CS224N Default Final Project Write-Up

Mark Holmstrom
Department of Computer Science
Stanford University
Stanford, CA 94305
markholm@stanford.edu

Abstract

This projection is an exploration of the Stanford Question Answering Data set
(SQuAD) and the process of solving question answers problems. The goal of the
project was to observe how different pieces of information and structural changes
could boost the performance of a baseline classifier provided by the instructional
staff. This project focused especially on modularity: being able to piece together
different parts together to make a classifier combining different improvements.

1 Algorithm Modifications

One of the goals of the project was to build a more complicated a stronger question answering neural
network out of the given baseline. This section describes the baseline and the improvements made.

1.1 Baseline

The baseline question answering algorithm functions as follows. It uses pre-trained GloVe word em-
beddings to get an embedding vector for each word in the context paragraph and the question. From
there, a 1-layer bi-directional GRU with shared parameters is used to get a forward and backward
hidden vector for each word in the context and each word in the question. Note that the GRU is used
twice, once for the context and once for the question. We concatenate these hidden vectors to make
one hidden vector for each word. From there, we use a dot product attention layer with the context
combined hidden states attending to the question combined hidden states and concatenate the results
to the context hidden states. These blended representations are then sent through an output ReLU
layer to get a raw output vector for each hidden state. These raw outputs are put through two linear
transformations to turn each into a single unweighted probability approximation for the probability
of the question answer start being at that location and the question answer end being at that location.
We then put the question answer start and question answer end approximations through a softmax
layer to get the final approximation for the start and end probability distributions. We calculate our
loss to be the sum of the negative logs of the approximate probability of the start and end being at
their true respective locations. For making predictions on inputs, we independently predict the start
and end positions by choosing the argmax of these approximated probability distributions.

1.2 Character-Level CNN

One common recent way to improving algorithm performance has been using a character-level CNN
to to enrich our embedding. My implementation works as follows: split the input into its individual,
and for each character in each word, pick an index for that character (in this case its ASCII encoding).
From there, the character is given a trainable embedding based on its ASCII character. Word-
by-word, we then pass the character-level embeddings into a single-layer 1D convolution neural
network. As recommended, I used a max word length of 20, an embedding size of 20, window
size of 5 and an output size of 100. For each word, the outputs from the CNN are combined using

element-wise max-pooling to end with a resultant vector that will used to represent the word. The
vector representing the word is then added onto the input for the main RNN layer.

1.3 Bidirection Attention

Dot-product attention is fairly simple and the baseline can be improved upon using a more complex
form of attention. One such option is bidirectional attention. The idea is that the context does not
only attend to the question but the question also attends to the context. The way this works in math
is that we start by computing a similarity score between each pair of hidden states taking one from
the question and another from the context. We compute the similarity by taking 3 different weight
vectors, taking a dot product of the first with the context state, a dot product of the second with the
question state, and taking a dot product of the third with the element-wise product of the two states.
We then add up all of these dot products to get the similarity score. We then separately calculate the
context to question and question to context attentions. For context to question, we take the vector of
similarity scores for each context word compared to all of the question words and preform softmax
to normalize the values. We use the result of this softmax to make an attention which is the expected
hidden question state if we pick it using the results of the softmax as a probability distribution over
the possible question states. We do something a bit different for the question to context layer. For the
question to context layer, we choose the maximal similarity between a specific word in the context
and any word in the question and take the softmax of these maximums. We then use this softmax
as a probability distribution and find the expected hidden context state from this distribution. From
there, we combine context to question and question to context layers together by making a large
vector concatenating everything together. For each context hidden state, we take the original hidden
state, the context to question attention, the element-wise product between the two, and the element-
wise product between the context hidden state and the question to context attention, and concatenate
all 4 of these vectors together to get the attention output.

1.4 Additional Input Features

One way of improving algorithm performance is increasing the number of input features. The base-
line only has the word embedding but much more can be used. One option is the character-level
embedding mentioned above. There are a number of other smaller additions that can provide useful
information. Two were added to this model. This first is an indicator of whether or not a given word
appears in the other half of the query. If we are forming a context embedding, we see if the given
word is in the question. If the word is in the question we have a 1 and if it is not we have a 0. We
do the the same thing for the question embedding: if the word is the context, we give it a 1 and if it
is not we give it a 0. The second piece of additional information is another attention layer. The idea
here is that by adding attention to the word embeddings we may get some information about their
relation to each other. We make an attention layer with the same structure as in the baseline and have
the context embeddings attend to the question embeddings. Additionally, we have an attention layer
that goes in the reverse direction: having the question embeddings attend to the context embeddings.
We append these new attention layers and matching features to the word embeddings before sending
them into the GRU from the baseline.

1.5 More Nuanced Prediction

Our baseline model predicts the start and end location of the answer as independent of each other.
This is clearly unrealistic since end location must be after the start location and we also usually
expect the answer to be short, so the position are likely close together. Given this information, a new
prediction model was implemented that still considers the start and end probability distributions to
be independent, but also requires that the end position be between the start position and 15 words
afterward.

2 Experiments and Analysis

A number of experiments were performed to analyze the effectiveness of the different upgrades to
the baseline as well as take a look at how changing the parameters effects the results. Many of
these experiments were performed around an elevated baseline model. This model performs the

baseline with the added functionality of having the additional input features mentioned above. This
was the quickest easiest way I found of improving the performance of the baseline so much of my
experimentation was built around it.

2.1 Managing The Weakness of Bidirectional Attention

One of the big issues with bidirectional attention (and why the baseline with extra features ended
up working out much better) is that the the amount of memory needed to compute this attention is
quite large. Specifically, we need to do operations on multiple 4-dimensional tensors of size (batch
size-by-max context length-by max question length-by-2xhidden length) in order to properly com-
pute the similarity. Due to this large tax on memory, the bidirectional attention model was forced to
being smaller than the original since the GPU would literally run out of memory if I tried running
it with similar parameters. In order to reduce the size of this step in particular, we clearly needed to
reduce the size of these 4-dimensional tensors. That means that we needed sacrifice some of these
values in order to get the model to run on this machine. This ended up making it weaker than the
baseline when both utilize most of the other improvements. In particular, I found that it is risky to
sacrifice the question length and context length too much since we end up losing important infor-
mation when going in for predictions. The two figures below are histograms of the question and
context length over the training and dev sets.

60000

50000
50000

40000
40000

30000
30000

20000 20000

10000 10000

0 0
0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60

If we make the question or context length too low, we will cut out a good portion of important infor-
mation from a sizable fraction of the examples and this will greatly reduce our performance on such
examples. In order to remedy this, I initially decided on a minimum question and context length
that I was comfortable with, which are the default question length of 30 and a lower than default
context length of 250. This does cut off the ends of some contexts and questions, but the percentage
which do get cut off is quite small compared to having reduced performance due to having small
hidden size. I ended up deciding later that 250 might be too low and increased the minimum to
400. Even with these decreased max lengths, I still had to cut the batch size and hidden size quite
a bit. I ran two experiments with the bidirectional attention model. One was aimed at seeing how
well it could do compared to our improved baseline. For this one, I decided that I could cut the
batch size down and try to keep the hidden size as large as possible. The reason for this is that in
theory, decreasing the batch size should not hinder the models overall performance. It does make
the training rockier: there are more wild fluctuations between individual iterations and it takes more
iterations to converge, but after training for long enough, it should give us the same performance as
running with a larger batch size. I ended up with having the model run-able on the GPU when the
context length is 400, the hidden size is 180 and the batch size is 20 and when the contexg length is
250, the batch size is 50, and the hidden size is 150. I also had the additional bonus of running with
the additional features added in. With running this way, as you can see, it runs just about as well as
the the baseline but not any better with context length 400, and slightly worse with context length
250. (Here is the plot, maroon is bidirection attention with 250 context length, the upper light blue
plot line is the baseline, and the light blue line between the two is bidirectional attention with 400
context length).

dev/EM

0.450

e L__lrd

dev/F1

=B

dev/loss

0.000 10.00k 20.00k 30.00k

nEL

Just to make sure that I wasn’t doing anything wrong, I ran another experiment trying out the bidi-
rectional model with no other improvements and compared it to the baseline. As you can below, it
did quite better than the baseline, but not better than the baseline with the additional features. (Here
is the plot, orange is the baseline, dark blue is the bidirectional attention without additional features,
light blue is the baseline with additional features).

dev/EM

0.450

dev/F1

0600

dev/loss

5.20

480

4.40

400

30,00k 40.00k

30.00k 40.00k 0.000 1000k 20.00k 30.00k 40.00k 0000 10.00k 2000k

(}Eljr o a8 2EB

Combining these results shows us that bidirectional attention does better than the baseline, but some-
how adding in the additional features makes the baseline perform just as well. If we combine this
with the fact that the bidirectional attention model forces us to have limited context and batch sizes,
I found it better to use the baseline with additional featues as a standard moving forward.s

2.2 Experiments on Hidden Size

I also did experiments on the hidden size to see if increasing or decreasing it would change how
much we get out of the model. This hidden size experiments were done by changing the hidden
size with the baseline model and the baseline model with added additional parameters. Here are the
results for the baseline model with additional features using the length 100 word embeddings: (grey
is 300 hidden size, blue is the standard 200 hidden size, red is 100 hidden size).

dev/EM

dev/F1

dev/loss

520

/ 480
o \\ —
400 1\

320

2000k 6000k 10.00k 1400k 18.00K 2000k 6 6000k 1000k 1400k 18.00k

nEBRD

00k 1000k 14.00k 18.00k 2.000k

] Eiu

CED

As you can see, the performance is just about the same between the hidden sizes of 200 and 300, but
somewhat less for a hidden size of 100. This structure implies that there is a sort of saturation point
where the hidden size is large enough. At that point, having a larger hidden size doesn’t necessarily
help anything since there isn’t any more information to be gained from the inputs using this GRU
format. However, having a hidden size less than this saturating amount will cause it perform worse,
but you need a substantially smaller hidden size to notice a large difference in the accuracy of the
model between the two hidden sizes. As the graph shows, having half of the hidden size does
negatively effect the model performance, but not by that much.

2.3 Character-Level CNN

There definitely is a problem with my character-level CNN since it is not performing better than the
baseline. I ran the model with the same parameters as our standard baseline with extended features
model, and also gave it access to the extended featues and here is the resulting performance: (blue is
the improve baseline model, and maroon is the same model with the Character-level CNN features
added)

dev/EM dev/F1 dev/loss

train

train/EM train/F1

2000k 6000k 1000k 1400k 18.00k

2000k 6000k 1000k 1400k 18.00k
DER DEQ

Considering that character-level embedding should be giving us more information, adding this layer
in should be increasing the effectiveness of our model, but instead it has almost the exact same
performance as before on dev set and only very slightly increased performance on the training set.
There are a couple of possible explanations as to why this could be happening. Most likely, this has
something to do with the fact that the character-level CNN I implemented was a single layer one.
Papers about using such a character-level CNN usually emphasize the need for the model to be deep
to work effectively (in the one I read they used 9 layers!). It is possible that my character-level CNN
is not nearly deep enough to have a substantial effect on the results. Additionally, one big problem
could also be the padding. Padding of 0’s was added in after the character indices for each word
of length less than the maximum. It is possible that this padding could mess with the output of the
CNN in a way that isn’t taken care of later by the masking done after the RNN layer.

2.4 Pushing Toward a Better FI/EM Score

With a decent standard F'1/EM maximum score of about 0.59 and 0.44 for the baseline with ex-
tended features (not including the character-level CNN), I tried a few different ways to improve
this score using a few extra tricks. First, I tried adding in the more strict requirements on choosing
the predicted answer start and end positions. This increased the effectiveness of the model quite
substantially, increasing its performance by 4% or so, increasing the score in both the F1 and EM
categories. It seems that adding this enhanced choosing strategy will unsurprisingly not change the
loss, but will always positively influence the F1/EM score. Additionally, I tried using a larger em-
bedding vector size, which normally is 100, but I increased to 200. Here are the results: (blue is
without the improved estimation choice, orange is with the improved estimation choice, and green
is with larger word embeddings).

dev/EM dev/F1 dev/loss

- = 05620 Ny —
0.440] = : 480
0.400 440
o
0.360 400 §
0320 0.460 50 < s

0280 0420 320

0k 6.000k 10.00k 14.00k 18.00k 2000k 6000k 1000k 1400k 18.00K

20000 G000k 1000k TacOK 1500k 20000
DEB o EE nED

As is clear in the graph above, the model performs best with the improved estimation choice and
the smaller embedding vector size of 100. It is possible that choosing an embedding vector size of
200 causes the model to overfit on the training data due to the increase in parameter size in the main
GRU layer and actually perform slightly worse.

3 Further Work

There are many ways in which the algorithm can further be improved. Clearly what was done here
is just a small number of the viable option for improving on the given baseline algorithm. Based on
the work that was already done, there are a number of different ways in which the algorithm could

be further improved.

There is more work that could be done in terms of the character-level CNN. It is a tried a true method
for NLP and the results it offered me did leave much to be desired. The success of the character-level
CNN is often tied to having a CNN with many layers, a large data set, and a large amount of time to
train the CNN. Possibly working with a deeper CNN and a better way of masking out placeholder
0’s will improve the overall effectiveness of this model.

Additionally, there were no changes made to main the internal structure of the model, the bidirec-
tional GRU. Bidirectional GRUs work well enough, but it is likely that other structures could work
better for this task. It would have been nice to try a LSTM or a model with more layers to attempt
to improve accuracy.

There is more than can be down with the prediction method. Outside of the strict positioning require-
ments, the improved prediction method still assume that the start and end positions are independent
and this is certainly not the case. Having a more complex prediction method that takes their depen-
dence into consideration would likely boost performance even more.

Lastly, there are a number of prediction methods out there, some of which are mentioned in the final
project handout which work from a completely different structure than the baseline. It would have
been a challenge to try to fit the modules I created into a complete new method and see how the
completely new method fares.

References

[1]CS224N Staff (2018) Default Final Project Handout.

[2] Xiang Zhang, Junbo Zhao, Yann LeCun (2015) Learning character-level Convolutional Networks for Text
Classification NIPS 2015.

[3] Shuohang Wang and Jing Jiang. (2016) Machine comprehension using match-Istm and answer pointer.
arXiv preprint arXiv:1608.07905

[4] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. (2016) Bidirectional attention flow for machine
comprehension. arXiv preprint arXiv:1611.01603.

