75 : .
DrQA (bounded uniform prior) 71.64 65.06
No fezact.match 67.85 2.21 . .
. Empirical Prior 72.31 67.04
No modeling layer ~ 45.89 21.96 Learned Prior 71.59 64.42
No BiDAF 42.05 3.84 ’ '

5 Analysis

Tables 5 and 6 compare our baseline and final model performance. Based on our ablative analy-
sis in Table 3, the modeling layer composed of three bidirectional LSTM’s had the greatest impact
on our overall F1 score. This is expected since the modeling layer comprises the main sequence
model for associating query and context terms in a manner successful in various language compre-
hension tasks. Training these BiLSTM’s allowed our model to semantically interpret each context
and question and consequently answer questions with improved accuracy.

Table 5: Baseline Performance Table 6: Final Model Performance

Model DevF1l DevEM
Baseline (GRU) 40.58 29.42
Baseline (LSTM) 42.05 30.62

Model Test F1 Test EM
Final Single Model 75.11 66.36

The presence of a bidirectional attention flow layer as opposed to basic dot-product attention had
the second highest impact on our overall performance. Although the impact was marginal compared
to our modeling layer, the BiDAF layer computes the similarities of context terms relative to query
terms and vice-versa. Compared to the baseline’s basic attention model, which only computes sim-
ilarity of context terms relative to query terms, BiDAF is able to attend to relevant embeddings in
both directions and hence retain key information from each question that may be otherwise lost.

The third most influential feature of our model was the Exact Match feature. It is reasonable to
expect the answer to a question to contain terms present within the question itself and so it comes
as no surprise that prioritizing these terms improves our F1 score (which is less strict than EM). Of

course, it is trivial to come up with questions that share words with the context but not the answer.
This possibility likely explains why this feature only offered marginal gains.

Figures 9 and 10 show the performance of our model on a development set with official evaluation.
The model performs similarly on different types of questions, but performance degrades significantly
on answers longer than 4 tokens. This is may be due in part to our selection method being adverse
to selecting long answers.

Table 7 below shows examples of good and poor predictions on the development set. In the first
example, the model likely fails to predict _ogedei_ because it appears as an unknown token. It does,
however, successfully choose a name in close proximity to ’grandson’. Additional input features
beyond word embeddings may help address such cases. The second example demonstrates that our
model is still capable of correctly selecting answers as long as 13 words, even though such answers
are extremely unlikely according to our empirical prior.

Table 7: Samples from dataset with prediction from model with empirical prior

Context: instability troubled the early years of kublai
khan ’s reign . _ogedei- ’s grandson kaidu refused to
submit to kublai and threatened the western frontier of
kublai ’s domain . the hostile but weakened song dynasty
remained an obstacle in the south . kublai secured the
northeast border in 1259 by installing the hostage prince
wonjong as the ruler of korea , making it a mongol tribu-
tary state . kublai was also threatened by domestic unrest
. li tan , the son-in-law of a powerful official , instigated
a revolt against mongol rule in 1262 . after successfully
suppressing the revolt , kublai curbed the influence of the
han chinese advisers in his court . he feared that his de-
pendence on chinese officials left him vulnerable to fu-
ture revolts and defections to the song .

Query: who was kaidu ’s grandfa-
ther ?

Ground Truth: ogedei

Predicted: kublai khan

Context: european union law is applied by the courts
of member states and the court of justice of the euro-
pean union . where the laws of member states provide
for lesser rights european union law can be enforced by
the courts of member states . in case of european union
law which should have been transposed into the laws of
member states , such as directives , the european com-
mission can take proceedings against the member state
under the treaty on the functioning of the european union
. the european court of justice is the highest court able to
interpret european union law . supplementary sources of
european union law include case law by the court of jus-
tice , international law and general principles of european
union law .

Query: who applies european
union law ?

Ground Truth: courts of member
states and the court of justice of the
european union

Predicted: courts of member states
and the court of justice of the euro-
pean union

Our final hyperparameters are displayed in Table 8.

6 Conclusion

In this paper, we investigated question answering models on SQuAD. We showed that incorporating
a prior belief into span selection increases F1 and EM scores on the development set without intro-
ducing any additional training cost. One drawback of our model is that we do not explicitly handle
out-of-vocabulary words. This could be addressed by including a Char-Level CNN and tuning hy-
perparameters to overcome the overfitting we saw with our initial investigation, displayed in table
2. Additionally, we could modify our feyqctmatcn feature to consider words as strings, rather than

Mean Score by Question Type Mean Score by True Answer Length

Figure 9 Figure 10

Table 8: Final Hyperparameters

Parameter Value
Learning Rate .001 annealed to .00025
Batch Size 64
Dropout 20
Context Length 400
Question Length 30
Embedding Size 200

Max Gradient Norm 5.0

just IDs. This would allow the model to recognize when the same unknown word appears in both
the question and context.

References

[1] Cs 224n default final project: Question answering. http://web.stanford.edu/
class/cs224n/default_project/default_project_v2.pdf. Accessed: 2018-
03-18.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014.

[3] Danqgi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. CoRR, abs/1704.00051, 2017.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[5] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional at-
tention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

