CS224N: Question-Answering Utilizing Bidirectional
Attention Flow

Wesley C. Olmsted Trevor S. Danielson
Department of Computer Science Department of Computer Science
wolmsted@stanford.edu trevord@stanford.edu
Abstract

We investigated a question answering model using bidirectional attention flow.
We evaluated different features from various papers in our model. We were able
to score a respectable F1 Score of 71.0 and EM score of 59.9.

1 Introduction

Question answering requires a great deal of machine natural language understanding. In our prob-
lem, the machine learns to find an answer in a context paragraph given a query. We used the Stanford
Question Answering Dataset (SQuUAD) to evaluate various techniques from other papers. These
techniques included using advanced forms of attention, optimizing hyperparameters, and feature
construction. There has been a great amount of research done using the SQuAD dataset, and we
chose to use techniques and insights from this previous research.

2 Problem Definition

Our goal is to answer the question given based on the context given. The way we do this is by
building a classifier that will classify a ”’start” and “end” index within the context, where the answer
is contained. So given a context with T tokens and a question with J tokens, our model will classify
a start index, X, and end index, y, where 0 < oz <y < T

3 Related Work

The SQuAD dataset has been out for around two years and there have been many publications inves-
tigating different models. One model by the Joint Laboratory of HIT and iFLYTEK Research was
able to achieve near human F1 and EM scores [3]. We decided to focus on two papers, namely the
BiDAF and DrQA paper. Both of these models achieved high F1 and EM scores so we implemented
various parts of both.

4 Features and Data

Our training set contained 86,326 training examples and our dev set contained 10,391. These sam-
ples came in the following format:

Question: Which NFL team represented the AFC at Super Bowl 50?
Context: Super Bowl 50 was an American football game to determine the
champion of the National Football League (NFL) for the 2015 season. The
American Football Conference (AFC) champion Denver Broncos defeated
the National Football Conference (NFC) champion Carolina Panthers...

Answer Start: 29
Answer End: 30

Our data contains a context string, a query string, and the start and end index of the answer within
the context. Besides the corresponding embeddings to the tokens within these strings, we added
one extra features: a bit that is set to on if a context token appears in the question. For example
the context token ”Super” will have a 1 concatenated to the word embedding because ”Super” also
occurs in the question.

In addition, we analyzed our training data in order to better understand the possible effects of chang-
ing the specified context and question lengths during the embedding layer. Figure 1 shows a his-
togram of answers location within the specified context. We decided to lower the context length to
550 tokens in order to cut down on memory overhead associated with longer contexts. Analyzing
figure 1 shows that a about 3,500 more training examples would be prematurely trimmed of their
answers during embedding compared to the baselines 600 token length, which is about 4 percent of
the total number of training examples. Based on Figure 2, which shows the question lengths, we
decided to keep the question length to 30 tokens. All questions in our dataset were shorter than 30
tokens making it optimal to keep it at this point.

16000 , ' Context-a ns-!eng

14000 4

12000 1

10000

8000

6000

Number of Examples

4000

2000

0 500 1000 1500 2000 2500 3000 3500
Answer Index in Context

Figure 1: Histogram of Answer Location Within Context

12000 ' _Question Lengths

10000
8000

6000

4000

Number of Examples

2000

L s

0 10 20 30 40 50 60
Question Length

Figure 2: Histogram of Answer Location Within Context

5 Model

5.1 Baseline Model

The baseline model we started with used a simple attention layer that found the similarity between
each context word and the question sequence. This was done for us by calculating the dot product
between the two. Then we use the softmax function on this vector and calculate the weighted sum
for every one of the question hidden states. We then append this vector to our original context. From
there, the concatenated matrix is passed through a fully connected layer, and then is finally passed
twice through two separate fully connected layers and a softmax layer, one for the start and one for
the end.

5.2 BiDAF Model

We mostly followed the guidelines of the model implemented in the BiDAF paper [1]. The one part
we chose not to implement was the final LSTM layer that conditions the end index on the start index.

End

Dense+ Softmax

Start
Dense+ Softmax

Output Layer

LSTM <> >y [EEsmmmmee
Modeling Layer T T T T
<> «—>» | eeeeeeeeeen
L L] L] L]
Attention Layer Query2Context Context2Query

GRU Encoder «—> <> €—>» | ----emeee-d
Layer

A

i
GloVe
Embedding Layer

Figure 3: Bidirectional Attention Flow Modeling Architecture

5.2.1 The Encoder Layer

In this layer, we encode our questions and contexts. We pass both the question embeddings and
context embeddings through a bidirectional GRU. We decided to keep GRU cells instead of LSTM
cells because of their higher efficiency. Once we pass the embeddings through the GRU, we have
question sequence length, M, question hidden states and context sequence length, N, context hid-
den states. These are also double the hidden state size due to concatenating the outputs of both
flows of the bidirectional GRU. This layer is shown in yellow in Figure 3. We then pass in these
concatenations into our Attention layer.

5.2.2 The Attention Layer

The first thing we implemented was the attention layer. Instead of our basic dot-product attention, we
used a more advanced attention that takes into account query to context attention and context to query
attention. This is calculated by first generating a similarity matrix, S where each term S;; is the
similarity between hidden context state c; and hidden question state q;. S;; = Wi, [ci; q;;C;0 qj].
The matrix multiplication of the weights vector, W;y, and [c;; q;;C; 0 qj] requires storing multiple
large matrices in memory so we decided to implement this by separating the weights. We separated
[c;;q;5 ¢; o q;] into 3 matrices instead of concatenating them together. We then had corresponding
weights for each of these three. We could then calculate the products of the three pairs and then sum
them to get the actual S. Once we have S, we calculate the context to query attention (C2Q). We
calculate the softmax on each row i of S and then create a weighted sum. For the query to context
attention (Q2C), we take the max over each row and pass that through a softmax. From this softmax,
we create another weighted sum. After this calculation is done, the output of our attention layer is
output, = [c;; a;; ¢; 0 a;; ¢; o ¢’] where c is our context hidden states from the contextual layer, a
is our C2Q attention and ¢’ is our Q2C attention. This layer is seen in red in Figure 3.

5.2.3 The Modeling Layer

We take the output of the attention layer and pass that into a two layer bidirectional LSTM with
hidden size 128. The outputs of the context sequence size are then concatenated for both directions.
We decided on two layers because that is what the BiDAF paper uses [1]. Extending the amount
of layers also had less of an improvement for the extra time that was needed to train. From the
modeling layer, the outputs are passed independently to a dense and softmax layer to get start and
end prediction. This layer is seen in purple in Figure 3.

5.2.4 Hyperparameters

We used 200 dimensional word vectors instead of 100 dimensional ones, which was made possible
by reducing our context length. For our learning rate, we used a value of 0.001 because we noticed
that the values an order of magnitude larger would lead to premature convergence and values an order
of magnitude smaller would lead to very long training times. We also began our first experiments
with a dropout value of 0.2, which we applied to every layer except the final ones. We eventually
raised the dropout to 0.22 because at later epochs, our train and dev set f1 scores would begin
to increase to about a 15 point difference. We experimented with various optimizers including
Adagrad, Adam, and Adadelta. We found the balance between shorter computation time along with
higher dev f1 scores with the Adam optimizer. We achieved our best dev scores at 150000 iterations.

6 Results

Our implementation saw a significant increase to both F1 and EM metrics, about 27 percent and
25 percent respectively, as seen in table 1. Comparing the results to our reference models [1][2],
our model scored 6-7% below on both EM and F1. Comparing to the DrQA model, which was our
reference for the additional feature, we were unable to obtain the same level of performance with
our architecture.

Table 1: Model F1 and EM Dev Set Scores

, Model | FI | EM |
Baseline 44.0 | 34.7
BiDAF (Our implementation) | 71.0 | 59.9
BiDAF [1] (reference) 71.3 | 67.7
DrQA [2] (reference) 78.8 | 69.5
dev/EM dev/F1
0.500 ~o
0.600
0.400 /r
0.300 0.400
0.200
0.200
0.100
0.00 0.00
2.000k 6,000k 10.00k 14.00k 2.000k 6000k 1000k 14.00k

Figure 4: Baseline Comparison to our BiDaf Model

7 Analysis

The main decision we had to make when deciding our best model was whether to use the extra
feature (a bit set to on if a token from the context is in the question). We noticed the training loss

dropped rapidly when we initially added the question-match feature, but it quickly started to level
off, and did so faster than our BiDAF with standard features model. This behavior is shown in Figure
4.

0.000 2000 4000 600.0 800.0 1.000k 200k 1.400k 1,600k 1.800k

Figure 5: Train Loss With and Without Question-Match Feature

For qualitative analysis, we noticed some examples that our model was not very good at identify-
ing. Most notably, our model struggled when commas separated answers. In a set of 10 randomly
evaluated examples, we found these errors:

Question: where is the apache point observatory located ?
True Answer: sunspot , new mexico

Predicted Answer: new mexico

F1 Score Answer: 0.800

EM Score: False

Question: what type of studies explored student motivation ?
True Answer: controlled , experimental studies

Predicted Answer: experimental

F1 Score Answer: 0.500

EM Score: False

Question: how are green chloroplasts * plastoglobuli arranged ?
True Answer: singularly , attached directly to their parent thylakoid
Predicted Answer: attached directly to their parent thylakoid

F1 Score Answer: 0.923

EM Score: False

As shown by these examples, errors related to separating commas have a large, adverse effect on the
EM score. The F1 score is usually not impacted too much unless the answer is short.

8 Conclusion and Future Improvements

Overall, we were able to achieve a decently high F1 and EM score. Our score was slightly below
the two papers we referenced, BiDAF and DrQA. We believe we could achieve a slightly higher
score if we worked on this more and implemented some of the below improvements.

As discussed previously, the inclusion of the additional feature, the model seemed to func-
tion significantly better initially, before leveling off to about the same as the original BiDaf model.
One improvement that may prevent this eventual leveling, would be to change the optimizer used.
We used Adam for our models, however the use of Adamax could have proven beneficial as it was
employed in the DrQA model [2].

Also noteworthy, was the difficulty the model had in predicting exact matches (See examples
in Features and Data Section) which included a comma somewhere within the correct answer. We

hypothesize that increasing the the GloVe vectors’ dimension from 200 to 300 would allow for our
model to locate and learn the intricacies inherent in the use of commas. According to the original
GloVe paper, 300-dimensional word embeddings work the best for finding relationships between
tokens [4]. We believe that this same behavior would apply well with commas. The relation-
ship of commas separating two adjectives would be represented in these 300 dimensions most likely.

Another potential area for improvement with regards to this issue would be to implement a
Character Level Convolutional Neural Network (CNN). Improving the ability to answer these types
of examples would have the most significant impact on our EM score, as the current model still
seems to perform at a rate similar or slightly higher than the overall model score of 71.0 with
regards to F1 score. However, there would still see a slight improvement to F1 as well, but not on
the same level as EM increase.

Given the nature of hyper parameter tuning, in which the effects of changes are usually only
visible at later iterations, this causes it to be extremely costly both in time and money. With even
more time to experiment, we would be able to optimize our model’s hyper parameters in order to
get the most out of out architecture.

In terms of training, we could have set which embeddings we chose to train instead of train-
ing on all embeddings. In the DrQA paper, they only train the embeddings of the 1000 most
common words in the questions [2]. We estimate that some sparse changes to our word embeddings
may have slightly skewed how they function in question answering.

Acknowledgements

Many thanks to the CS224N teaching staff for a wonderful quarter. We both learned a lot in this
course, and will continue to apply this knowledge in the future.

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[2] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051, 2017.

[3] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-overattention neural
networks for reading comprehension. arXiv preprint arXiv:1607.04423, 2016.

[4] R. Jeffrey Pennington and C. Manning. Glove: Global vectors for word representation. 2014.

