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Abstract

There has been significant recent progress in machine comprehension (MC) and
question answering (QA). Typically, these methods improve both the way we cap-
ture context-query interactions and the computational efficiency. In this paper, we
did a reimplementation across multiple attention mechanisms, including Bidirec-
tional attention flow (BiDAF), Coattention, and Self-attention. We also explored
a novel neural architectures, namely BiCoattention Network (BCN), which com-
bined BiDAF and Coattention components. We also implemented the R-NET
model to study the mechanism of self-attention. On Stanford Question Answering
Dataset (SQuAD), our best single model achieved an F1 score of 72.05 and an EM
score of 61.93.

1 Introduction

Question answering (QA) is a crucial task in natural language processing. In this task, a computer
system is required to answer a query about a given context paragraph automatically. In the past few
years, question answering has been gaining popularity and achieving promising results on a variety
of datasets. One of the key factors to the advancement is the use of neural attention mechanisms,
which help modeling more complex interactions between the queries and contexts as well as allow
for more parallelization in the computation.

Rencently with the release of the Stanford Question Answering Dataset (SQuAD) by Rajpurkar
et al. (2016) [1], question answering has been driven forward further. The SQuAD consists of
107,785 question-answer pairs on 536 Wikipedia articles. Seo et at. (2017) [2] proposes the Bi-
Directional Attention Flow (BiDAF) network, and unlike previous work, this model drops the way
of summarizing the context paragraph into a fixed-sized vector by creating an similarity matrix of
upstream representations. Their best model achieves an F1 score of 77.3%. Xiong et al. (2017)
[3] creates Dynamic Coattention Network (DCN). The DCN shares the similar way of building an
affinity matrix of upstream representation with the BiDAF but differs in the function of capturing
interaction between the query and the context. The best DCN achieves an F1 score of 75.9%. Based
on Wang&lJiang(2016) [4], Microsoft Research Asia (2017)[5] also introduced a new model called
R-NET.

Inspired by the above papers, we conduct a reimplementation of BiDAF and extend it to a novel
neural architecture, namely BiCoattention Network (BCN). The BCN inherits the way of creating
the affinity matrix like DCN, but integrates the functions of modeling interactions between queries
and context from both the BiDAF and DCN . In addition to those, we also explore the self-attention
in R-NET and compared these two models’ capability in solving question answering.

*The part of BIDAF and BCN and analysis work is done by ZT
TThe part of r-net and related work is done by SL
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Figure 1: The BCN architecture

2.1 BCN

The BCN model is a hierarchical multi-stage process and consists of the following five modules (
Figure 1 ): (1)

1. Embedding Layer maps each word to a vector space using pre-trained word embeddings.

2. Contextual Layer refines the word embeddings by utilizing contextual information across
the surrounding words.

3. BiCoattention Layer combines the attention mechanisms from BiDAF and DCN and pro-
duces a better version of query-aware context representations.

4. Modeling Layer operates a classical RNN layer on the upstream representation.

5. Output Layer yields the start and end positions of answer span to the query.

2.1.1 Embedding Layer

In the embedding layer, we used the pre-trained GloVe vectors to represent the words for the context
and question. Given the complexity of matrix computation, we finalized the embedding size to
100. Besides, the word embeddings were all keeped static during the training process out of the
consideration for better generalization on dev and test sets.

2.1.2 Contextual Layer

We denote the sequence of word vectors in the context document as zP, 22, ...,z2 € R, and

denote the same for the query as :z:?, :rQQ, e 93;? € R?. These embeddings are fed into a 1-layer
bidirectional GRU and we concatenate the forward and backward hidden states to obtain the context
and the question hidden states respectively. Then we add a sentinel vector to the context document
matrix and define itas D = [zP ... 2D :c@D ] € R24x(m+1) where the sentinel vector’s role is to
allow the model to not attend to any particular word in the input. The query matrix is created in
the similar way with a sentinel vector but introduced an additional non-linear projection layer on
top of the encoding. This could allow for more variation between the query encoding space and the
context encoding space. More specifically, we define an intermediate query representation Q' =
29 ... 29 1:(%?] € R24x(n+1) and the final query matrix comes from @ = tanh (WQQ’ 4 b°) €
R2dx(n+ 1)'



2.1.3 BiCoattention Layer

The BiCoattention layer is responsible for linking and fusing information from the context document
D and the query @. In this layer, the attentions are computed based on a shared similarity matrix
in two directions: from context to query as well as from query to context. Inspired by Seo et al.
(2017) [2] and Xiong et a. (2017) [3], we conduct an integration of the two attention mechanisms
and create a more complex similarity matrix.

Similarity Matrix First, the similarity matrx S € R(m+D*("+1) j5 computed by:
Sij = a(D4,Q;) €R

where S;; indicates the similarity between i-th context word and j-th query word. o is a trainable
scalar function encoding the similarity of the couple input, D.; is the i-th column vector of D,
and @Q.; is the j-th column vector of (). Similar to Seo et al. (2017) [2], we choose a(d,q) =
W(j:g) [d; q;d o q], where Wy € R% is a trainable vector, o is the elementwise multiplication, ;]
stands for vector concatenation across row. And finally we get the shared similarity matrix S to
compute bidirectional attentions.

BiCoattention Next, the similarity matrix is normalized row-wise and column-wise separately in
order to produce the attention weights A® which scans the context word for each word in the query,
and AP which scans the same for each word in the context.

A9 = softmaz(S) € RMHDx(n+1)

AP = softmax(ST) € R(+1)x(m+1)

Then we compute the summaries of context in light of the words in the query:
CQ - DAQ c RQdX(n+1)

we compute the summaries of query in light of the words in the context by QA”. Meanwhile we
could also derive the summaries of previous attention C'? in light of the words in the context. Since
these operations could be done in parallel,, we perform them in:

CD — [Q,OQ]AD c R4d><(m+1)

where CP is actually a concatenation of query awared and query-to-context summaries awared
context representations. It plays the important role as a co-dependent representation in capturing the
interaction of the query and the context.

Besides, we also obtain the attention weights for query to context words through a max pool-
ing mechanism by b = softmaz(maz,ow—wise(S)) € R™T, where the maximum function
MATrow—wise 15 performed in row-wise convention. Then the attended context vecotr is d =
> ,0iD; € R24. { indicates the weighted sum of the most important words in the context with
respect to the query, and we simply tile the d for m + 1 times to get the CF ¢ R24x(m+1),

Finally, the contextual embeddings, the co-dependent context representation and the attended con-
text vector are combined together to yield G. We define G by:

G.; = B(D.;,C2,CE) e R vie {1,...,m}

where G.; is the i-th column vector corresponding to the i-th context word, (3 is a function fus-
ing the three input vectors, and d¢ is the output dimension of the 3 function. Here, we use the
simple element-wise multiplication and concatenation function as following: 3(D,CP CF) =
[D; CP; [D; D] o CP; D o CE] € R12dxm

2.14 Modeling Layer

The input to the modeling layer is G. Here we employ 2 layers of bidirectional GRU whose hidden
size is d for each direction. Thus this layer give us a higher level representation matrix M &
R24x™ which models the interaction within the upstream context representation itself, and therefore
provides us informative contextual information with respect to the entire context and the query.



2.1.5 Output Layer

At last, we are required to predict the span in the context to answer the query. Similar to the BiDAF,
we select out the span by predicting the start and the end position of the phrase in the context. For
the start position, we obtain its probability distribution by:

pt = softmam(WgI (G; M])
where Wg; € R4 is a trainable weight vector. For the end position, we employ another bidirec-

tional GRU layer on the M and get the M? € R24X™_Then we obtain the end position’s probability
distribution by:

p? = softmax(Wg; [G; M?))
where again WZ; € R4 s a trainable weight vector, and in this way we enable the end position
predictions to be conditioned on the start position predictions.

2.2 R-NET

The main idea of R-NET model is mainly about attention. There are mainly four parts:(1)the re-
current network encoder to build representation for questions and passages separately,(2)the gated
matching layer to match the question and passage,(3)the self-matching layer to aggregate informa-
tion from the whole passage, and(4) the pointer-network based answer boundary prediction layer.
My implementation of R-NET model referenced from GitHub[7].More detail and the contribution
of these parts are followed:

2.2.1 Attention-Based recurrent network

This gated attention-based recurrent network is used to acount for the fact that words in the passage
are of different importance to answer a particular question for reading comprehension and question
answering.The gated attention-based recurrent network assigns different levels of importance to
passage parts depending on their relevance to the question, masking out irrelevant passage parts and
emphasizing the important ones.This additional gate is based on the current passage word and its
attention-pooling of the question, which focuses on the relation between the question and current
passage word.

2.2.2 Self-Matching Attention mechanism

The self-matching mechanism is used to aggregate evidence from the whle passage to infer the an-
swer. Through a gated matching layer, the resulting question-aware passage represention effectively
encodes question informatin for each passage word. Since the natural problem of recurrent network
which could only memorize limited passage context in practice despite its theoretical capability. To
address this problem, self-matching layer to used to dynamically refine passage representation based
on the whole passage.

2.2.3 Output Layer

Output Layer incorporate pointer networks to predict the start and end position of the answer. The
pointer network is used to select the start position and end position from the passage. In the output
layer, attention-pooling is also used again as the initial state of the answer recurrent network.

2.3 Training Details

For the padding strategy, as can be seen in Figure 2, over 98% contexts have the length at most
289 while over 99.9% queries have the length at most 29 in the training set, and for the sake of
efficiency and performance, we set the maximum length of the context and query to be 400 and
30. For the Optimizer, we employ the Adam optimizer with initial learning rate 0.001. We also try
to vary the learning rate over the course of training by Ir = d - min(step_num =23, step_num -
warmup_steps 1), where the d and warmup_steps are the hyper-parameter that need setting.
But it turns out that the BCN model is pretty sensitive to the change of learning rate, and that
doesn’t help. For avoiding overfitting, we apply dropout rate with both 0.2. The tuned parameter of
out R-NET model is the same as the parameter discussed above.
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Figure 2: Histogram plots of the lengths of the context and query in the training data
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Figure 3: BCN performance during training

3 Results and Analysis

We achieved F1 score 71.21 and EM 60.28 of the BCN and F1 score 72.05 and EM 61.93 of the R-
NET. The BCN’s training process is showed in Figure 3, where the plots show that even we conduct
a coarse search of hyper-parameter, the overfitting problem still exists and largely affects the BCN
performance. The detailed comparision with state-of-the-art models can be found in Table 1, and
we conjecture the remaining gap might be resulted from the lack of character level embeddings.

3.1 Model Ablations

We analyze the performance of BCN and its ablations on the SQuAD dev set as can be seen in Table
2. The contextual layer does not contribute to the BCN but make it worse. Since the contextual layer
envolves much complex non-linear transformation and sentinel vectors, we conjecture current model

Model F1Score EM | F1Score EM
Dev Set Test Set
Baseline(our implementation, single) 43.66 34.03 - -
BiDAF(our implementation, single) 70.94 60.55 - -
BCN(our implementation, single) 71.21 60.28 71.37 60.97
R-NET(our implementation, single) 72.05 61.93 - -
BiDAF(reference implementation, single) 77.30 67.70 77.30 68.00
DCN(reference implementation, single) 75.60 65.40 75.90 66.20
R-NET(reference implementation, single) 77.50 68.40 - -

Table 1: Performance comparision with other methods



BCN’s Different Modules F1Score EM
Dev Set
Baseline 43.66 34.03
Baseline + Contextual Encoder 36.03 27.81
Baseline + Contextual Encoder + Modeling and Output Layer 67.40 56.40
Baseline + Contextual Encoder + Modeling and Output Layer + BiCoattention 71.21 60.28

Table 2: BCN ablations on the dev set
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Figure 4: BCN performance analysis across length and query type

architecture does not well solve the gradient back propagation problem, which makes it harder for
the contextual layer to update in the correct directions. We also study the role of the modeling and
output layer, and the result is pretty promising. The 2 layers GRU and methods of conditioning
end prediction on start prediction improve the F1 score greatly by 54% from our baseline. This
is a huge step which proves their strong ability in capturing interactions within upstream context
representations. Finally, we replace the basic attention mechanism with our bicoattention module,
and this boost the BCN model performance by around 6%.

3.2 Performance Across Length and Query Type

We also conduct an analysis on the performance of the BCN and R-NET with respect to length
variance. As can be seen in Figure 4, there is no notable performance deterioration with the change
of context and query length. This indicates that our bicoattention module is effective in capturing
global interactions between the context and the query correctly as well as selecting out the most
relevant phrases while ignoring the rest of the context. As for the average length of the answer, the
BCN performs a little worse when the average length goes longer, which is also meet our expecta-
tion, because normally the longer the answer is, the more challenging it can be answered. Besides,
we study the performance of BCN across the question types as well. The statistics shows that our
model is adept at the *when’ question but struggles with the *why’ questions. We conjecture this is
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Figure 5: R-NET performance analysis across length and query type

also consistent with the natural difficulty in answering these two question types since the answer to
the why’ might need more thinking.

Figure 5 shows the R-NET performance across length and query type. Compared to the BCN model
in Figure 4, it is interesting to notice that f1 score for large context and answers tokens of BCN is
greater than R-NET. The better phenomenon possibly could be attribute to the BiCoattention Layer,
which is responsible for linking and fusing information from the context and query. However, it is
also interesting to note that the f1 score of R-NET for "WHY” style question is greater than that of
BCN model. It might be the result the self-attention layer in the context of R-NET, since the "WHY”
style question is more needed to infer from the context document, which is job self-matching layer
does in R-NET.

3.3 Visualizations
Examples of the BCN predictions:

e Context: “The game was played on February 7, 2016, at Levi’s Stadium in the San Fran-
cisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl ...”

Question-1: “What day was the Super Bowl played on?”
Prediction-1: “February 7, 2016”

Answer-1: [“February 7, 2016”, “February 7, “February 7, 2016”]
Question-2: “What venue did Super Bowl 50 take place in?”

Prediction-2: “San Francisco Bay”

Answer-2: [“Levi’s Stadium”, “Levi’s Stadium”, “Levi’s Stadium in the San Francisco
Bay Area at Santa Clara”]

In this subsection, we visualize the BCN attention matrices (zoom in to see details in Figure 6 6)
from some question-context tuples in the dev set, where the attention is obtained directly from the



(b) Example-2: What venue did Super Bowl 50 take place in?

Figure 6: BCN bicoattention visualization aligned with logits

bicoattention module. In the first example, the day in the query matches the date in the context
perfectly and makes it easy for output layer to predict both the start and end position. While in the
second example, the W hat in the query obtains a relatively noisier attention to the context. Despite
that, the distributions of start position and end position probability actually find the relevant span,
and select out part of the answer correctly.

3.4 Error Analysis

Moreover, we also try to understand the BCN’s prediction error pattern through a manual analysis.
In this subsection, we randomly select 50 incorrect BCN predicted cases based on EM and cate-
gory them into 6 classes, which is similar to Seo et at. (2017) [2]. But we replace the incorrect
preprocessing with padding problems after scanning the samples. Our manual analysis shows that
46% errors are caused by imprecise answer boundaries, 30% involve syntactic complications and
ambiguities, 12% are the multiple sentences problem, 6% are resulted from paddding problem, 4%
are paraphrase problems and 2% require external knowledge. See Appendix A which is attached in
supplementary material for the examples of BCN error analysis.

4 Conclusion

In this paper, we conduct a reimplementation of BiIDAF and R-NET, and we introduce the BiCoatten-
tion Network (BCN) as an extension which combines the BIDAF and Dynamic Coattention Network
core parts. The experimental evaluations show that our model achieves competitive results on the
Stanford Question Answering Dataset (SQuAD). We also explored very detailed analysis of BCN
from multiple perspectives, and we learn more clearly about what component of BCN is capable of
answering complex questions while the others still need improving by compared with R-NET, espe-
cially for the attention mechanism. It is worth mentioning that the visualization and error analysis
indeed helps us a lot in understanding the BCN’s downside, and we are excited about future work
such as integrating Transformer Network [6] into BCN.
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A ERROR ANALYSIS

Table 3 summarizes the types of errors by BCN and shows examples for each category of error in

SQuAD deyv set.

Error type

Ratio (%)

Example

Imprecise answer boundaries

46

Context: “Another example of the richness of the
zeta function and a glimpse of modern algebraic
number theory is the following identity (Basel
problem), due to Euler,”

Question:“Of what mathematical nature is the
Basel problem?”

Prediction: “modern algebraic”

Answer: “modern algebraic number theory”

Syntactic complications
and ambiguities

30

Context: “To the east is the Colorado Desert and
the Colorado River at the border with Arizona”
Question:“What is the name of the water body
that is found to the east?’

Prediction: “colorado desert”

Answer: “Colorado River”

Paraphrase problems

Context: “The two forces finally met in the
bloody Battle of Lake George between Fort Ed-
ward and Fort William Henry. The battle ended
inconclusively, with both sides withdrawing from
the field.”

Question:*“Who won the battle of Lake George?”
Prediction: “fort edward and fort william henry”
Answer: “The battle ended inconclusively”

Multi-sentence

12

Context: “Construction projects can suffer from
preventable financial problems. Underbids hap-
pen when builders ask for too little money to com-
plete the project. ”

Question:*“What is an underbid?”

Prediction: “construction projects can suffer
from preventable financial problems. underbids
happen when builders ask for too little money to
complete the project”

Answer: “when builders ask for too little money
to complete the project”

Padding problem

Context: “In an interview with newspaper editor
Arthur Brisbane, Tesla said that he did not believe
in telepathy,”

Question:*“What was Brisbane’s job?”
Prediction: “”

Answer: “newspaper editor”

External knowledge

Context: “which states that there always exists at
least one prime number p with n < p < 2n — 2,
for any natural numbern > 3.7

Question:“How is the prime number p in
Bertrand’s postulate expressed mathematically?”
Prediction: “2n — 2”

Answer: “n < p <2n—27

Table 3: BCN error analysis on SQuAD

Table 4 summarizes the types of errors by R-NET and shows examples for each category of error
in SQuAD dev set.Compared to the error table of BCN, it is interesting to notice that there is a
error reduction for the "Imprecise answer boundaries” ratio. It might because the pointer-network

mechanism of R-NET.
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Error type

Ratio (%)

Example

Imprecise answer boundaries

40

Context: “Robert Nozick argued that govern-
ment redistributes wealth by force (usually in the
form of taxation), and that the ideal moral society
would be one where all individuals are free from
force. However???

Question:“When are inequalities in wealth justi-
fied, according to John Rawls?”

Prediction: “when they improve society as a
whole™’

Answer: “when they improve society as a whole,
including the poorest members”

Syntactic complications
and ambiguities

26

Context: “To the east is the Colorado Desert and
the Colorado River at the border with Arizona”
Question:“What is the name of the water body
that is found to the east?’

Prediction: “colorado desert”

Answer: “Colorado River”

Paraphrase problems

Context: “In the final years of the apartheid
era, parents at white government schools were
given the option to convert to a “semi-private”
form called Model C, and many of these schools
changed their admissions policies to accept chil-
dren of other races....”

Question:“How do academic results in former
Model C schools compare to other schools?”
Prediction: “than government schools formerly
reserved for other race groups ”

Answer: “better”

Multi-sentence

Context: “Construction projects can suffer from
preventable financial problems. Underbids hap-
pen when builders ask for too little money to com-
plete the project. ”

Question:*“What is an underbid?”

Prediction: “construction projects can suffer
from preventable financial problems. underbids
happen when builders ask for too little money to
complete the project”

Answer: “when builders ask for too little money
to complete the project”

Padding problem

18

Context: “In an interview with newspaper editor
Arthur Brisbane, Tesla said that he did not believe
in telepathy,”

Question:*“What was Brisbane’s job?”
Prediction: “”

Answer: “newspaper editor”

External knowledge

Context: “which states that there always exists at
least one prime number p with n < p < 2n — 2,
for any natural numbern > 3.7

Question:“How is the prime number p in
Bertrand’s postulate expressed mathematically?”
Prediction: “2n — 2”

Answer: “n <p<2n-—27

Table 4: R-NET error analysis on SQuAD
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