Reading Comprehension on SQuAD: An Insight into
BiDAF

Vivekkumar Patel Shreyash Pandey
Department of Computer Science Department of Electrical Engineering
Stanford University Stanford University
vivekl4@stanford.edu shreyash@stanford.edu
Abstract

Application of end-to-end Deep Learning has been very successful in a lot of
tasks. Here, we apply this technique for the problem of reading comprehension
and answering questions based on them. Specifically, we re-implement the Bi-
directional Attention Flow technique and sutdy the benefits of various components
of the model. We also suggest improvements to the modeling and output layers,
and obtain final F1 and EM scores of 77.08 and 66.80 respectively on the dev set,
and 77.77 and 68.006 on the test set.

1 Introduction

With the advances in deep learning and availability of large computational resources and data, end-
to-end deep learning models have become very successful. In various problems today, the state
of the art models have out-performed humans. Another reason for their attractiveness is that the
problem solver no longer needs in-depth domain knowledge and there is no need for hand-crafted
features. These benefits are valuable when one works in the field of NLP and especially Machine
Comprehension (MC).

In this task, the algorithm is given a context and a question, and the algorithm is expected to provide
the answer to that question based on the context. Hence, the algorithm must be able to see through
the complex relationships existing between the question and the context to figure out the right an-
swer. We use the SQuAD dataset for training and testing of our model. It is a reading comprehension
dataset which has more than 100,000 triples of context,question and answers.

The rest of the paper is as follows: Section 2 goes through some of the existing work on this problem.
In Section 3, we describe our approach. Section 4 consists of the Experiments, Results and our
observations. Finally, we conclude in Section 5 with our experiences.

2 Related Work

Since the release of SQuAD dataset in 2016, a multitude of deep learning approaches have achieved
near human F1 accuracy, with some of them surpassing the human Exact Matching (EM) accuracy.
RNN encoders and attention mechanisms are known to be particularly successful at the reading com-
prehension task. BiDAF[3] is a very well known and studied approach that takes advantage of two-
way attention, from question to context and from context to question, by constructing a Bidirectional
Attention Flow layer. Models trained on variants of BiDAF are still competitive with the best mod-
els on the SQuAD leaderboard. Other attention mechanisms such as Coattention and self-attention
have been parts of successful approaches such as Dynamic Coattention Network[4] and R-Net[5].
The current state-of-the-art model uses Attention-over-Attention Neural Networks [2] that estimates
the answer from the document-level attention instead of calculating blended representations of the
document by placing another attention over the primary attentions, to model the “importance” of

each attention. Other competitive approaches include Reinforced Mnemonic Reader[1] that drifts
away from the above “encoder-interaction-pointer” approaches by incorporating both lexical and
syntactic features such as POS, NER with the embedding of each word to enhance the capacity of
the encoder. The modeling is based on a memory-based answer pointing mechanism, and they di-
rectly optimize both the EM metric and the F1 score, by introducing a new objective function which
combines the maximum-likelihood cross-entropy loss with rewards from reinforcement learning.

In this work, we re-implement Bidirectional Attention Flow, and experiment with and analyze the
effect of each modeling detail. We implement character-level CNN to augment the word embeddings
and experiment with different modeling layers such as LSTMs to improve upon the fully connected
layers. We also employ dynamic programming in the output layer to make sure that our model
always outputs valid answers. Lastly, we construct an ensemble of our models to achieve a final dev
F1 of 77.08 and test F1 of 77.77.

3 Approach

3.1 Dataset Analysis

We use the SQuAD dataset for training and testing of our models. It consists of more than 100,000
question-answer pairs on more than 500 articles, asked by crowdworkers on wikipedia articles. The
answers to the questions always lie in the context paragraph. Below is a distribution of lengths of
contexts, questions and answers in the training set. These help us fix values of certain hyperparam-
eters, such as the max context length and question lengths to be considered.

Train Context length histogram Train Question length histogram Train Answer length histogram

45000

70000

30000

25000

1]
b1
S
3

Number of contexts
&
=
=]
S
Number of Questions
Number of Answers

20 30 40

300 400 500 600 700
Length of contexts Length of Questions Length of Answers

Figure 1: Distributions of Context, Question and Answer Lengths respectively

We chose context _len to be 600 and question_len to be 30 even though smaller values would
have been fine. This was because we did not want to lose out on information in longer contexts or
questions. We used a batch_size of 32 so that we did not face memory errors during run time.

3.2 Model details

The model we implement is very similar to the original BiDAF model.

The following are the details for each layer.

e Glove and character embeddings: To represent each word, we use pre-trained Glove[7]
embeddings of dimension 100 and have trainable character embeddings of size 20 for each
character. We use 1-D CNN followed by max pooling over the character embeddings
to get an embedding for the whole word of dimension 100. This embedding obtained
from characters is concatenated with the Glove embedding and is passed on to the next
layer. We denote the output of this layer as x1, 22,73 ...25 € R?% for the context and
Y1, Y2,Y3 ... ypr € R2% for the question. Here, IV is the context_len and M is the
question_len.

e Contextual Layer: This layer consists of a bi-directional LSTM, which takes in the word
embeddings and outputs the hidden-states. We denote these hidden states as ¢y, c2,...cny €

Query2Context

Start End
softmax A A
uy
Logistic+Softmax
Max uz T Output layer
i he by LST™M <> (€< (€=~ <>
Context2Query
A A A A A Modeling layer
uy LSTM “ <« (€ ----- <>
Softipa A \ Y
uz
: I
hi hy hr
> Query2Context and Context2Query .
Attention Layer
Attention
U uy hy T hy T T hr T
Contextual Layer
LSTM «> > LSTM l«—> <> <« >
Glove || char
a a, X4 Xo X3 XT embeddings
| | | | ,]
Query Context

Figure 2: A picture of the architecture we implement. Image borrowed from Fei Xia et al.’s report
from last year.

R290 for context and q1, qa, . . . qpr € R2%0 for question, where each ¢;, ¢; are of the form
[;; @], the concatenation of hidden layers of LSTMs of both directions.

e Attention Layer: This layer is implemented in the same way as done in the original BIDAF
paper. The C2Q attention is calculated as a; = Z;\Ll softmaz(S;.);q; € R?%, where S
is the similarity function given by S;; = w”'[c;; g;; ¢; 0 q;], fori € [1,n],5 € [1,m]. The
Q2C attention is calculated as ¢/ = Zf\il softmax(0);c; € R?° where 0; = max; S;; €
R and so § € RY,

e Modeling Layer: From the previous layer, we make a blended representation b; =
[ci;ai;¢i 0 az;e; 0] € R8O for i € [1,n]. Denote [b1, b, ...by] as G € RY:8%0, These
representations are passed through two layers of LSTMs(as shown in the figure above). The
final output of these layers is denoted as M € RY-290, This makes our Full_bidaf model.
We then add two more bi-directional LSTM layers, which gives us our Modif_bidaf model.

e Output Layer: In this layer, we calculate the starting point and ending point. To calculate
the start point, we simply take the softmax of wf[G; M]. To calculate the end-point, we
first pass M through another LSTM layer to obtain M, € RY:290, Then, for the end-point,
we take the softmax of wi[G; Ma).

e Dynamic Programming: In the baseline model, answer spans (start, end) were chosen
with maximum probability psiart, Pend, independent of each other. But as pointed out
by Junjie et al. [6], there are generally several peaks of probabilities that are very close
to each other. To generate a valid answer, we have to make sure that the end position
always follows the start position. Hence, we choose (start, end) where start < end with
the maximum value of p.,,,p?, ; and this can be calculated in linear time using dynamic
programming. By doing this, we choose legal answer spans where the joint probability of
start and end locations are the highest.

e Ensembling: As a final step, we combine the predictions of three models trained with the
above architecture. For this, we do a form of majority voting. The predicted start and end
distribution is generated by a weighted average of the three models’ predictions, weighted

by their F1 scores on the Dev set. Dynamic Programming on this distribution gives us the
predicted answer span.

3.3 Training Details
Following are some of the details that describe our training process:

e Padding Strategy: Padding is required to make all examples of same size for batch pro-
cessing. Based on our analysis of the dataset, very few contexts had length greater than
600, and very few questions had length greater than 30. For a consistenty’s sake, and for a
fair comparison of various components of the model, we kept the padding same for all our
experiments.

e Optimizer: We use Adam optimizer with an initial learning rate of 0.001.
e Dropout: To avoid overfitting on the training set, we use a dropout probability of 0.15.

e Model Sizes: All our bi-directional LSTMs have a hidden size of 100 (total 200). Our
CNN based character embeddings use a kernel “window” size of 5 with 100 such filters.

4 Experiments, Results and Observations

4.1 Evaluation of different stages

As we implemented features one at a time, this allowed us to analyze and figure out the benefits of
these features individually. The following table lists the F1 and EM and no-answer scores of the
models. All these values are on the dev set.

Table 1: Performance on the Dev set

Model F1 Score EM Score No-answer
Baseline 43.93 34.58 16.05
Bidaf_attn 49.99 39.66 14.07
Bidaf_attn+cnn 51.76 41.67 13.08
Full_bidaf 73.16 62.89 3.44
Modif_bidaf 73.72 63.83 345
Modif _bidaf+dp 75.13 64.02 0.0
Ensemble 77.08 66.80 0.0

4.2 Evaluation based on Question Types

The first analysis that we carried out was to see how these models performed over different kinds of
questions. The most common questions generally have one or more of the question words: What,
When, Why, Where, How, Whom, Who and Which. Many questions in the dev-set had two question
words, and some even had three. The following table summarizes the metric scores on the questions

based on the question word they contain. For cleanliness, we only mention statistics of 3 models.

Table 2: Performance on Different Question types

Question Word | #Questions Baseline Modif _bidaf Ensemble

‘ F1 EM NA | F1 EM NA | F1 EM NA
What 5981 40.48 30.13 17.72 | 71.38 60.61 4.31 | 7525 63.97 0.0
How 1338 49.27 40.10 13.75 | 7450 6436 2.88 | 7599 65.73 0.0
When 840 55.52 49.65 1041 | 83.75 7824 127 | 8543 7943 0.0
Whom 39 57.71 5128 12.82 | 82.05 82.05 0.0 | 82.05 82.05 0.0

The following observations can be made from the above table:

e Modif_bidaf performs best on most types of questions.

e On the “Whom” questions, Modified_bidaf never predicts the end point before the start
point. Also, it has same F1 and EM score in this category, which means whenever it has a
nearly correct answer, the answer is exact.

4.3 Examples to analyse benefits of different components of BiDAF

We now present the advantages of different layers that have been used in the BIDAF model and
support them through examples.

4.3.1 Advantage of Bidaf Attention over Simple Attention

In the Simple attention method, we only made use of Context2Question (C2Q) attention, whereas
in BiDAF, we have a similar Context2Question (C2Q) as well as Question2Context(Q2C) attention.
In the following example, the baseline fails to answer whereas using only the BiDAF attention, the
model answers correctly.

Context: The Panthers finished

the regular season with a 15-1

record, and quarterback Cam Caiclina
Newton was named the NFL Most wmdw‘ beat
Valuable Player (MVP). They

defeated the Arizona Cardinals S 7 : : ;
49_15 in the nEe ChampionShip feard '!H- “
Game and advanced to their e ;

second Super Bowl appearance

Blue: Low value

since the franchise was founded Brown: Highest value

in 1995. The Broncos finished These two rows correspond to the true answer

the regular season with a 12-4

record, and denied the New Figure 3: A visualization of similarity matrix used
England Patriots a chance to in BiDAF

defend their title from Super

Bowl XLIX by defeating them 20-18 in the AFC Championship Game.
They joined the Patriots, Dallas Cowboys, and Pittsburgh Steelers
as one of four teams that have made eight appearances in the Super
Bowl.

Question: Who did Carolina beat in the NFC championship game?
Answer: Arizona Cardinals

Answers from our models:

1. Baseline: (No answer)

2. Bidaf_attn: Arizona Cardinals

3. Bidaf_attn+cnn: Arizona Cardinals 49-15
4. Full_bidaf: Arizona Cardinals 49-15

5. Modif_bidaf: Arizona Cardinals 49-15

Explanation: In the above example, after going through the context and the question, there remains
a confusion. The question asks "Who did Carolina beat” whereas the context does not have any
mention of “Carolina”. Hence the answer can be found only after finding other relevant features
from the question that relate to context. This needs an attention mechanism going from question to
context. As can be seen from the answers of the models, only after using the Bi-directional attention,
do we see that the model is able to produce correct answer in such cases. Figure 3 also captures this
information.

4.3.2 Benefit of Character Level Embeddings

One of the shortcomings of using only pre-trained word-embeddings is that the model will fail if the
answer is numerical or has some other special characters. The below example is one of the many
that we found, which demonstrates this effect.

Question: How many receptions did Cotchery get for the 2015 season?

Context: The Panthers offense, which led the NFL in scoring (500
points), was loaded with talent, boasting six Pro Bowl selections
...Ginn also rushed for 60 yards and returned 27 punts for 277
yards. Other key receivers included veteran Jerricho Cotchery (39
receptions for 485 yards), rookie Devin Funchess (31 receptions
for 473 yards and five touchdowns), and second-year receiver Corey
Brown (31 receptions for 447 yards) ...Carolina’s offensive line
also featured two Pro Bowl selections: center Ryan Kalil and
guard Trai Turner.

Answer: 39

Answers from our models:

1. Baseline: (No answer) i
2. Bidaf_attn: (No answer) : ; g
3. Bidaf_attn+cnn: 39 receptions for 485 “B 4 i 0 :9189
yards i T A
. o P S
4. Full_bidaf: 39 R i
b 'm i
5. Modif_bidaf: 39 28§ o
Explanation: When we use only pre-trained Lo =
word embeddings, numbers will generally get -0 05 00 05 Lo

replaced by <UNK> and so the model will fail
to answer correctly in cases where the answer
is numerical. If we supplement the word em-
beddings with character embeddings, then the
model has some information to learn features
about these numbers (see Figure 4, the dig-
its are in a separate cluster) and hence, a shot
at predicting the correct answer. The answers
from our models strongly support this observa-
tion. Infact, even the answers in previous ex-
ample demonstrate this (Bidaf_attn+cnn predicts “Arizona Cardinals 49-15”).

Figure 4: A visualization of the character level
embeddings. Notice that the digits and alphabets
are grouped in different clusters.

4.3.3 Benefit of Modeling and Output Layer and the Modification

The most common problems in the baseline and bidaf_attn model were that the models would either
predict longer answers than necessary or would predict the end before the start. Using RNNs (LSTM
to be specific) in the modelling and output layers gives the largest improvement on the evaluation
metrics by partially solving these problems. These are following observations that can be made from
the results:

e The main benefit of using any RNN over a fully connected layer is that the weights are
shared across words. This helps use the attention features in the blended representation
more efficiently.

e Models with fully connected layer generally predict longer answers (the true answer is
generally contained in the predicted answer). By using RNNs, we observe that the model is
able to find the start and end points more accurately. With the modification suggested, start
and end point prediction improve more. The example after the Figure 5 is a good indicator
of this point.

e We introduce a dependency (even if it is very light) between the predicted start and end
point when we add an LSTM layer between the the start and end computations.

o The predicted answer length distribution converges to the true answer length distribution
with this change as evidenced by the following plot.

. Dev answer length histogram

B True

[Baseline

10000] [Bidaf_attn

[Bidaf_attn+cnn
0 Full_bidaf

8000 [Modified_bidaf
[0 Modified_bidaf+dp
N Ensemble

6000

Number of answers

2000

0 1]y S [~ = [—
0 20) &0 80 100

Length of answers

Figure 5: Answer Length Distribution

Context: None of the original treaties establishing the European
Union mention protection for fundamental rights. It was not
envisaged for European Union measures, that is legislative and
administrative actions by European Union institutions, to be
subject to human rights. At the time the only concern was that
member states should be prevented from violating human rights,
hence the establishment of the European Convention on Human Rights
in 1950 and the establishment of the European Court of Human
Rights. The European Court of Justice recognised fundamental
rights as general principle of European Union law as the need to
ensure that

Question: What other entity was established at the same time as the
European Convention on Human Rights?

Answer: European Court of Human Rights

Answers from our models:

1. Baseline: european union institutions ...in 1950 and the establishment of the european
court of human rights. the european court of justice recognised fundamental rights as gen-
eral principle of european union law as the need to ensure that european union measures
are compatible with the human rights enshrined in member states’ constitution became
ever more apparent. in 1999 the european council . .. the declaration on fundamental rights
produced by the european parliament

Bidaf _attn: european union institutions

2

3. Bidaf_attn+cnn: european council

4. Full_bidaf: european court of human rights
5.

Modif _bidaf: european court of human rights

Explanation: The above example is a very complex one. There are multiple entities with the name
“European” in them. As a result, we can see that simple models only using a fully connected layer
fail on these. The models with RNNs are able to correctly identify the answer.

5 Conclusion

In this project, we reimplement and experiment with the Bi-directional Attention Flow mechanism
to tackle the machine comprehension task. We compare the effects of each of the model aspects on
the final performance, and analyze the predictions to obtain insights into the workings of the model.
Our analysis shows that the BiDAF attention in the same baseline model improves the performance
only marginally but is able to model the question to context attention in an effective manner, the
character-level CNNs help model the out-of-vocabulary words and provide improved performance,
especially on the numerical answers. Modeling the output layer with LSTMs provides significant
boost in the performance and dynamic programming makes sure that all the generated answers are
legal. With an ensemble of the above models, we are able to achieve a F1 score of 77.08 on the
Dev set and 77.77 on the test set. Our model’s strength lies in that it always predicts a legal answer,
is robust to numerical answers, and captures word similarity between question and context very
well. But it is still unable to predict the correct answer length many times. This could be a possible
direction for future work. Incorporating more complex attention mechanisms such as Attention-
over-Attention, or using the N-best re-ranking strategy proposed by [2] are some of the possible
approaches to rectify this.

Acknowledgments

We would like to thank the CS224n course staff for making this a wonderful experience. The default
project was structured in a great way and allowed us to learn much more than we could have if we
had tried to do everything from scratch.

References

[1] Hu, Minghao, Yuxing Peng, and Xipeng Qiu. “Reinforced mnemonic reader for machine comprehension.”
CoRR, abs/1705.02798 (2017).

[2] Cui, Yiming, et al. “Attention-over-attention neural networks for reading comprehension.” arXiv preprint
arXiv:1607.04423 (2016).

[3] Seo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. “Bidirectional attention flow for machine comprehen-
sion.” arXiv preprint arXiv:1611.01603 (2016).

[4] Xiong, Caiming, Victor Zhong, and Richard Socher. “Dynamic coattention networks for question answer-
ing.” arXiv preprint arXiv:1611.01604 (2016).

[5]1 Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. “Gated Self-Matching Networks for
Reading Comprehension and Question Answering.” ACL (2017).

[6] Junjie Ke, Yuanfang Wang, Fei Xia. “Question Answering System with Bi-Directional Attention Flow.”
CS224N Report (2017).

[7] Pennington, Jeffrey, Richard Socher, and Christopher Manning. “Glove: Global vectors for word repre-
sentation.” Proceedings of the 2014 conference on empirical methods in natural language processing. EMNLP
(2014).

