Exploring Attention Mechanisms for Reading
Comprehension

Noah Makow
Department of Computer Science
Stanford University
Stanford, CA 94301
nmakow@stanford.edu

Abstract

Reading comprehension has long enticed the natural language processing com-
munity as a task that requires a deep understanding of the text at hand. In this pa-
per we explore several recent developments in reading comprehension, focusing
on varying attention mechanisms. We observe that while these attention mecha-
nisms can greatly boost performance in themselves, we see that they are not the
only improvements required to approach human-level performance on the SQuAD
dataset. We conclude that future work on reading comprehension should consider
both implementing novel attention mechanisms as well as new ways to combine
distinct extensions into new, high-performing hybrid architectures.

1 Introduction

Reading comprehension has long enticed the natural language processing community as a task that
requires a deep understanding of the text at hand. In order to answer questions, one must derive a
representation (or “understanding”) of both the question and relevant passage, and then be able to
relate the two pieces of text to one another to extract an answer. As a more complex task than simple
sequence to sequence generation, reading comprehension systems are built from the same building
blocks but require more specialized techniques and architectures to perform well. The publication
of the Stanford Question Answering Dataset (SQuAD) [4] in 2016 opened the gates, welcoming a
wealth of research into designing more complex neural architectures specialized to accomplish this
task.

To define the reading comprehension task formally, we are presented with a context (passage) and a
question. The answer to the question is represented as a span (or substring) from the context.

In this paper we explore several recent developments in reading comprehension, focusing on varying
attention mechanisms. In particular, we investigate self-attention [2] and bidirectional attention
flow [5], comparing the two methods and inspecting their results. We also explore a number of
architectural designs and hyperparameter settings and report performance.

2 Background & Related Work

The Stanford Question Answering Dataset (SQuAD) is a recently presented reading comprehension
dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles. The
answer to each question is a segment of text from the original passage. The SQuAD dataset serves
as a large, realistic dataset that has driven research into the task of reading comprehension, or the
ability to read texts and then answer questions about it. Simple baselines achieve in the range of
50-60% F1 score, while humans are able to achieve a much higher F1 score of 86.8%. [4]

The SQuAD dataset has inspired a wealth of research on developing various neural architectures to
solve the reading comprehension task. Central towards this task are deep recurrent neural networks
incorporating various forms of attention. Recent work has explored different types of attention to be
used at different stages in the reading comprehension pipeline. Three of these ideas explored in this
paper include bidirectional attention flow, self-attention, and answer pointer networks.

Bidirectional attention flow (BiDAF) extends basic attention mechanisms that typically focus on
small portions of the context by introducing a bidirectional attention process by which both the
context and query can attend to one another. This bidirectional flow of attention enables query-
aware context representations. Coupled with other extensions, BiDAF still achieves state-of-the-art
results on the SQuUAD leaderboard. [5]

Self-attention is a concept introduced in Microsoft Research’s R-Net. The self-attention mecha-
nism attempts to refine the context representation by matching the passage against itself, effectively
encoding information from the entire passage. R-Net employs other techniques that are less the
focus of this paper such as gated attention-based recurrent networks. Finally, R-Net utilizes pointer
networks in the output layer which we discuss below. [2]

Pointer networks were first applied to the SQuAD task in Match-LSTM and Answer Pointer by
Wang et al. The core idea of pointer networks is to condition the probability distribution of the
answer’s end location on the answer’s start location probability distribution. The details of the model
are described further below. This output layer is used in most top performing SQuAD models. [6]

3 Approach

In this paper we implement several of the core components of a number of different state-of-the-art
SQuAD systems. The general structure of our architecture is described in five layers.

3.1 Embedding Layer

We implement both word-level and character-level embeddings. Word embeddings map each word
to a high-dimensional vector space. We use fixed pre-trained GloVe [3] word vectors to obtain a
fixed-size vector for each word. Character embeddings also map each word to a high-dimensional
space. Let {1,...,2n} and {y1,...yrr} represent the words in the input context and question,
respectively. We use convolutional neural networks to obtain character-level embeddings. [1] We
represent each character as a vector, the dimension of which can be considered as the input channels
to a one-dimensional CNN. The outputs are max-pooled elementwise over the number of filters to
obtain a fixed-size vector for each word.

For a sequence of word embeddings {ij), cis ,xSJJN)} € R! and corresponding character embed-

dings {:rgl), 45 ,ng)} € R¥, we concatenate the corresponding embeddings to result in the final
embeddings {[z%); 2V, ..., [#7; 28]} € RI+*. Note that we do not include character embed-

dings in all of the experiments conducted — see the results table for the details of each model.

3.2 Encoding Layer

For each SQuAD example (context, question, answer), the context is represented as the sequence
of embeddings {x1,...,zx} € R? and the question is represented as the sequence of embeddings
{y1,...,ynm} € R? These embeddings are fed into a shared 1-layer bidirectional GRU:

{c1,...,en} =bIGRU({x1,...,2N})

{@1,---qm} =biGRU({y1,...,ym})

The bidirectional GRU produces a sequence of states the same length as the input sequence, where
hidden states c;, q; € R2" are the concatenation of the forward and backward hidden state at timestep
1 for the context and question, respectively.

3.3 Attention Layer

After encoding the context and question as hidden states, the next step is the attention layer. We
use two alternative attention mechanisms mentioned above — bidirectional attention flow and self-

attention. At its core, this layer enables each context word to pay selective attention to each query
word, producing a set of query-aware feature vectors for each word in the context.

3.3.1 Bidirectional Attention Flow (BiDAF)

The central idea of bidirectional attention flow is that attention should flow both from the context
to the question and from the question to the context. [5] BiDAF serves as a substitute for a more
basic context to query attention model such as the one mentioned above. In the BiDAF layer, we
have context hidden states c;,...,cy € R?" and question hidden states ¢, ..., gy € R?". First
we compute the similarity matrix S € R™ ™ which contains the similarity score S;; for each pair

(ci, g5):
15
Sij = WgnlGi; gj5ci0¢;) €R
The first step is context-to-question attention:
o; = softmax(S;.) € RM

5

M
a; = Za;qj e R?"
i=1

Then we perform question-to-context attention:
m; = max Sl'j eR
J

3 = softmax(m) € RY
N
d = Zﬂlcz S R2h
i=1
The final output for each context location i is b; = [c;; a;;¢; 0 a;;c; 0 '] € R3™.

3.3.2 Self-Attention

Suppose we have some sequence of representations vy, ...,vxy € R’ with v; corresponding to
context location . Each v; attends to all the {vy,...,vn}:

e;'. = v tanh(Wyv; + Wav;) € R

o' = softmax(e’) € RN

N
i_ i ¢
a —E ajv; €R
Jj=1

Note that W1, W5, and v are trainable weight tensors. We then concatenate the self attention output
a; to v; and pass these as input into a bidirectional GRU to obtain a new set of hidden states:

{h1,...,hn} = biGRU({[v1; a1],. .., [vN;an]})

The representations {h1,...,hx} are the output of the self-attention layer. This layer is inserted
after the basic or bidirectional attention layer.

3.4 Modeling Layer

The modeling layer is borrowed from the BiDAF model, and in our experiments is only used in con-
junction with the BiDAF layer. The input to the modeling layer is the query-aware representations of
the context words from the attention layer. The output of the modeling layer captures the interaction
among context words conditioned on the query. We use a bidirectional GRU and pass the output to
the output layer.

3.5 Output Layer

A basic output layer simply takes the softmax over each position in the context, producing a proba-
bility distribution for both the start and end positions (which we denote g and peng. Note that for
the actual prediction we limit the argmax such that the end position must be greater than the start
position and within 20 positions.

3.5.1 Pointer Networks

In a number our experiments we use the more complex answer pointer network as our output layer.
[6] The answer pointer is an RNN run for exactly two timesteps. On the first timestep, the answer
pointer attends to k7, ..., h}y (the representations for each context location), producing an attention
distribution 8, € RY and an attention output a, € R’. We use 3, as pyar. We then feed the attention
output a, as input to the second step and use the RNN hidden state to attend to h7, . .. h’y, producing
an attention distribution B, € RY which we use as Pend-

4 Experiments

4.1 Dataset

Towards our task of reading comprehension, we make use of the Stanford Question Answering
Dataset (SQuAD) [4]. The SQuAD dataset consists of questions posed by crowdworkers on a set
of Wikipedia articles, where the answer to every question is a segment of text, or span, from the
corresponding article. SQuAD contains 107,785 question-answer pairs on 536 articles.

In the sections that follow, we summarize the SQuAD dataset with a number of statistics collected in
experiments detailed in the supplementary materials attached with this report. We provide Jupyter
notebooks for extracting and visualizing these statistics in the notebooks/ directory of our repos-
itory in our Supplementary Materials.

4.1.1 Question, Context, and Answer Lengths

First we inspect the distributions of question, context, and answer span lengths. We notice that the
vast majority of context are under length 400 and all questions are under length 30. For certain model
extensions the context length becomes an import factor in terms of memory usage, and limiting this
value to 400 helps to keep memory usage low while sacrificing little performance.

Next, we visualize the distributions of start, end and answer positions. Most start and end positions
fall within the first 250 tokens of the context, and the majority of answer spans are under length
20. The first observation confirms our idea that we can limit the context length without eliminating
many of true answer spans. The second observation is used in our output layer when predicting the
end position. Instead of taking the argmax over the entire context, we take it over only the 20 tokens
that follow the predicted start position.

4.1.2 Character-Level Statistics

Character embeddings are a useful addition to our model. In order to build effective embeddings,
it is necessary to understand the set of characters that are most commonly used in the dataset as
well as the distribution of the lengths of words. We observe that most words contain less than 15
characters. Further, we select the set of top 50 most common characters as the vocabulary of our
character embeddings.

4.2 Model Details

Unless otherwise specified, we use single-layer bidirectional GRUs as our choice of recurrent neural
network cell in all layers. We choose GRUs for increased computational efficiency with comparable
performance to LSTMs. We use the Adam optimizer beginning at a learning rate of 0.001. We
constrain the predicted end position to be within 20 tokens of the predicted start position. We begin
with a simple baseline architecture consisting of a word embedding layer, an encoding layer, a basic
context-to-query attention layer, and a simple softmax output layer for the start and end position
prediction. We use dropout in between layers with dropout probabilities ranging from 0.15 to 0.25.
In the results section below, we replace or add only the particular features mentioned to this baseline
model.

Model Dev F1 | Dev EM | Train F1 | Train EM
Baseline 43.4 34.3 54.3 64.5
Self/CE 62.0 47.2 73.7 60.3
Self/Pointer/CE 57.5 42.1 60.9 45.3

| BIDAF/Model/CE ~ ~ |~ 723 | 614 | 788 | 656 |
BiDAF/Model/CE (deep) 74.8 64.2 77.9 62.5

Figure 1: Summary of F1 and EM scores for top performing models. Each model contains only the
mentioned extensions in addition to our baseline. Note that the deep BIDAF/Model/CE has the same
components as the shallow version, but with an extra bidirectional RNN layer in the encoding and
modeling layers.

4.3 Evaluation

We use two quantitative evaluation metrics to measure the performance of our model: exact match
(EM) and F1 score. EM is a binary measure of whether the model output exactly matches the
ground truth. F1 is a less strict metric — the harmonic mean of precision and recall of the tokens
in the predicted answer and ground truth. Since the SQuAD dataset has three human-provided
answers for each question, the official evaluation metrics take the maximum F1 and EM scores
across the human-provided answers. The final EM and F1 scores are the average scores over the
entire evaluation dataset.

4.4 Results
4.4.1 Quantitative Results Summary

In Figure 1, we present the performance on train, dev, and test splits of our top performing mod-
els. We are able to achieve the best performance with a BIDAF model that contained a modeling
layer and character embeddings with a dev F1 score of 74.8 and dev EM score of 64.2. Note that
these results should not suggest that BIDAF strictly outperforms self-attention — rather, self-attention
may require other extensions described from the R-Net paper (such as the gated RNN) to achieve
comparable performance.

Figure 1 illustrates the clear impact of adding more complex neural attention mechanisms to a simple
baseline model. Compared to our baseline which includes a simple attention layer, self attention
and bidirectional attention flow each account for around a 20% increase in F1 score. Certainly,
further extensions are required to be on par with state-of-the-art SQUAD systems, however these
two examples of attention serve as a solid starting point and are actually the foundation of many
current systems.

4.4.2 Inspecting Attention Distributions

From our experiments, it is evident that complex attention mechanisms are the key for enabling
effective neural reading comprehension systems. These attention mechanisms allow for complex
interactions among the context words, question words, and between them (with mechanisms like
BiDAF). While obtaining state-of-the-art results will generally require implementing extensions out-
side of attention, the attention mechanisms remain as one of the foundational components and core
drivers of strong performance.

Attention also has the side-effect of capturing useful linguistic mechanisms without explicitly mod-
eling them. In Figure 2 we analyze the context-to-question output of the BiDAF layer in our top-
performing model. Interestingly, the attention mechanism seems to perform automatic coreference
resolution between the context and the question. These types of unintended side-effects highlight
the immense representative ability that attention mechanisms provide.

4.4.3 Common Pitfalls

Before concluding, we highlight a number of common pitfalls our models fall into. While there are
many ways to categorize such errors, we highlight three common cases that appeared repeatedly

QUESTION: on what streets is the abc headquarters located?
Context word | ... the network is headquartered on
Most attended query word | ... the abc is headquarters on

Figure 2: An illustration of the context-to-query attention mechanism. For each word in the context,
we visualize the most-attended query word. We notice that there seems to be automatic coreference
resolution between nouns in the context and those in the query — for example, our model correctly
identifies that “the network™ refers to “ABC”.

throughout our experiments. We should note, of course, that these categories are not exhaustive and
cover only a small, readily-interpretable subset of the errors encountered by our model.

4.4.4 External Knowledge

Occasionally, certain questions posed in the SQuAD dataset refer to or require external knowledge
that is not presented within the context passage. As our model is limited in its knowledge repre-
sentation to the context and questions fed to it as training data, it struggles to extrapolate or derive
logical conclusions and/or understandings without directly training on that information.

For example, consider the question “which architect, famous for designing London’s St. Paul Cathe-
dral, is represented in the Riba Collection?” The context passage contains a list of artists in the Riba
Collection without mentioning their other accomplishments. As a result, our model picks a random
name rather than the correct one. Again, unless the fact that the architect designed London’s St.
Paul Cathedral was explicitly contained in our training data, it would be very difficult for our model
to successfully reason about this.

4.4.5 Token-Level Logical Reasoning

Some questions are difficult in the sense that they require higher level (“meta”-level) reasoning about
the context or tokens in the context. Consider the following question: “what is the only district in
the cbd to not have ‘downtown’ in it’s name?” Our model fails to answer this question as it is unable
to reason about which locations have “downtown’ in their name and which do not. As a result,
our model reverts to what is likely the most represented location found in the context, Southern
California, rather than the true answer. These types of questions prove tricky as the answer is not
fully contained in the text itself but requires some level of reasoning regarding the text.

4.4.6 Phrase-Boundary Ambiguities

Our model struggles in certain cases when it is ambiguous where a phrase truly ends. For example,
consider the question “what can orthogonal forces be when there are three components with two at
right angles to each other?” with the true answer of “three-dimensional”. Our model outputs “three-
dimensional with the third component being at right-angles”. That is, our model runs on past the
end of the phrase, despite the answer that it output being one coherent phrase in itself. The model
struggles to determine when the phrase that is being asked for actually ends, as it continues naturally
in the context.

For another example of this effect, consider the question: “what happened to the apollo program in
for the rest of 1970 after the incident regarding apollo 13?”. The correct response is “grounded”, but
our model answers “grounded again”, adding an extra word.

Note that these mistakes do not suggest that the model is incredibly far off from the correct answer,
however they do penalize performance in terms of F1 and EM. We should note that some of these
phrase ambiguities may exist even among the human annotaters. As a result, this problem may be
less significant when we take the max F1/EM score over all three human-provided answers.

5 Conclusion

Great progress has been made towards building automated reading comprehension systems. In
this paper, we have reviewed some of the fundamental neural components — particularly, attention

mechanisms — that have enabled great improvements in performance on this task. Such attention
mechanisms can allow the model to represent complex interactions between the context and query
words and among themselves. Future work in this space will include developing novel attention
mechanisms, such as the recently introduced dynamic coattention. [7] While these attention mecha-
nisms can greatly boost performance in themselves, we see that they are not the only improvements
required to approach human-level performance on the SQuAD dataset. The highest performing
SQuAD models today use a combination of approaches from BiDAF, R-Net, and many other high-
performing models, such as novel RNN structures, deeper hidden layers, feature engineering, and
model ensembling. Future work should look at the benefits and pitfalls of each of these extensions
independently and consider novel ways to combine them into new, high-performing hybrid architec-
tures.

References

[1] Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

[2] Natural Language Computing Group, Microsoft Research Asia (2017). R-Net: Machine Reading Compre-
hension with Self-Matching Networks.

[3] Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-
1543).

[4] Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine compre-
hension of text. arXiv preprint arXiv:1606.05250.

[5] Seo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2016). Bidirectional attention flow for machine
comprehension. arXiv preprint arXiv:1611.01603.

[6] Wang, S., & Jiang, J. (2016). Machine comprehension using match-Istm and answer pointer. arXiv preprint
arXiv:1608.07905.

[7] Xiong, C., Zhong, V., & Socher, R. (2016). Dynamic coattention networks for question answering. arXiv
preprint arXiv:1611.01604.

