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Abstract

Question answering tasks have greatly benefited from improved datasets and ad-
vance techniques borrowed from similar fields, or developed to better encode con-
textual information. Many of these models, however, generally focus on a single
methodology, whereas combining multiple approaches often occurs while ensem-
bling trained models. In this paper we combine different methodologies by reap-
plying a generalization of representing and contextualizing words. This general-
ization allows us to combine different methods at varying contextual granularities
to exploit the benefits these methods.

1 Introduction

One of the primary tasks to natural language processing is teaching a computer to answer questions
given by a human in their native language. Such an achievement provides new ways humans can
interact with computers in their daily lives. Question answering (QA) has benefited throughout the
past few years from the development of advanced models, adapting techniques from similar fields,
and the creation of quality datasets, such as the Stanford question answering dataset (SQuAD) [8],
which we use to evaluate our model on. One such model that has become ubiquitous in QA is
attention [1], whereas models like convolution neural networks (CNN) [4, 5, 11, 10, 2] are borrowed
from computer vision. While all of these methods have their own merits, these networks often
heavily rely on a single methodology. One way to mitigate such a focused approach is to create
ensembles of models, however, these models are generally trained separately and consequently lack
the knowledge basis that comes from directly correlating the models while training. Such correlation
learning may benefit contextualizing words since we rely on word correlations to build our own
context and understanding.

Consequently, we propose a model that uses various methodologies simultaneously to exploit their
strengths and correlations to build different contextual representations. The choice of methods and
their order is intuited from a single generalization of a common NLP technique, which we will call
the generalized unit. This unit consists of two steps:

1. Create a representation of each word to encode its context and semantics (i.e. word vectors)

2. Contextualize these words in the given sentence (i.e. long short term memory (LSTM) [3]).

We focus on the optimal representations through multiple levels of generalization and the use of
various methods to exploit their correlation.

2 Related Work

In order to make computations based on linguistic systems we represent the language as a vector
space, where a word’s meaning is encoded in the vector’s coordinates. Global vectors for word



representation (GloVe), is the standard representation due to its high performance [7]. It is intuited
by assuming word-word co-occurrences encode a word’s meaning. GloVe uses the ratio of co-
occurrences to train the word vectors since the noise from non-discriminant words cancels out so that
ratios of words that correlate stand out, encoding meaning within the word vectors. The loss function
is derived using two primary assumptions. The first being that all word vector representations used
in the derivation should be the same, enforcing symmetry in the equation. The second being that
the word vector representation is linear. These assumptions result in a log-bilinear model with a
weighted least square loss function.

One of the attention models used to compute an attention representation is bi-directional attention
flow (BIDAF). BIDAF is a hierarchical multi-stage attention model that encodes contextual rep-
resentations of the paragraph with varying degrees of granularity at each stage of the model [9].
BIDAF creates a query-aware context layer by computing the attention for each time step. This
attention, along with the attended vector and representations from previous layers, are subsequently
sent through a modeling layer consisting of a bi-directional LSTMs in order to ”flow”. In our model
we use one of the six BIDAF layers in order to compute the query-aware attention that we use as a
basis of our attention representation.

The second attention model we use is the dynamic coattention network (DCN), which is an end-to-
end neural network for question answering tasks [12]. DCN consists of an encoder that correlates
between the question and the document. The encoder attends to the document and query simultane-
ously and combines them in the end. We use the coattention encoder as a second method to form an
attention representation.

Convolutional neural networks (CNN) are heavily used in computer vision and have become a staple
for image related machine learning techniques. CNN models have been shown to improve task-
specific word vectors [5], sentence modeling [4], semantic parsing [11], search query retrieval [10],
and various other NLP tasks [2]. Training a filter to correspond to a specific semantic entity (either
at the word or n-gram level) and convolving it with the sentence allow us to find the location of this
semantic entity within the sentence. This technique can be very useful when evaluating the SQUAD
dataset as we search for the start and end position of the answer within the document.

3 Approach

The fundamental ideas behind this network is to combine different methods and apply them within
our generalized unit. By stacking different methods we exploit their predictive strengths, whereas
by stacking generalized units we refine the context of each word and produce contextualized repre-
sentations with different granularity. The entire model can be seen in Figure 3, where each section
of the model is color coded. In the following paragraphs we provide an overview of the model. We
refer to “Relu activation” and “linear layer”, which are defined as

f(x) =Relu(Wx+b) and g(x)=Wx+b
respectively, where Relu is the rectified linear unit.

The network begins at the first step of the generalized unit by creating a word embedding layer in
which we map each word in our dictionary into a vector space using GloVe [7], called the “word-
representation”. We then execute the second step of the generalized unit with a bi-directional LSTM
to contextualize our word-representation. Although we can stack this exact unit again, we chose a
different route.

We again execute the first step of the generalized unit by forming a new representation, however,
in this step we form a representation specific to the document/query pair by using attention. In the
attention layer we transform our contextualized word-representation into an attention-representation
using the output of BIDAF and DCN. This shift in representation is a strong summarization method
since each word becomes a weighted summary of either the document or the query.

Next, we continue to give further context to each word in the attention-representation by stacking
a modified fully connected layer and a convolution layer. We choose these methods since they are
significantly different from what has previously been used and have been shown to produce quality
results in various fields. The reason we stack these methods is to correlate the learning between
these two methods and our attention methods. Stacking will exploit the advantages they bring to this
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Figure 1: The schematic of the complete neural network contains shows the information flow be-
tween layers and illustrates where information with varying degrees of context enter into each layer.

representation that is already built upon models that are well known to produce quality results. We
begin to contextualize the attention-representation by mixing the BIDAF and DCN results. Finally
we encode nearest neighbor context through a Relu activation layer. The convolution layers provide
further context to each word by mixing itself with its neighbors to search for specific semantic
meanings. The final contextualized attention-representation is the concatenation of two convolution
layers and the input attention layer.

Having completed the first step of the generalized unit by improving the attention-representation
through contextualizing it, we perform the second step: contextualize the attention-representation.
Therefore, we send the contextualized attention-representation through a LSTM in the attention
attention context layer. We use the final output states to find the answer to the query within the
document text, this is done by predicting the beginning and end word of the answer within the
document. In the following paragraphs we describe the details of each section.

3.1 Word embedding layer

The word embedding layer is responsible for building an £ dimensional linear representation of
words: the word-representation. This embedding is a pre-trained GloVe [7] representation trained
on 6 billion words from Wikipedia and Gigaword. As mentioned before, this is the first step of our
generalized unit.

3.2 Contextual embedding layer

Here we take the second step in the generalized unit by contextualizing the GloVe representation.
We create a 2H dimensional representation of each word in the document and query by encoding
contextual information with a bi-directional LSTM [3]. We combine the forward and backward
states to form the contextual embedding that we feed into the attention layers d7, qj € R2H



3.3 Attention representation

After completing the first iteration of the generalized unit by computing the contextualized the word-
representation we reapply the generalized unit by building the attention-representation. BIDAF
and DCN are the transformation methods we use to shift our representation into the attention-
representation. These models were chosen due to their success in addition to their differences.
In particular, BIDAF begins with a linear transformation of both d¢, q¢, and their inner product,
whereas DCN begins with a nonlinear transformation of d¢. Furthermore, BIDAF ends by fusing
together weighted summaries of the document and query, but DCN puts uses a bi-directional LSTM.
When trained simultaneously we expect these two models to contextualize words differently, result-
ing in a more diverse attention-representation. For example, we may find that BIDAF is better at
answer “what” and “where” questions, while DCN is better at answering “who” and “when”. The
resulting BIDAF and DCN attentions are each sent through single Relu activation, resulting in aZ? ¥

i
and aiDCN e RHE,

3.3.1 Gated attention

To encourage BIDAF and DCN to specialize in attending to different question types we introduce a
gate G € RV*2H  This gate controls which variables from BIDAF and DCN will be important for
the query (q°). Thus, the gate depends on the contextualized query (q°), as well as the BIDAF and
DCN attentions.

To compute the gate we first summarize the contextualized question by projecting onto learned
variables S € R *C_ The idea of S is to create G learned vectors to represent key query words we
want to attend to. We do not normalize the projections because we want to ignore the contribution
from non key query words, as they will not project strongly onto S. Our final question summary
(q®) is a sum of the learned key query words weighted by the unnormalized projections, followed
by a Relu activation layer and a linear layer.

The input into the gate computation is the question summary (q°), the BIDAF attention (aZPF")

and the DCN attention (aP“"). We compute the gate with a single Relu activation layer followed
by a single linear layer and a sigmoid activation. Once the gate is computed we compute the gated
attention-representation, A9 € RV*2H through an element wise multiplication between G and the
attentions [aPPF;aPON] € R?H Vi € N.
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3.4 Fully connected context

After transforming into the gated attention-representation we perform our first contextual layer to
further develop the attention-representation through contextualizing it. The objective of this layer
is to create a general context layer from which we can build more complicated representations on
top of. We firstly apply a Relu activation to the gated attention-representation (A9). This activation
layer does not change the representation’s size and does not mix representations of different words, it
instead allows us to mix the gated BIDAF and gated DCN attentions into a preferred representation,
which we call f/. To contextualize this mixed representation we first concatenate together each
word’s nearest neighbors with itself and send this through a single Relu activation layer.

¢ =Relu (W [f/_, & f] & f,,] + b**) € R3# (1)

This activation layer contextualizes the attention-representation by encoding each document word
with context information from its nearest neighbor.

3.5 Convolution context

We continue contextualizing the attention-representation by stacking two convolution layer on top
of the fully connected context layer to further. The first convolution layer uses H filters, each filter
spans five words, to perform a 1d convolution with a Relu activation at the end. This convolution
results in a representation (c} € RY*H) that encodes information from each word’s nearest and
next nearest neighbors. If we consider the context from the fully connected context layer, then
each filter contains information from seven words in total. The second convolution layer follows
the same procedure to produce c¢Z € RY*H but convolves over the output of the first convolution



layer. In this layer each filter contains information from 11 words. These convolutions produce H
entries corresponding to different semantic entities. By stacking these layers we further generalize
the semantics into broader categories which will help in deciding the start and end location of answer
within the document.

3.6 Contextual Attention

At this point we have finished the first step in the generalization unit by computing multiple represen-
tations: gated attention-representation, as well as contextualized attention-representations generated
through fully connected layers and convolution layers. These layers all offer a different contextual
representations of the document at various network depth and consequently provide different gran-
ularity of information. Furthermore, these representations are specific to the given document/query
pair. We naturally continue to the second step of the generalized unit, which is to contextualize this
representation using a LSTM.

To derive our final context layer, we feed the LSTM context attention-representations with differ-
ent contextual granularity in order to help the LSTM understand short and long range relationships.
Hence, the LSTM input is the concatenation of the gated attentions and the output of each con-
volution context layer. We chose to include the gated attention since this forms the basis of the
attention-representation, and to provide stronger gradient flow into the attention calculations. The
LSTM produces the output a¢ € R2# which we use to make our final prediction.

3.7 Prediction

Although the previous layers contextualize the words, such a representation is not necessarily opti-
mal for making our prediction. Therefore, before predicting the location of the start and end word
we send the output of the attention context layer through three Relu activation layers with a final
linear layer. These few layers are added to find a better representation to make the final prediction
in. We evaluate the prediction of the beginning and end word of the answer by applying softmax to
the output of the last linear layer.

3.8 Training

This model was trained to minimize the cross-entropy loss of predicting both the start and end
word. The parameters were updated using the Adam optimization method [6] and regularized using
dropout. We additionally applied gradient clipping at each training step in order to avoid exploding
gradients.

4 Experiments

To illustrate the strength of the generalized unit, as well as the effectiveness of stacking different
methods we evaluate three separate models, each at a different layer of generalization. These models
were trained and evaluated on the SQuAD dataset with a dropout probability of 15% and with the
following parameters: H = 200, G = 400, N = 600, M = 30, and an initial learning rate of 0.001.
We evaluate our model using the exact match (EM) score and the F1 score.

Dev Dataset Test Dataset

Model F1 EM F1 EM

Attention Only 56.438 | 45.582 | N/A N/A
Context Attention-Representation | 63.861 | 53.519 | 63.577 | 53.782
Full Model 70.922 | 60.274 | 71.5 | 61.576

4.1 Attention only

Our benchmark model makes predictions using the gated attention-representation without any fur-
ther context layers. The predictions are made by concatenating the gated attention (ay) with d$ and
sending this through two Relu activation layers and a final linear layer of sizes 21, H, and H. We
apply a softmax to the result of the final layer to predict the beginning and end word of the answer.



This model was trained for 15 epochs and received a F1 score of 56.4% and an EM score of 45.6%
on the development set. These numbers are quite low given state of the art models achieve F1 scores
around 89% and EM scores around 82%. Thus we can see that attention alone is not a sufficient
predictor alone.

Qualitative inspection of the results reveal four common errors. The most common error comes
from predicting the end word to be before the start word. This indicates that the model has a terrible
understanding of the document, in particular the spatial dependence of words. This is most likely
due to the lack of context in the attention-representation. The second most common mistake occurs
when part of the question should have been paraphrased in the answer, as shown below.

o QUESTION: relegation to secondary status for abc resulted in viewership how much lower
than their competitors , according to goldenson ?

o TRUE/PREDICTED ANSWER: five times lower viewership / five times

In many cases we see that the model’s dependence on the overlap of the query and document, which
causes the network to answer the query with a phrase that includes a key query words.

o QUESTION: which theory states that slow geological processes are still occurring today ,
and have occurred throughout earth ’s history ?

o TRUE/PREDICTED ANSWER: uniformitarianism / this theory

The final most common error is that the network has a vague understanding of the query and docu-
ment and gives an answer that may seem suitable, but is not correct, as shown below.

e QUESTION: besides the arguments with rome and his own fellow reformers , what scandal
contributed to luther ’s failing health ?

o TRUE/PREDICTED ANSWER: bigamy of the philip of hesse / kidney and bladder stones
, and arthritis

4.2 Context attention-representation

The second experiments predicts the answer based upon the context attention-representation. This
experiment reveals the information gain through contextualizing the attention-representation using
the fully connected layer and the convolution layer. After the convolution layer we concatenate the
results of both convolution layers with the gated attention results, which we would have fed into the
bi-direction LSTM. Instead, we send these representations through two Relu activation layers and
a single linear layer of sizes 4H, 2H, and H before we predict the beginning and end word using
softmax. This model was trained for roughly 10 epochs and received a F1 score of 63.9% and an EM
score of 53.5% on the development set as well as a F1 score of 63.6% and an EM score of 53.8%
on the test set. Adding these contextualizing layers resulted in a relative improvement of 13% for
the F1 score and 18% for the EM score. This indicates that the attention only model had a poor
representation of the context, and that further context can significantly improve our representation
of the words.

Qualitatively, the context attention-representation does a better job at finding the answers, however,
in many of its mistakes it is selecting a large swath of text that does include the answer. Furthermore,
the model still suffers from predicting the end word before the start word, as well as paraphrasing
the query in the answer.

o QUESTION: previous to isotopic dating sections of rocks had to be dated using fossils and
stratigraphic correlation relative to what ?

e TRUE/PREDICTED ANSWER: to one another / one another

As before, the model still suffers from selecting answer that are nearby or include a key query word,
such as in the example below.

e QUESTION: which theory states that slow geological processes are still occurring today ,
and have occurred throughout earth ’s history ?



e TRUE/PREDICTED ANSWER: uniformitarianism / this theory

Moreover, it still continues to make mistakes by selecting an answer that may seem sensible, but is
not the correct answer, indicating that the model did not fully understand the context in which its
answer and the true answer were given in.

e QUESTION: what division offers more then one branch of studies that don’t fit in with the
other four ?

o TRUE/PREDICTED ANSWER: the new collegiate division / biological sciences collegiate
division

4.3 Full model

The final experiment evaluates every layer in Section 3. The importance of this test is to validate
the final generalization that we can treat the context attention-representation as analogous to the
embedding layer and contextualize it with a LSTM. This model was trained for roughly 13 epochs
and received a F1 score of 70.9% and an EM score of 60.3% on the development set, as well as a F1
score of 71.5% and an EM score of 61.6% on the test set. This is a relative increase of 11% for the
F1 score and a 13% increase in the EM score. This significant increase appears to validate our gen-
eralized unit model and the assumption that we can treat the contextualized attention-representation
as analogous to the word-representation.

The most common mistake is still predicting the end word before the start word, indicating that
improvements on the attention based representation may not be enough to understand certain docu-
ment and query pairs. However, this error accounts for 25% more of the total errors as it did in the
attention only model. Moreover, the full model does not make mistakes based upon vague under-
standings as often as it did before, and when it does we see that these mistakes are not as simple as
including a key query word. Instead the model is able to abstract the meaning of key query words
based on the context, such as in the example below,

o QUESTION: what method is used to intuitively assess or quantify the amount of resources
required to solve a computational problem ?

o TRUE/PREDICTED ANSWER: mathematical models of computation / the theory formal-
izes this intuition

where the network has confused “model” for ’the theory”. Another indication that we further con-
textualized the model comes from the example below where both previous models failed to answer
by locking onto a key query word, whereas the full model was able to find a reasonable answer that
included the correct answer.

o QUESTION: which theory states that slow geological processes are still occurring today ,
and have occurred throughout earth ’s history ?

e TRUE/PREDICTED ANSWER: uniformitarianism / charles darwin , successfully pro-
moted the doctrine of uniformitarianism

This is an improvement over both attention representation models where the network would select
answers with the exact word in it. From these improvements, we may infer that the full model either
has a good contextual understanding of the document and query pair to answer the query, or has very
little understanding of the context and location dependence. Furthermore, the full model performs
better at answering queries where the query is paraphrased in the answer.

o QUESTION: relegation to secondary status for abc resulted in viewership how much lower
than their competitors , according to goldenson ?

o TRUE/PREDICTED ANSWER: five times lower viewership / five times lower
However, these mistakes still account for a large portion of the errors this model makes. This

indicates that the improved context of the full model can now answer more questions, but still cannot
answer some questions it was originally confused on.



5 Conclusion

These experiments have shown that applying the generalized unit to contextualize our representation
is beneficial to the machine’s understanding and ability to solve the QA problem. Furthermore, we
also see that stacking various methods and training them together can improve the models under-
standing as well. To further test our assumption we would like to apply another generalized unit to
the output of the attention context layer. This would give us further insight into the effectiveness
of the generalized unit. We believe that taking this approach of applying the generalized unit, and
stacking various methodologies within this unit, will lead to more advanced and models that may
outperform traditional ensembling.
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