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Abstract

We examine the performance of bi-attention, self-attention, and co-attention lay-
ers in the framework of the Bi-Directional attention flow model (BiDAF) model in
an effort to determine the flexibility of general attention layers in question answer-
ing. Noting the original bi-attention layer’s faster training and better performance,
we construct an ensemble of fine-tuned and modified BiDAF models to get an
idea of attention focused models’ effectiveness on the SQuAD dataset. Our final
ensemble model achieved a 77.85 F1 score and 68.39 EM score on the dev set.

1 Introduction

Machine Comprehension (MC), the task of getting a machine to thoroughly understand and digest
language, and Question Answering (QA), the task of getting a machine to answer a question through
MC, are complex problems that have become approachable through the lens of deep learning. Due
to their high level of difficulty, MC and QA tasks are often used a benchmark for measuring the
progress of NLP. Thanks to the creation of the SQuAD dataset, a reading comprehension dataset
with more than 100,000 context, question, answer tuples, serious progress has been made with
respect to these tasks [1].

We present our results on SQuUAD, which are organized as follows. In section 2 we formalize our
problem statement. In Section 3 we present a baseline model and three separate attention-based
models, all which operate in the BiDAF framework [2]. In Section 4 we present slight modifications
to our original bi-attention based model, and introduce our ensembling method. In section 5 we give
analysis for experiments run in Section 3 and Section 4. In section 6 we present our conclusions and
potential next steps for future research. All of the work presented below follows the guidelines of
the CS224N default final project [3].

2 Problem Statement

Given a finite sequence of question words @ = {¢;}}/, and a finite context C = {c¢;} ;, we seek

to determine a variable length finite sequence of answer words A = {ai}iL:(f’Q) , where there exists

K € N, such that a, = ¢, forall K < k < K + L(C, Q). In particular this reduces to finding a
starting and ending point, i, 7. respectively, and letting A = ¢;_, ¢i +1,---,¢

e

3 Attention-Based Models

As a reference, we implement the baseline model described in the CS224N default final project [3].
Below we first describe the framework for the BIDAF model, which we use as a means of comparing
different variations of complex attention [2]. Then we provide the mathematics behind each different
attention layer in vectorized form. The co-attention and co-attention layers are modified from their



original papers, so to get the best intuition regarding how the layers work it may help to view the
math given in the original papers, which is in non-vectorized form.

3.1 BIiDAF Framework

The BiDAF model is a very successful QA model and is highly cited among models currently lead-
ing the SQuUAD leader-board. Aside from introducing bi-attention, the original paper presents a
backbone for many attention based QA models. We provide this structure below, abstracting out
the bi-attention layer to a general attention layer. We adopt the convention that the set of vectors
{a1,...,a,}, where a; € R™, naturally induce a tensor A € R™*™, where the i row of A is a;.
Similarly we will refer to the i row of some tensor A as a; when appropriate. RNNs do not share
weights unless otherwise specified.

1. Initial Embedding Layer. We represent both our question {g;}?£, and context {c;}, with
dense word embeddings of dimension e. This gives a question tensor Q € RM*€ and context
tensor C € RV*¢, Hence forth ¢;, c; refer to either the word or its embedding depending on
context.

2. Contextual Embedding Layer. To find our contextual embedding we find
uy = BiRNN(u;_1, q;)
ht = BiRNN(h;_1, ¢t)
where uy, h; are the resulting concatenation of forward and backwards RNNs with d-dimensional

output and the two BiRNNs share weights. From this we have a contextual question tensor
U € RM*24 and a contextual context tensor H € RV*2d,

3. Attention Layer. Using the contextualized embeddings U, H, the attention layer comes up with
finite attention embeddings A1, Ao, ..., Ax. We then define

G =[H;A; ;A ;A ;HoAj s HoA ;.. .HoAj, |

where {i1,...,4¢}, {j1,-.-,Jee} € {1,...,k}. Note in general G is some tensor representing
a combination of our attention embeddings and contextual context H, but does not to need to be
exactly in the form described above.

4. Modeling Layer. Now, supposing the t" row of G is g;, we find
my = BIRNN(m;",. g.)
where mgl) is the resulting concatenation of forward and backwards RNNs with d-dimensional
output. From this we have M) ¢ RNx2d
5. Output Layer. We find
p) = softmax(wg1 G;MW]), p@& = softrnax(wg2 G;MP))

where w;l ; w;z are trainable weight matrices of the proper size, and M@ is such that

m{® = BiRNN(m!?,, m{")

3.2 Bi-Attention

Our implementation for bi-attention follows the BiDAF paper. We first compute a similarity matrix
between our contextualized context and question embeddings S € RY*M | We let

Sij = Wzg) [hl,uj, hl o Uj]

where ws) € RS is a trainable weight matrix. Note in general we can in-code similarity in many
different ways, so long as it S;; effectively combines information from h; and u; and is trainable.

To find context to question attention (C2Q), UeRY X2 we compute U= softmax;oy (S)U where
softmax,o,, maps each row s; of S to softmax(s;).

To find question to context attention (Q2C), H € RN*24 we find r € softmax(max..(S)) € RY,
where max, finds the max over the columns. We then broadcast r into R € RNV*N and find
H = RH then we then define ~ _ ~

G=[H;U;HoU;HoH|



3.3 Co-Attention

We adapt a co-attention layer from the recently published paper “Dynamic coattention networks for
question answering” [4]. So that we can compare its performance to that of the bi-attention layer, we
modify the layer to mimic the bi-attention layer’s structure, but still capture essence of co-attention
rather than bi-attention.

We first apply a tanh non-linearity to our contextual embeddings matrix row-wise to give us U’.
In particular we have that v} = tanh(Wu; + b), where W € R24*24 and b € R?? are trainable
weights. We then compute S and our C2Q attention, U, exactly as in bi-attention, but replace U
with U’ throughout the process. To find our Q2C attention, H € RV*2" we simply compute find
H= softmax,, (S)softmax. (S) " H.

Finally, we compute our final embeddings matrix F by finding
fe = BiRNN( fy_1, [he; @])

and then let
G =[H;F;HoF]

3.4 Self-Attention

We adapt a self-attention layer from the recently published paper “r-net: Machine Reading Com-
prehension with Self-Matching Networks” [5]. Similarly, we modify it to mimic our bi-attention
layer.

We first compute our C2Q attention U exactly as outlined in bi-attention. Then we find V € RN *24
such that

Vy = RNN(’Ut_l, ﬂt)
where v, is the output of a forward RNN with 2d-dimensional output. To compute our self-attention,
A € RNV*2d e compute the similarity matrix T among the v, so

T = W(TT) [vi; vj;v; © V]
where w(t) € R is trainable. We then find V = softmax,oy (T)V, and from that find A by letting
ay = BiRNN(at_l, ['Jt, 'Ut])

We then let
G =[H;A;HoA]

4 Hyper-paramater Tuning, Initial Results, and Model Modifications

4.1 Hyper-parameter Tuning

All our models use the GLoVe 100D word embeddings. While fine tuning our models, we evaluated
)

7

on the dev set by setting the start position of our answer to be arg max; p

to be arg max; pl(-2) We provide plots of the length of contexts, questions, and answers of our dev

and train sets in Figures 1, 2, 3. Motivated by these plots, we reduced our maximum context length
from 600 to 400, as the vast majority of context paragraphs are under a length of 400. This results
in faster training, and essentially identical results.

and the end position

As an initial comparison, we ran our bi-attention model with the parameters given with the baseline,
hidden-state size (d): 200, optimizer: Adam optimizer, initial learning rate: 0.001, regularization:
dropout with parameter 0.15, BIRNNs: GRUs. In general we use a batch-size of 32, the one ex-
ception being when we train our self-attention model where we use batch-size 16 due to memory
issues. Our initial test was to compare the previously stated parameters with those given in the
BiDAF paper, hidden-state size (d): 100, optimizer: Ada-Delta, initial learning rate: 0.5, regulariza-
tion: dropout with parameter 0.2, BIRNNs: LSTMs. The hyper-parameters in the paper appeared to
be less efficient in minimizing our loss, however the loss did seem to decrease with a more consistent
slope. To isolate what factors contribute to changing the training of the model, we compared each
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Figure 1: Length of context state- Figure 2: Length of question state- Figure 3: Length of answer state-
ments in train and dev sets. ments in train and dev sets. ments in train and dev sets.

aspect of the model individually. Figure 6 displays that the Ada-Delta optimizer seems to perform
similarly in nature to the Adam-Optimizer, but seems generally worse for the model throughout the
training process. Also, Figure 6 displays the LSTMs effectiveness in leading to a smoother training
process, where our loss decreases at a relatively regular rate for a comparably extended period, while
the GRU loss tends to flatten earlier. This difference is subtle and best seen in the dev F1 (Figure
5) scores. Based on the above results, we choose our final model to use an Adam Optimizer with
initial learning rate 0.001 and LSTMs as our BiRNNs or RNNs. The dropout change did not have a
noticeable impact so we left dropout at 0.15, and since we could computationally afford to keep our
hidden-state size at 200, we chose to do so.

QAModel/loss/loss dev/F1
Figure 4: Training loss for bi-attention model. Figure 5: Dev F1 score for bi-attention model.

Figure 6: Plots of train loss and dev F1 for hyper-parameter tuning. Orange represents bi-attention with baseline
parameters, while blue employs a LSTM, and red uses the Ada-delta optimizer.

4.2 Results on Different Attention Layers

Ideally we would do hyper-parameter tuning for each different attention layer we use with our model,
but due to time constraints this was not feasible. Rather we use the hyper-parameters from above
and run our model with a bi-attention, co-attention, and self-attention layer. Plots of train loss are
shown in Figure 7.

Naturally, the model being designed for a bi-attention, performed very well with a bi-attention layer.
We note that although the co-attention and self-attention models still are in the training process, they
do not appear to be on trajectory to overtake BiDAF, and if so, certainly not by a notable margin.
We discussed with other groups who tried training models based on similar intuition for longer,
only to find the consensus was that no such model truly out-performs the original BiDAF. Our self-
attention shows some promise, but the self-attention layer is far more complex and computationally
expensive than the bi-attention layer, and takes significantly longer to train. Since the project is time-
constrained, we deemed the trade-off between potential performance and time was net negative and
we decided to focus our attention on modifying and tweaking the working bi-attention layer (BiDAF
model) in effort to develop our own metric of attention’s capability to solve MC and QA tasks.
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Figure 7: Train loss of bi (dark blue), co (light blue), and self-attention (green) over eleven thousand iterations.

4.3 Character Level Embeddings

We add character-level embeddings to our model, which help in dealing with out of vocabulary
words (OOVs) and tend to boost performance in general. We use the model presented in “Learn-
ing Character-level Representations for Part-of-Speech Tagging”[6]. Suppose we have individual
character embeddings where each character is represented by a vector 7 € R%*ar Given a word
r1,...,7s, With £ characters, define R € Rf*denar where i row of R is the character embedding
of the i character, r; € R%nrer, We then apply a convolution with window size k and filter di-
mension f so that conv(R) € R**/ . We then find our character-level word embedding by adding
a max pooling layer w., = max.,(conv(R)) € Rf. Now labelling our initial question, context
word embedding tensors as Q.4 € RM*€, Cyora € RV*¢, we can make new question, context
character level word embedding tensors Q. € RM*f, Cpor € RV*€. We then define our final
word embeddings as

Q = [Qchar; Qword] € RMX(f+8)7 C= [CChf““; Cword] € RNX(f+e)
As an experiment, we also implement models using what we refer to as two layer CNNs, where after
executing the above, we then redefine

Cihar := MaXoy (conv(ReLU(Cehar)))s Qehar := MaXsow(conv(ReLU(Qupar)))

Additionally, we also construct such a two layer CNN with a tanh non-linearity rather than a ReLU.

In practice we set f = 100 and k¥ = 5 and use pre-trained character embeddings with from an
open source repository and initialized them as a trainable variable [7]. We then additionally ran
a model where we trained our own character embeddings with d.j4- = 300 (to mimic the pre-
trained embeddings) using a ReLU double layer CNN. All perform relatively similarly, although the
traditional one-layer CNN reaches peak performance with less training time.

4.4 Starting, Stopping, and Ensembling

From Figure 3, we see that over 90% of the questions have answers with less than or equal to 10
words. Thus in effort to have our output further mimic the structure of the data, instead outputting
a start point 7 and end point j where ¢ = arg max;,, p,(cl) and j = argmax; p,(f), we collectively
find the pair 7, j such that ¢, j = argmax pgl)pf). This both prevents our stopping point from
i,§:i<j<i+10

being before our ending point, and allows us to ensure that the start and end are within 10 words
of one another. As an experiment we changed the range limit of our answer from 10 to 100, and
although we did not see as large of an increase in score as with the range limitation set at 10, we still
saw a non-trivial rise. This is an indication that the score rises not just due to length restriction, but
also due to the decision to take the product of the two softmax probabilities and thus examine the
start and end position collectively rather than individually. After training a variety of models in the
fashion indicated above, we ensemble 10 BiDAF models with CNNs together using majority voting,
6 of which are double layer CNNs with ReLL.U and pre-trained character embeddings, 3 of which are
single layer CNNs with pre-trained character embeddings, and one of which is double layer CNN
with ReLU which trains its own character embedding. This gives us a final dev F1 score of 77.85
and dev EM score of 68.39.



5 Error and Attention Analysis
5.1 General Statistics

Table 1: Results of bi-attention models on dev set. Each Table 2: Performance of a single BiDAF (with CNN
subsequent model includes the modifications of the one 1ayer) on varying question types in the dev set.
before it.

[ Question Type F1(%) EM(%)

When 85.64 79.63
Model F1(%) EM(%) | | who 78.03 71.02
BiDAF (ensemble) 77.84 68.39 Which 76.90 66.13
BiDAF (new span) 76.10 66.23 How 75.93 66.01
BiDAF (with CNN) 73.53 63.76 Where 73.75 63.43
BiDAF (no CNN) 69.37 58.11 What 7452 61.81
Baseline 4422 35.07 Why 65.64 41.77

Table 1 from above displays the added benefit of F1 and EM score from each tweak and modification
made to our original model. We clearly see that, in general, the BIDAF model is an effective change
as it clearly outperforms our baseline. Table 2 displays a single BIDAF’s performance on different
types of questions, categorizing questions by chosen question word. The performance between
questions is fairly similar, excluding “why” and “when”. We find this to be the case as “why”
questions tend to have longer answers (Figure 8). “When” questions, which are answered correctly
with the highest accuracy, on the other hand, have many short answers (Figure 9). Naturally, the
model tends to struggle with long answers, partially because questions with long answers are more
complex, but also because of reasons further discussed in the following subsection.
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Figure 9: Length of answers to where questions in
train and dev sets. All other answer length distri-
butions for questions words are similar to that of
“where”, although “where” has the slimmest tail.

Figure 8: Length of answers to why questions in the
train and dev set. Why is the only question word that
doesn’t have a slim tail for its higher lengths.

5.2 Error Analysis: Ambiguity and Improper Answer Spans

Many times, our answer will contain a understandable and correct subset of the true answer, but may
contain additional other words or exclude some words from the true answer. We provide an example
below, where the EM score and F1 score are penalized due to the prediction’s slight differences
with true answers, although the predicted answer definitely encapsulates the important necessary
information. One can argue, however, that the true answers are more clear. Seeing as the model is
already focusing on the proper key words, it is tough to fine-tune the model further and doing so
may not result in a huge rise in accuracy. Potential solutions we propose for future work are having
the model learn a minimum answer length from the question, thus forcing predictions which are
small strict subsets of true answers to be extended, and having the model add in question words to
the prediction should they be adjacent to the prediction. The latter will potentially help the model
restate the question, a trait that is commonly found in clear true answers.

Context. hormones can act as immunomodulators , altering the sensitivity of the immune system
. for example , female sex hormones are known immunostimulators of both adaptive and innate
immune responses . some autoimmune diseases such as lupus erythematosus strike women prefer-
entially...

Question. female sex hormones are immunostimulators of which immune responses ?
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True Answers. [“adaptive and innate immune responses”, “both adaptive and innate”, “adaptive
and innate immune responses’]

Predicted Answer. adaptive and innate

In certain cases, the improper span actually causes the model to output an answer that misses valu-
able information.

Context. eu competition law has its origins in the european coal and steel community ( ecsc )
agreement between france , italy , belgium , the netherlands , luxembourg and germany in 1951
following the second world war . the agreement aimed ...

Question. which countries were the european coal and steel community agreement between ?

True Answers. [“france , italy , belgium , the netherlands , luxembourg and germany”, “france , italy
, belgium , the netherlands , luxembourg and germany”, “france , italy , belgium , the netherlands ,
luxembourg and germany”’]

Predicted Answer. france , italy , belgium

5.3 Error Analysis: Miss-Attention
At times, present examples where our model incorrectly answers the question as it pays attention to
improper parts of the context due to the words used in the question. We give an example below.

Context. in 1854 at ballarat there was an armed rebellion against the government of victoria by
miners protesting against mining taxes ( the “eureka stockade” ) . this was crushed by british troops
, but the discontents prompted ...

Question. what armed group stopped the uprising at ballarat ?
True Answers. [“british troops”, “british troops”, “british”’]
Predicted Answer. miners

Due to the nature of similarity encoding, the model heavily weighted “ballarat” and “armed” and
thus picked an actor that was close to said words. To show this we present a heat-map of the
similarity matrix (Figure 10). The clear correct answer “british troops”, displays a key flaw in
attention’s ability to truly comprehend a passage. In this case, the attention model is unable to parse
meaning and rather focuses on finding an appropriate word around high-attention buzz-words.

Heatmap of Similarity
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Figure 10: A heat-map of the similarity matrix for the above example. Note the two particular hot spots at (2,
8) and (4, 2), which correspond exactly to repeated words in the question and context. In general, we see hotter
similarity close to where “miners” appears in the context than where “british troops” appears.

5.4 Error Analysis: Syntactic Ambiguities

One uncommon kind of error is when the model finds an answer that is technically true, but not
likely what a human would use to answer the question. We give an example below.



Context. highly concentrated sources of oxygen promote rapid combustion . fire and explosion
hazards exist when concentrated oxidants and fuels are brought into close proximity ; an ignition
event , such as heat or a spark , is needed to trigger combustion . oxygen is the oxidant , not the fuel
, but nevertheless the source of most of the chemical energy released in combustion . combustion
hazards also apply to compounds of oxygen with a high oxidative potential , such as peroxides ,
chlorates , nitrates , perchlorates , and dichromates because they can donate oxygen to a fire .

Question. peroxides , nitrates and dichromates are examples of what type of compounds ?

LEINT3

True Answers. [“compounds of oxygen with a high oxidative”, “compounds of oxygen with a high
oxidative potential”, “compounds of oxygen with a high oxidative potential”’]

Predicted Answer. combustion hazards

6 Conclusion and Future Work

We find that complex attention has lead to vast improvements relating to QA and MC tasks, but
the ideas behind attention, although intuitive, perhaps have not yet been expressed in their optimal
mathematical format. In general, we find that different varieties of complex attention tend to be
built in differing frameworks, presenting some ambiguity regarding how well the attention layer
is performing its intended job vs. benefiting the model in other undocumented capacities. This is
evidenced to some degree by our results on self and co-attention in the BiDAF framework, where
the self and co-attention layers fail to fit the train data as well as bi-attention when placed in a frame-
work catered to bi-attention. Yet, such layers perform similarly to BIDAF when implemented with a
different model structure. Given more time we would like to continue running our co-attention and
self-attention models to see how they compare to BiDAF in the long run. Interesting future work
could involve developing a model structure in which the layers perform with a similarly high ac-
curacy, or combining such attention layers either internally in the model or externally by ensembling.

In maximizing score outputs of our BiDAF ensemble, we find that character level word embed-
dings, methods for determining optimizing our answer span, and ensembling are all very effective.
The ensemble model performs at an impressive level, and displays attention’s ability to effectively
recognize important parts of the context when given a question. We do see, however, that the model
operates by focusing on key-words and discerning acceptable answers around them, and thus at
times fails to address the MC task at a high level. Moving forward we believe it is important to
construct models with specific layers that focus more directly on capturing the meaning of phrases
in the context and question, rather than largely basing predictions only off of similarity measures
between important words.
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