Solving Math Word Problems

Ryan Wong
Department of Electrical Engineering
Stanford University
Palo Alto, CA 94305
rawong @ stanford.edu

Abstract

This project focused on the development of a deep natural language
processing (NLP) model that can solve a broad range of math problems
posed in text by predicting an appropriate set of equations, from which the
correct answer can be derived. An attention-based sequence to sequence
(seq2seq) model was the best performing model, exhibiting test accuracy of
12.8% (correct numerical answers) and BLEU of 48.10 (equations
predicted) on the Dolphinl8k dataset. Despite its relatively low accuracy,
the model learnt mathematical syntax reasonably well, with 80.5% of
predicted equations being syntactically correct. Character-level
representation of numbers (vs. word level) and dataset augmentation were
key contributing factors to improving performance.

1 Introduction

Math word problems form a natural abstraction to a range of quantitative reasoning skills
that are often required of an autonomous agent to behave intelligently, such as understanding
financial news, calculating change in everyday transactions, and analyzing productivity in an
organization. Solving such problems remains a key challenge for artificial intelligence (AI)
today, as they involve recognizing how goals, entities and quantities in the real-world map
into a mathematical formalization.

2 Related Work

Given dataset limitations, the majority of precedent research have applied statistical learning
approaches with manual to semi-manually-picked features [1, 2, 3] and rule-based semantic
parsers [4]. However, despite some progress, Huang et al. [5] demonstrated that the
performance of such techniques is still quite low on larger datasets with a greater diversity
of problems.

Google DeepMind [6] recently trained an attention-based sequence to sequence (seq2seq)
model that was able to achieve 36% accuracy on four-way multiple choice word problems
and also provide an accompanying answer rationale.

Tencent Al [7] recently demonstrated promising results using a hybrid sequence to sequence
recurrent neural network (RNN) trained on a dataset of ~20,000 Chinese word problems that
achieved ~65% accuracy, outperforming other state of the art statistical learning methods,
such as ZDC in [3]. However, this was restricted to single unknown, linear problems.

Inspired by the promising results of Google and Tencent Al, this project aimed at developing
a seq2seq model that can solve a broader range of math word problems (not just single
unknown, linear problems) using the relatively new Dolphinl8k dataset [5].

3 Problem formulation

A math word problem P is a sequence of words (question text) that describe a problem to be
solved using mathematical reasoning (refer to Table 1 below). Given P, the model’s sole
objective is to generate a sequence of mathematical tokens (numbers and operators) that
represent an appropriate set of equations E (the “Problem”), from which the correct
numerical answer/s A can be derived using a third-party solver package. i.e. the model’s goal
is to accurately map P to E. This project adopted the popular Python library, Sympy [8] as
the third-party solver package.

Table 1: Example maths word problem

Problem (P) Find 2 numbers whose sum and product are 11.
: x+y=11
Equations (E) x*y=11
Answer (A4) x=1.113; y=9.887
4 Dataset and preprocessing

4.1 Dolphinl18k dataset

The Dolphinl8k dataset [5], prepared by Microsoft Research, contains 18,460 math
problems extracted from Yahoo Answers!. The dataset contains a broad range of single-to-
multi-unknown linear and non-linear word problems of elementary to high school difficulty.

Using Dolphinl8k, I selected 13,273 examples that had gold standard equations and were
able to be parsed by Sympy. The dataset was then split into three parts: training set (10,591
examples), development set (1,486 examples) and a test set (1,196 examples). The median
question text length was 31 words, with the majority of problems containing one or two-
unknowns (~85%). Figures 1 and 2 below illustrate the dataset statistics.

400 8000

350

300 6000
% 250
=

3
$ 200
3

IS
S
3
5]

Frequency (#)

3
2 150
w

100 2000
50

0
CMOWWOVOVOVONONOVONOWOI - ©r- © AWM
FrlAOOTIOODOORNOIOSPO O~ N NoToR 1 2 3 4 5 6 7 8 9

Number of words per problem Number of unknowns per problem

Figure 1: Histogram of question text length Figure 2: Histogram of no. of unknowns

4.2 Pre-processing

Question text and gold standard equations were first pre-processed prior to training,
validation and testing.

All numerical quantities in question text and equations were converted to numbers and
rounded to three decimal places. This was performed to standardize numerical
representation, thereby reducing overall vocabulary size and encouraging the model to learn
shared embedding representations. For the character-level seq2seq models (refer to 5.2 and
6.3.2), number representations were at the character level (vs. word level) and terminated
with a special number end token (<N_END>).

All equations were converted to Polish notation to reduce operator ambiguity and make
Sympy parsing of predicted equations easier. In addition, answer variables (primary
unknowns) were relabeled as u_0, u_1, ..., u_i. All other auxiliary unknowns were relabeled
as x_0, x_1, ..., x_j. Special stop tokens were inserted at the end of each equation as a
delimiter (<KEQN_END>).

5 Models

Two model architectures were explored: a simple similarity model as a baseline and seq2seq.
Multiple variants of the latter were investigated to optimize performance.

5.1 Similarity model

I implemented a similarity model akin to the one in [5] as a baseline. The model computes
the solution to a math word problem (“query”) using the set of equations (“equation
template”) of the most similar question in the training set. More specifically:

1. Based on a bag of words (BoW) featurization of question text, it computes the pair-
wise distance between the query and every example in the training set;

2. retrieves the equation template of the question (in the training set) that has the
smallest distance (i.e. most similar to the query);

extracts the significant numbers from the query question text; and then

4. substitutes these significant numbers into the equation template identified in step 2.

5.2 Seq2seq model

Figure 3 below shows the base architecture of the two-layer attention-based seq2seq model
used in this project. The sequence of question text words are first converted to word
embeddings prior to input into the encoder network. Based on the encoder’s hidden states
and the attention mechanism, the decoder network then predicts the appropriate sequence of
mathematical symbols representing a set of equations. LSTM units were used given their
robustness to vanishing / exploding gradient issues and the improved scaled Luong method
was used as the attention mechanism.

Target equations

<Add> (u0 ofs>
N
T T T Projection
L arention mechanism e F e
> > > > 5 \ i R ,
A ! ! | f | | 1 LSTMs
> > > » » N i\ R ,
A A R
T T T T T Embedding
I ! f 1 T T 1 i layer

Find 2 numbers 11 <s> <Add> ()

Question text
Figure 3: Seq2seq base architecture

The Tensorflow Neural Machine Translation tutorial codebase [9] was used as a foundation
for development and training of the seq2seq models.

The loss function was set to the cross-entropy loss over the decoder outputs with respect to

the gold standard equations. Models were trained using the Adam optimizer with an initial
learning rate of 0.001 and batch size of 64 over 50-70 epochs. Adam was selected as its
adaptive learning rate minimizes the sensitivity to initial learning rate selection. Embeddings
were initialized using pretrained GloVe 100 dimensional word vectors [10] and also
optimized during the training process.

Inference was performed by feeding the model the sequence of question text tokens and
performing either greedy or beam search on the decoder to generate the predicted equations.

A wide range of seq2seq variants were investigated, including:

e Bidirectional encoder to improve representations of question text by allowing the
encoder to have forward and backward information at each step.

e Decoder vocabulary truncation to just the mathematical symbols required to generate
the equations (as opposed to the entire vocabulary).

e Character level model (vs. word level) whereby numbers are represented at the
character level rather than word level. This was to achieve a compact vocabulary that
can theoretically express any number. Word representation maintained at the word level.

e Dataset augmentation of the training set with permuted versions of each example.
Permutation involved changing a single number in the question text (and respective
position in equations) with a uniformly random number between -100 and 100. This was
explored to encourage the model to more effectively learn number mappings from
question text to equations and improve generalization to unseen numbers.

e Beam search for the decoder output (vs. the default greedy approach).

5.3 Evaluation metrics
The models were evaluated based on the following metrics:

e Accuracy: percentage of problems (out of 100%) that the model can generate the correct
final numerical solution. A solution was deemed to be correct if all quantities were
within +/- 10% of the gold standard answer/s.

e BLEU: the corpus-level BLEU score (out of 100) of the predicted equations relative to
the gold standard equations for n-grams of up to length 4.

Given the “all-or-nothing” nature of the accuracy metric, BLEU was chosen as an additional
metric to give a sense of how well the model is able to generate meaningful systems of
equations (despite potentially resulting in the incorrect numerical solution). In addition,
BLEU was used to save the best performing model during training given its ease of
computation, whilst accuracy was used for offline hyper-parameter and architecture tuning.

6 Results and discussion

6.1 Summary of results

Table 2 below summarizes the models’ performance on the training and test sets. The best
performing model was the character level seq2seq model with data augmentation and beam
search (model 10 highlighted bold in the table), exhibiting a test accuracy of 12.8% and test
BLEU of 48.10 for its predicted equations, almost tripling the performance of the baseline.

Figure 4 below illustrates the incremental improvements made to the vanilla seq2seq to
achieve the best performing model. The transition to a character-level model resulted in the
largest incremental improvement in test accuracy of +8.2%.

Overall, accuracy is relatively low reflecting the complexity of the Problem (infinite solution
space) and the “all-or-nothing” nature of the accuracy metric. However, it is interesting to
note the moderately high BLEU score — the model learnt mathematical syntax reasonably
well despite not getting the correct numerical answer.

Table 2: Summary of all models’ validation and test performance.

BLEU Accuracy (%)
Dev Test Dev Test
Baseline

1. Similarity model 15.10 16.21 4.24 4.35

Seq2seq models
2. Uni encoder 2 x 128 units (vanilla seq2seq) 35.97 36.40 1.14 1.17
3. Bi. encoder 2 x 128 units 38.02 40.26 1.48 2.17
4. Bi. encoder 2 x 256 units 40.81 40.61 3.90 3.18
5. Bi. encoder 2 x 512 units 39.15 39.96 2.56 2.42
6. Char. model 2 x 256 units 46.76 48.54 6.32 7.78
7. Char. model 2 x 512 units 48.56 48.50 9.35 10.62
8. Char. model 2 x 1,024 units 48.51 48.22 7.67 8.95
9. Char. model 2 x 512 units + data aug. 48.69 = 49.29 10.22 11.54

10. Char. model 2 x 512 units + data aug. + beam | 47.30 | 48.10 11.70 12.79

60.00
0.79 1.19
50.00 8.54 (1.19) 48.10
3.86 (0.30)
40.00 36.40
o
Y 30.00
om
20.00 16.21
10.00
0.00
Baseline: Vanilla Uni to Bi- 128to0 512 Word to char Data Greedy to Best
similarity model seg2seq encoder LSTM units model augmentation beam search seq2seq
(size 5)
Test accuracy (%) 4.35 1.17 +1.00 +0.25 +8.20 +0.92 +1.25 12.79

Figure 4: Bridge of test set performance from vanilla seq2seq to best performing model.

6.2

Baseline: similarity model

The baseline similarity model only achieved 4.35% test accuracy and test BLEU of 0.162.
The relatively poor performance is due to a number of reasons:

6.3

Rule-based: model relies on brittle, rule-based parsing of question text and equations.

BoW representation: features cannot capture any sense of ordering, which is important
in maths problems. e.g. “one divided by two” # “two divided by one”

Disjoint optimization: model not optimized end-to-end in a data driven manner. e.g. the
question text parser and significant number extractor were built independently and not
optimized jointly.

Fixed set of equation templates: model restricted to the set of equation templates in the
training set. Hence, it does not generalize well to unseen problems.

Seq2seq model

The seq2seq model materially improved test accuracy to 12.8% by overcoming a number of
these baseline limitations — optimization was performed in an end-to-end manner without
relying on feature engineering or a fixed set of equation templates. Sections 6.3.1 to 6.3.5
detail the key seq2seq improvements and observations.

6.3.1 Bidirectional encoder and decoder vocabulary truncation

A bidirectional encoder (instead of unidirectional) with truncation of decoder vocabulary (to
just mathematical symbols) improved test accuracy by ~1.0% and test BLEU by ~3.86.

Bidirectionality improved performance as it enabled the model to learn better representations
for question text based on past as well as future context. This intuitively makes sense as we
(as humans) typically must read the entire question text, taking into account both words
before and after numerical quantities to determine an appropriate mapping into equations.

Truncation of the decoder vocabulary to just the mathematical symbols improved
performance by compressing the vocabulary from 9,061 to 1,376. Thus reducing the output
space and eliminating redundant parameter weights (i.e. weights for non-mathematical
symbols, such as entity names, that would never be generated by the decoder).

6.3.2 Character-level model

However, when analyzing the word-level model, ~17% of predicted equations were incorrect
simply due to the presence of one or more unknown tokens due to the limited decoder
vocabulary (refer to Table 3 below). Encoding numbers at the word-level is problematic
given the continuous (and hence infinite) space of possible numbers.

Table 3: Test set performance of word-level and character-level models

Char. Char.

Word Char. " model with

1 model medel with aug. and

(1\14%(:1(1? 5) (Model 7) ave. bgeam

(Model 9) | \jodel 10)
Syntactically correct eqns. (%) 91.8% 70.2% 70.0% 80.5%

Equations with unknowns (%) 17.2% - - -

BLEU 39.96 48.50 49.29 48.10
Accuracy (%) 2.42 10.62 11.54 12.79

Hence, a character-level model was investigated, whereby numbers are encoded at the
character level (rather than word level) — enabling the model to express any number using a
compact, discrete vocabulary. Representation of words were maintained at the word-level.
This reduced the decoder vocabulary size from 1,376 to just 41 symbols and resulted in a
material improvement in test accuracy of 8.2% and test BLEU of 8.54.

However, the character-level model proved to be a “double-edged sword”. While eliminating
the unknown token issue, the percentage of syntactically correct equations dropped from
~92% to ~70%. This reduction is likely due to the greater freedom afforded by the character-
level model and its weaker notion of a complete number as a whole (since they are now
represented as a series of characters).

6.3.2 Dataset augmentation

The training set was increased from 10,591 to 45,371 by performing dataset augmentation
(as described in section 5.2) with a target of four permutations per example. Training on the
augmented dataset improved test accuracy by 0.92% and test BLEU by 0.79. This technique
was inspired by the analogue of data augmentation in computer vision, where a variety of
transformations are often performed to the original images, such as rotation, scaling and
cropping, to improve model robustness. The observed performance uplift suggests that the
simple dataset augmentation employed here also increased model generalization.

6.3.3 Optimization of hyper-parameters

Beam search (with a beam size of 5) improved validation set accuracy from 10.22% (greedy)
to 11.70% (refer to Figure 5). It also materially improved the percentage of syntactically
correct equations from 70.0% to 80.5% (refer to Table 3 above). A beam size of 5 was
selected given the immaterial improvement observed for larger beam sizes. Beam search
improved performance by adopting a longer-term view to generating output (rather than the
myopic greedy view of taking the most likely prediction at each step).

The number of LSTM units was selected to be 512 (refer to Figure 5 below). Reduced
validation set performance was observed for more units, suggesting overfitting.

1200 1000 v
1157 11.70 s 11.70
11.50

11.00 6.32

10.50 10.22

10.00

Validation accuracy (%)
Validation accuracy (%)

o,
o
a

©
=)
a
o
=1
a

Greedy beamsize 3 | beamsize5 | beam size 10 2 x 256 units E 2x 512 units E 2 x 1024 units
_____________ | R

Figure 5: Val. accuracy vs. beam size Figure 6: Val. accuracy vs. number of units

6.3.4 Attention mechanism

The attention mechanism proved to be particularly helpful in mapping numerical quantities
in question text to equations by improving the model’s access to all locations within the
encoder sequence, thus mitigating the information bottleneck issue.

Figure 7 below shows attention heat maps for two example problems during inference using
the character-level seq2seq model. The question text (input) is along the left vertical axis,
while the predicted equations (output) are along the bottom horizontal axis. As you can see,
the regions of higher attention (denoted by the brighter colors) during generation of numbers
in the equations correspond to their respective location in the question text. e.g. in the left
chart, during the prediction of “180” in the equations, the model was attending the most to
“$180” in the question text.

adult
fickets
st

ms.
thelma
s wanted
<N_END>
Gollars Qve
children
tickets
st

3
<N_END>
dollars

they
sold

5

0

<N END>
tickets
otal

<N_END>
paycheck
or

0

2
<N_END>
o

each
check

how
vould
you
express
this
fraction
=

a
decimal
?

TATHA A AN

1

N_END>
w0

5

N

<Add>
Mul>
<_END>
Mul>

2
v 5
W

g
=

<N_END>

QN_EN;

Figure 7: Attention heat maps for two test examples.

6.3.5 Shared embedding space

The model learnt a semantic representation of the joint encoder-decoder embedding space.
Figure 8 below shows a visualization of the decoder embeddings learnt by the character-
level model (encoder embeddings excluded for clarity) using principal components analysis
(PCA). As you can see, the model learnt to map mathematical symbols into semantic groups
— operators (denoted in green) in the top right hand corner, digits (denoted in orange) in the
bottom right and unknowns (denoted in blue and red) predominantly in the bottom left.

Figure 8: Decoder embeddings visualization using PCA

7 Conclusion

A deep NLP model that can solve math word problems posed in text has been developed. An
attention-based seq2seq model achieved the best performance with test accuracy of 12.8%
and test BLEU of 48.10, materially outperforming a baseline similarity model (4.35% test
accuracy). Despite the relatively low accuracy, the model exhibited a strong sense of
mathematical syntax with ~80% of predicted equations syntactically correct. Character level
representation of numbers and dataset augmentation were key factors to improving
performance.

Potential areas for further work include exploration of techniques to improve mapping of
numerical quantities in question text to equations, such as different attention mechanisms,
neural network based significant number extractor, or Pointer networks.

References

[1] Hosseini, Mohammad Javad, et al. "Learning to solve arithmetic word problems with verb categorization." Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.

[2] Kushman, Nate, et al. "Learning to automatically solve algebra word problems." Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2014.

[3] Zhou, Lipu, Shuaixiang Dai, and Liwei Chen. "Learn to solve algebra word problems using quadratic programming."
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015.

[4] Shi, Shuming, et al. "Automatically solving number word problems by semantic parsing and reasoning." Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. 2015.

[S] Huang, Danqging, et al. "How well do computers solve math word problems? Large-scale Dataset construction and
evaluation." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Vol. 1. 2016.

[6] Ling, Wang, et al. "Program induction by rationale generation: Learning to solve and explain algebraic word problems."
arXiv preprint arXiv:1705.04146 (2017).

[71 Wang, Yan, Xiaojiang Liu, and Shuming Shi. "Deep Neural Solver for Math Word Problems." Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. 2017.

[8] Meurer A, Smith CP, Paprocki M, Certik O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayakﬁ
T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roucka S,

Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A. SymPy: symbolic computing in Python, Peer] Computer Science
3:e103 (2017)

[9] Minh-Thang Luong, Eugene Brevdo & Rui Zhao (2017). Neural Machine Translation (seq2seq) Tutorial.
https://github.com/tensorflow/nmt.

[10] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

