Question Answering

CS 22N Default Final Project

Omar Sow
Department of Computer Science
Stanford University
osow@stanford.edu

Abstract

For the CS224N Default Project, I used the provided starter code, but made three model changes:
implementing a coattention layer, character-level encodings with a convolutional neural network, and
restricted span selection. After refining hyperparameters, with 40k iterations, the model reached
performance of F1: 72.9 and EM: 61.52 on the test set.

1 Problem Definition

As stated in the instructions, “the goal of this project is to produce a reading comprehension system
that works well on SQUAD.” [1]. The problem of question-answering, in this framework, refers to
taking a ‘context’ ¢ = {c;, 5, ... ¢, } and a query, q = {q1, qz2, -.- @}, Which can be answered with
some span of text [c; ..¢j] from the context. Given training data comprised of contexts,
corresponding queries, and the gold-standard span, the model must learn how best to map from an
input of a query and a context, to a span pointing to a subset of the context.

The data provided in training had the following distribution of query/context length, and word length,
all of which fed into hyperparameter decisions for this model.

Dev Dataset: Question Length Dev Dataset: Word Length in Questions
4000 60000
S0 50000
3000
3560 40000
3 2000 3 30000
o Q
1500
20000
1000
10000
. [] |
. = , " -
361 6.1-92 123-154 154-185 185-21.6 216-24.7 131 3152 5273 7394 9.4-115 115-136 136-157
Question Length Word Length
Dev Dataset: Context Length Dev Dataset: Word Length in Context
7000 700000
6000 600000
5000 500000
& 4000 # 400000
5 5
Q Q
O 3000 O 300000
2000 200000
1000 l 100000 .
0 | — " -
24916 916-159.2 159.2-2268 226.8-2944 294.4-362 1-38 3866 6694 94122 122415 15-17.8 17.8-20.6
Context Length Word Length

Figure 1: Histogram of characteristics of dev set.

2 Model

2.1 Architecture

The baseline provided as starter code consisted of three modules: an encoder layer, an attention layer,
and an output layer. My architectural modifications were made in the encoding and attention layers,
with slight change to the predictions made at test time, given the results of the output layer.

2.1.1 Encoding Layer

Baseline: The model, in its encoding layer, takes embeddings for the words in the context and query,
and passes them through a shared bi-directional GRU, whose hidden states provide the context hidden
states and the query hidden states for the next step. The word embeddings of the words in the context
and query, each of which was in R%, come from the set of pretrained GloVe embeddings.

Implementation: In order to improve the model’s capacity to generalize and handle words outside of
its vocabulary, I expanded this layer to include creation of character-level embeddings.

This was accomplished through creating a trainable character embedding matrix. With extensions to
the data-processing parts of the program, this layer could take character ID’s (their indices in an
alphabet & special characters list) and retrieve their embeddings ey, ..., e;. Then, these embeddings
could be passed into a one-dimensional convolutional neural network, whose hidden states are max
pooled, bringing them to the same dimension as word embeddings, R%[2]. Like a CNN passing over
an image, this CNN takes a pseudo window size, referring to number of words that filter through at
each step.

The two embeddings could then be concatenated, generating for each word a new embedding, w €
R?% accounting for both word and character-level properties [2].

2.1.2 Attention Layer

Baseline: The attention layer took word embeddings from the previous layer and used basic
unidirectional attention to make the context hidden states attend to the question hidden states.

Implementation: To improve the baseline, I implemented a coattention layer. This involves first
applying a nonlinearity to the question hidden states, generating q]'- = tanh (Wq i+ b) e R%

> num-—qs * num-—qs .
where W and b are trainable parameters and where W € R We theii.add santinel

vectors to the hidden states of questions and contexts, as trainable parameters that allow the model
to choose to ignore the input completely. With an affinity matrix, where entry (i,j) compares
context i and question j, we calculate a context-to-question and question-to-context attention
distributions, as done in source [3].

2.1.3 Output Layer

Since the baseline model simply took the argmax over the distributions of the start of the predicted
span, and the end, and did so independently, it created situations where the predicted end preceded
the predicted end. To avoid this, I modified the output layer to maximize the product of the start and
end probabilities, constraining the end to come at a word that is equal to or after the start [4]. This
was implemented as follows.

Take PsqrtPana to obtain a matrix S such that S;; = Pseare (i) * Pena (). Then, considering only the
upper triangle of S, meant considering only the options where j > i, so I took the argmax of this
upper triangle.

2.2 Training

2.2.1 Initial Analysis

The different models initially reached the following preliminary results after 2500 steps (a smaller
number, in order to allow more time for hyperparameter testing, but enough to demonstrate the
effective nature of the model changes).

The scores listed here are from the development set used throughout the training process
(unofficial_eval). When I reach the hyperparameter tuning step, I employ the official_eval metric.

Model Version Unofficial Eval Dev F1 / EM
Baseline 0.43/0.34
+Coattention 0.58/0.40

+Character-Level Encoding 0.61/0.42

+Smart spanning 0.63/0.44

In further examining these outputs, I looked at the attention distributions that resulted from the
coattention layer, and the example sentences.

Take, for example, this query-context pair, which we’ll consider throughout this paper:

Question: what one word did the nfl commissioner use to describe what super bowl 50 was intended
to be ?

Context: in early 2012 , nfl commissioner roger goodell stated that the league planned to make the
50th super bowl "spectacular" and that it would be "an important game for us as a league "

Correct & Predicted Answer: spectacular

This, and examples taken at this step in training indicated that the problem of illogical spanning had
been solved. Furthermore, over no runs did I find any larger issue in the span choice (e.g. it was too
long, or spanned across sentences), so I did no further explore ways of limiting the spanning.

Furthermore, analysis of the attention distribution shows a reasonably intepretable distribution. In the
context-to-question distribution, we see that, for example, the beginning of the commisioner’s

earl

earl
201 3013
~ . nfl nfl
commlssrlgng; commlssrlgger
oode oodel
gstatet gstatecJ

a

e
league Ieague
planned p!anned
mathg mathe
o i
bgwl bow|
spectacular spectacular
and
t?%dt that
wo%§ WOng
an an
important mwporgané
a 0?— or
us us
as ag

a
league league

o X\ Spge 1
@&%{fg\o«\ woi‘\‘%@‘}\%e 1 @ﬁiﬁgw& mfo«%&%e
\\\\ o

('0

Figure 2: Question-to-context attention distribution. Figure 3: Context-to-question attention distribution.

EM Score

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 4: EM score of new architecture.

quotations pay specific attention to the part of the question mentioning “describe”. Likewise, we see
that in the question-to-context distribution, “describe” and “superbowl 50 pay attention to the
quotation mark before “spectacular”’. However, figure 3 shows a concerning amount of attention
placed on the second quotation “an important game...”, which shows the model is still having trouble
distinguishing the two. It’s attention is also still fairly spread out, and seems almost indecisive.

However, analysis of the model at this point indicates overfitting to the training data as well, which
is sure to mean an even lower final test score.

EM Score F1 Score

]
5 0.6
Q
v
o 0.4
0.2
0
2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000
Iteration Iteration
—@—Dev —@—Train —@—Dev —@—Train

Figure 5: FI Score of new architecture.

Two facts could be assumed from these charts. First, the fact that the training scores approach high
values indicates the model is at least competent enough to represent the data. However, it seems to
be overfitting the training set. Taking these pieces of information, I proceeded to focus on tuning the
model.

2.2.2 Hyperparameter Experimentation

I will make a note here that these steps are presented in chronological order in which I performed
them. In retrospect, there are certainly ways I would shuffle this around to a more systemic search of
relevant parameters (see Limitations).

Word Length

A hyperparameter of the character encoding is word length. Due to time constraints, I did not
seriously explore this parameter. I used information surmised from the Figure 1, and set the word
length parameter to 15.

Model Size

The baseline model included 200 hidden layers. I experimented initially with a hidden layer size of
400, but this was too big, given computational capacity, so experimented briefly with increasing depts
to 300. However, both since the results after 5000 iterations was relatively small, SOURCE WHAT
SOURCE used hidden layer size 200, and principally to maintain computational speed, in order to
explore hyperparameters more fully, I opted to keep hidden size at 200.

Hidden Layer Size Unofficial Eval Dev F1 / EM
after Sk iterations
200 0.6534 /0.5016

300 0.6588 / 0.5021

14000

0.000

Figure 6: EM scores on unofficial_eval for all regularization modes over

14k iterations.

Reducing Overfit

The baseline model had a dropout rate of 0.15 and had no regularization, I employed a grid search
approach to find optimal parameters for dropout and L2 parametrization. Each combination ran for
14k iterations and was tested on official evaluation mode.

Official Eval F1 Scores:

Dropout | L2 Reg. | 0 0.0001 0.0003
Coefficient

0.15 66.1 71.6 72.1

0.2 69.9 69.9 71.9

0.25 71.0 73.1 71.7

Official Eval EM Scores:

Dropout | L2 Reg. | 0 0.0001 0.0003
Coefficient

0.15 57.6 61.2 60.5

0.2 579 579 59.4

0.25 59.97 61.5 60.2

A visual examination of the F1 and EM score across training iterations (with scores calculated
throughout training, instead of on official_eval mode) reinforces that these values largely approach
the same scores, oscillating around, though they provide an increase over the non-regularized scores.

2,000k 4,000k 6.000k 2,000k

CNN Kernel Size

10.00k 12.00k

0520

Figure 7: F1 scores on unofficial_eval for all regularization modes over
14k iterations

The handout stated that a value of k = 5 worked adequately well. In order to confirm, ran experiments
to look for any noticeable improvement from changing this setting using the unofficial_eval dev set,
and the best performing hyperparameters. Again, a judgement call given the computational and time
limits of the project was to move forward with a value of k = 5.

Kernel Size

Unofficial Eval Dev F1 / EM
after 15k iterations

4 0.66/0.51
5 0.67/0.517
6 0.66/0.514

Again, these scores relate to performance on the development set, while the final scores on the test
set obviously varied. However, it highlights the importance of increasing the attempts to prevent
overfitting, with final results more visible in the test set scores.

Unmodified Values

The following hyperparameters were not edited from the baseline:
Learning rate: 0.001 Question max length: 30
Embedding size: 100 Gradient max: 5

From analysis of figure 1, I reduced context max length to 350 words to speed up training, while not
sacrificing performance.

Conclusions

It seemed that the strongest improvements to baseline hyperparameters came from attempts to control
for overfitting. This makes sense since the architectural changes create a much more complex model,
which performed well on the training data, but initially had trouble generalizing that knowledge to
the dev set.

3 Results

These are the parameters I was inclined to submit as my final model based off these experiments.
However, I first performed the same analysis on examples (here we have the same NFL query-
context pair from earlier), to confirm this was improving correctly.

3.1 Parameters of final model
Word Length = 15 Regularization: L2 with 0.0001 coefficient
Dropout: 0.25% Number of Hidden Layers = 200

3.2 Qualitative

earl

earl
g 2015
~nfl
commissioner ~nfl
0 eir commnss;gggrr
goode
state oodel
at gstate(]
e at
league the
planned league
to plannetg
make
the mathe
50th e
super 50th
bow| super
- bow|
spectacular "
anc] spectacular
o it
i X
W womgd
e
an o
important an
pepe mporgané
us or
£ us
a as
league a
leagug

A T
o R 2 e

N2 \!
oo
«©

B U
o7 ¥ o

<,°“\

Figure 8: Question-to-context attention distribution. Figure 9: Context-to-question attention distribution

As we see in the attention distributions generated in figures 8 and 9, we notice that the query-to-
context attention is much more focused around “nfl commissioner” and “spectacular”, which makes
intuitive sense, the key parts of the question are paying attention to the answer part of the context.

Likewise, the context-to-question attention distribution is far less spread out, showing a similar
pattern as the question-to-context distribution, which is perhaps more impressive given the potential
for spread seen in the attention distributions earlier on. The part of the context “commissioner roger”
pays attention to the end of the sentence, but the words related to the “50" superbowl” payed attention
to the portion of the query with the key structural information (i.e. that it is a “what” question™).

3.3 Quantitative
The final model, trained for 40k iterations, had a test set score of F1: 72.9 and EM: 61.52.

Quantitatively, this indicates significant improvement on the baseline. It also highlights the
relative weakness of the program remains in the exact match score.

This would potentially respond to further improvements in the output layer beyond the bound I
introduced in my modifications.

4 Limitations

The first limitation of this examination of the question answering problem certainly remains the
computational time of hyperparameter searching. With more time, I would want to further explore
the following hyper-parameters:

- Size of character embeddings

- Parameter sharing across the model

- Further fine-grained experimenting with dropout/regularization combinations

- Further analysis of benefits of increasing model depth beyond cursory results here

- The organization of various hyperparameter tests, in order to test more combinations of
different values, beyond just dropout/regularization.

References

[1] Abi See, Richard Socer, et al. CS224N Default Final Project: Question Answering.
http://web.stanford.edu/class/cs224n/default_project/default_project_v2.pdf

[2] D. Britz, "Understanding Convolutional Neural Networks for NLP", WildML, 2018. [Online].
Available: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/.

[3] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016

[4] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016

[5] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051,2017.

