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Abstract

Machine comprehension (MC), answering a question based on a given context,
has gained significant popularity in recent years. In this paper, we present an end-
to-end neural network model for the SQuAD dataset. On the hidden test set, our
single model achieved F1 score 79.9 and EM 70.7, and an ensemble of 7 models
achieved F1 score 81.9 and EM 73.8.

1 Introduction

Machine comprehension has gained significant popularity over recent years due to its wide appli-
cations in real life as well as theoretical values for the field of natural language processing. One
particular dataset that led to huge advancement in the field is the Stanford Question Answering
Dataset (SQuAD) [1], which consists of more than 100,000 questions posed by crowdworkers on
Wikipedia articles.

In the SQUAD machine comprehension task, given a context and a question, the machine needs to
read and synthesize the context, and then answer the question in natural language based on infor-

mation presented in the context. The context is a sequence of word tokens W = [wl, - wE],
and the question is we = [w?, e ,w?], where 7' is the length of the context, and .J is the length

of the question. The SQuAD dataset constrains the answer A to be a continuous sub-span of the
context C; therefore, we can represent the answer using a pair of start and end indices {as, a.},
where 1 < a; <a. <T.

The original organizers of the SQuAD challenge established a logistic regression baseline that
achieved an F1 score of 51.0%, which was about 40% lower than human performance [1]. Since
then, researchers have made significant progress applying deep learning approaches, especially vari-
ations of recurrent neural networks and attention mechanisms, to close the gap between machine
performance and human performance on this dataset. Key innovations in recent models include us-
ing bi-directional attention flow to combine information in the context and the question [2], using
self-attention mechanism to refine the context representation by matching the context against itself
[3], using reinforcement learning and multi-step reasoning techniques to make predictions through
multiple passes [4], and adding additional features such as part-of-speech and named entity tags to
deep learning models [5].

In this project, we built an end-to-end deep learning model to perform machine comprehension on
the SQuAD dataset. Our model combines techniques such as bi-directional attention flow and self-
attention, and it is a variation of the model presented in [6]. The rest of this paper is organized as
follows: Section 2 introduces our model architecture and decoding algorithm, Section 3 describes
the SQuAD dataset and implementation details of the model, Section 4 gives both quantitative and
qualitative analysis of the model. Finally, we shed light on future work and conclude the paper in
Section 5.



2 Model

In this section, we introduce our model architecture that consists of an embedding layer, encoding
layer, bi-directional attention layer, self-matching attention layer, and output layer. Figure 1 gives
an overview of the multi-stage model architecture.
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Figure 1: High level network architecture.

2.1 Embedding layer

The embedding layer is responsible for mapping each word token into a dense representation using
word-level, character-level, and context-level features. At the word level, we use pretrained 300-
dimensional GloVe word vectors to obtain a fixed-size word embedding for each word [7]. At
the character level, we obtain embeddings using a 1D convolutional neural network. We use 124
filters of various sizes, and max-pool the outputs over the width of each word to obtain a fixed-size
dense vector. The 20-dimensional embeddings of the characters are randomly initialized and learned
during training. At the context level, we use pretrained models to extract part-of-speech and named
entity features of each word [9]. We encode each feature using a 10-dimensional dense vector that
is learned during training. Following [5], we also include a binary exact-match feature for each
word to indicate whether a context word is present in the question, and the corresponding position
in the question embedding is padded with zero. After the embedding layer, the word tokens W and
W are transformed into fixed-size dense representations C' = [cy,--- ,cp] and Q = [q1,- - - , qJ],
where ¢, g; € R4,



2.2 Encoding layer

We use two bi-directional Long Short-Term Memory (LSTM) networks [10] to encode the context

and question into new representations H = [hy,--- ,hy] € RT*24 and U = [uy, -+ ,uy] € RT*24,
hy = BILSTMc (h_1, 1) )
uy = BILSTMq (uy—1, 1) )

This layer models the temporal interactions between the words in each piece of text. To enrich the
encoder representation and make later similarity-based attention layers more effective, the weights
of the two LSTM networks in this layer are shared.

2.3 Bi-directional attention layer

After the two previous layers, all the tokens in the context and question are transformed into high-
level dense representations H and U. In this attention layer, we reference [2] and use a bi-directional
attention flow mechanism to fuse the question representation into the context representation. In-
tuitively, this layer is responsible for understanding the question and generating a question-aware
context representation.

Specifically, we compute attentions in two directions: context to question and question to context,
both of which are derived from a shared similarity matrix S € R”*”. Each entry S; ;j represents the
similarity between the ¢-th context word and the j-th question word, and it is computed by:

Sty = w? - [he;uj; hy o uj] 3)

where o is element-wise multiplication, [;] is vector concatenation, and w; is a trainable vector.

Context-to-question (C2Q) attention: For each word in the context, the context-to-question at-
tention takes a weighted average of the question word representations based on how relevant to the
context word each question word is. The attention weight a; € R” for the t-th context word is
computed by:

a; = softmax(S;.) 4)

And subsequently we can compute the attended question vector by:
iy =Y ay-u; 5)

where U = [@1, - - - @r] € RT*24 contains the attended question vectors for the entire context.

Question-to-context (Q2C) attention: The question-to-context attention indicates which context
words are most relevant to the question. Different from the context-to-question attention, here we
only compute one attention vector / € R?? for the entire question. We compute the attention weight
b € RT by:

b = softmax(max o (.5)) (6)

where the function max .,; computes the maximum for each row across the columns. Then we can

compute the attention vector as h = Zt by - hy. Intuitively, by using the max .,; function, we pay
attention to a context word as long as it is relevant to some part of the question. And this vector
aggregates the most important information in the context for answering the question.

Finally, we combine both attention vectors and pass it through a linear ReLU layer to generate the
question-aware context representations G = [gl, sy gT] € RTx2d;

g: = ReLU (Wg  Bes s hg © s By 0 B] + bg) %)

where W, is a trainable weight matrix, and by is a trainable bias.



2.4 Self-matching attention layer

The question-aware context representation effectively combines the information in the context and
the question. However, each word in the context that is represented by g; has limited knowledge
about its surrounding context. Although in theory recurrent LSTM networks can model complex
long-term dependencies, its effect is sometimes limited in practice. Inspired by R-NET [3], we
match the question-aware context representation G against itself in this layer. This allows us to
directly fuse relevant information from the entire context into each context word.

First we blend G using a bi-directional LSTM network to generate G = [G1,- - ,gr) € RT*x24,

Then in order to compute the self-matching attention vectors, we first construct a similarity matrix
S’ € RT*T py:
T o - 5 s
Sij = W, - (33§33 i © §5] — 00 - {i = j} ®)
where w,, € R8? ig a trainable weight vector, and the second term is to force a word to match
with words other than itself. We use a different similarity function from the original R-NET

implementation because we find it to perform better for our model. Then the attention vectors
M = [my, - - mp] € RT*24 can be computed as:

a¢ = softmax(Sy.) )
T

me =Y ai-gi (10)
i=1

Finally, we produce the self-attended context representation M = [y, - mr] € RT*2 by:
my = g¢ + ReLU (Wi, - [me; §e; mi © Gt + bin) (1)

Compared to R-NET which uses a gate structure to control information flow at the end of the self-
matching layer [3], we pass not only m; but also g; and m; o g, to the linear ReLU layer. And we
also add a residual connection so that the gradients can directly flow to the original question-aware
context representation G.

2.5 Output layer

Because the answers in the SQuAD dataset are all continuous sub-spans of the context, we can
generate the answer by predicting the start and end positions of the answer in the context. In the
output layer, we first blend the self-attended context representation M using a bi-directional LSTM
network to produce Mgtq-¢- Then the probability distribution for the start position over the entire
context is computed using a linear layer and the softmax function:

Pstart = SOftmaX(Mstart : wstart) S RT (12)

For the end position of the answer, we concatenate M and Mtqrt, and pass it to another bi-
directional LSTM to produce Me,q4. Then the probability distribution for the end position over the
entire context is computed similarly by:

Pend = softmax(Mepg - Weng) € RT (13)

2.6 Decoding algorithm

Because we make predictions for the start and end positions as, a. of the answer using two separate
softmax distributions, simply picking the positions with the highest probabilities can result in invalid
answers with as > a.. Furthermore, after performing explanatory analysis on the dataset, we found
that only 2.8% of the answers have length greater than 14, and the most frequent answer length
is 1. Therefore, at test time, we determine as and a. by first filtering out spans with as > a. or
a. > as + 13, and then taking the positions with the maximum probabilities. This improves the F1
score by more than 1% at test time.



3 Experiments

3.1 Dataset

SQuAD dataset is a machine comprehension dataset on Wikipedia articles with more than 100,000
questions [1]. The dataset is randomly partitioned into a training set (80%), a development set
(10%), and a test set (10%). And the test set is not released to the public. In this project, we use two
metrics to evaluate our model: F1 score and Exact Match (EM). The human performance on this
dataset is F1: 91.221, EM: 82.304.

3.2 Implementation details

We use nltk to tokenize the sentences and extract the part-of-speech and named entity features [9].
All the LSTM networks have a hidden size of 100, and all the linear ReLU layers have an output size
of 200. We use the 300-dimensional case-insensitive Common Crawl GloVe word embeddings [7],
and do not retrain the embeddings during training. Switching from the Wikipedia+Gigaword GloVe
embeddings used in the baseline to the Common Crawl version improved our F1 score on the dev
set by more than 0.5%. We believe this is mainly because the Common Crawl version has a much
larger vocabulary size, and is pretrained on a larger corpus.

For character-level features, we use random initialized 20-dimensional dense embeddings. Accord-
ing to a recently published paper [11], using ELMo, a deep contextualized character-level word
representation greatly improves models’ performance on the SQUAD dataset. We tried to use the
pretrained ELMo model for this project, but had to later abandon it due to the ELMo model’s huge
size.

During training, We use Adam optimizer [12] with batch size 100, and an initial learning rate 0.001.
We also apply dropout to the LSTM networks and fully connected layers with a dropout rate of 0.2
[13]. We also maintain moving averages of all the trainable parameters with an exponential decay
rate of 0.999, and use the moving averages as model parameters at test time. The moving average
technique alone gives us about 0.45% improvement on the F1 score on the dev set.

With the configurations described above, training a single model takes about 20 hours on the Azure
NV6 machine, and about 10 hours using an Nvidia 1080-Ti GPU.

To further improve the model performance, we built an ensemble model using seven models with
the same architecture but different random initialization. At test time, we sum the confidence scores
of all candidate answers, and choose the answer with the highest score. This boosts our F1 score by
2.0, and EM by 3.1 on the test set. We also tried performing majority vote and breaking ties based
on sum of confidence scores, but the performance on the dev set is not as good as the first method.

4 Results and analysis

In this section, we compare the performance of our model to state-of-the-art models, analyze the
errors our model makes, and visualize the attention layer to give more intuition into how the model
works.

4.1 Model performance

The performances of our model and several state-of-the-art models are summarized in Table 1. Our
single model achieved 79.3 F1, 69.6 EM on the dev set, and 79.9 F1, 70.7 EM on the test set. An
ensemble of seven models with different initialization achieved 80.8 F1, 72.4 EM on the dev set,
and 81.9 F1, 73.8 EM on the test set. As of February 13, the best single model performance on the
official SQuAD leader board is 87.8 F1, 80.9 EM.

4.2 Quantitative error analysis

To further analyze our model beyond the F1 and EM metrics, we break down the model performance
by answers of different lengths and questions of different types in Figure 2. As shown in the left
figure, the average F1 score decreases dramatically as the length of the correct answer increases.



Table 1: Results on the SQuAD Dataset
Dev Set Test Set

Single Model F1/EM F1/EM

Logistic Regression Baseline [1] 51.0/40.0 51.0/40.4
Dynamic Chunk Reader [14] 7127625 71.0/62.5
BiDAF [2] 773/67.7 77.3/68.0
R-NET [3] 79.5/71.1 79.7/71.3
Stochastic Answer Networks [15] 84.1/76.2 84.4/76.8
QANet (Google Brain & CMU) -/- 87.8/80.9
Our Model 79.3/69.6 79.9/70.7
Ensemble Model F1/EM F1/EM

BiDAF [2] 80.7/72.6 81.1/73.3
R-NET [3] 82.8/75.6 829/759
Stochastic Answer Networks [15] 85.9/78.6 86.5/79.6
QANet (Google Brain & CMU) -/- 89.0/82.7
Hybrid AoA Reader (HIT & iFLYTEK Research) -/- 89.3/82.5
Our Model 80.8/72.4 81.9/73.8
Human Performance [1] -/- 91.2/82.3

This is hidden by the simple F1/EM metrics because most of the answers are very short, and the
overall model performance is not affected much by the questions with very long answers. In the right
figure, we divide the questions into different types simply based on the first word of the question.
The model performs very well on questions about times and named entities, but gives bad results for
questions starting with “why”.

Combining our observations on the two plots, we believe the model is good at finding relevant
information in the contexts that is useful for answering the questions, but struggles on questions
that require deeper logical reasoning and modeling longer-term dependencies, despite having both
bi-directional and self-matching attention layers. Another reason is that the model lacks an iterative
prediction mechanism that allows for multi-step reasoning [4], and our predictions on the start and
end positions for the answer are very much uncorrelated.
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Figure 2: Average F1 score for answers of different lengths and questions of different types.

4.3 Qualitative error analysis

Here we provide two representative examples to show how the model fails to answer some questions.

4.3.1 Irrelevant words in the answer

As in the example shown in Figure 3, our model sometimes produces answers that includes several
extra words which are irrelevant to the question. Based on observations on the attention similarity
matrix, we found that the model is good at paying attention to relevant context information in these



examples, but our single-pass prediction mechanism that does not condition the end prediction on
the start prediction makes it hard to accurately pinpoint an exact answer.

Context: As northwest Europe slowly began to warm up from 22,000 years ago onward, frozen
subsoil and expanded alpine glaciers began to thaw and fall-winter snow covers melted in spring.
Much of the discharge was routed to the Rhine and its downstream extension.

Question: What did frozen subsoil and expanded alpine glaciers begin to do?

Answer: thaw

Prediction: thaw and fall-winter snow covers melted in spring

Figure 3: Wrong prediction due to imprecise end boundary

4.3.2 Lack of logical reasoning

In this example shown in Figure 4, the keyword “Super Bowl” is not directly mentioned in the
context. The model correctly pays attention to both “Seattle Seahawks” and “Arizona Cardinals”,
but is not able to use logical reasoning to identify which one is the correct answer. For humans with
no prior knowledge about football, they can still answer the question correctly by reasoning that the
Panthers beat the Seahawks to advance to the “NFC Championship Game”, so the answer can only
be the Arizona Cardinals. Answering this type of questions requires the model to reason beyond the
basic semantic meanings of the sentences.

Context: The Panthers beat the Seattle Seahawks in the divisional round, running up a 31-0
halftime lead and then holding off a furious second half comeback attempt to win 31-24,
avenging their elimination from a year earlier. The Panthers then blew out the Arizona Cardinals
in the NFC Championship Game, 49-15, racking up 487 yards and forcing seven turnovers.
Question: Who did the Panthers play to advance to the Super Bowl?

Answer: Arizona Cardinals

Prediction: Seattle Seahawks

Figure 4: Wrong prediction due to lack of logical reasoning

4.4 Attention analysis

In order to gain more intuition into how the model works, we extract and visualize the attention
similarity matrix of the bi-directional attention flow layer (denoted as .S in Section 2.3).

The Panthers finished the regular season with a 15-1 record, and quarterback Cam Newton was named the NFL Most Valuable Player (MVP). They defeated the Arizona
Cardinals 49-15 in the NFC Ct ionship Game and ad d to their second Super Bowl appearance since the franchise was founded in 1995. The Broncos finished the
regular season with a 12-4 record, and denied the New England Patriots a chance to defend their title from Super Bowl XLIX by defeating them 20-18 in the AFC
Championship Game. They joined the Patriots, Dallas Cowboys, and Pittsburgh Steelers as one of four teams that have made eight appearances in the Super Bowl.
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Figure 5: Attention similarity matrix of the bi-directional attention layer.



A larger value in the similarity matrix signifies a stronger mutual attention between a context word
and a question word. We further apply a threshold to the matrix, and list out word pairs with attention
scores above the given threshold. An example is shown in Figure 5. In this example, “who” matches
with several player names and football teams mentioned in the context, and “prevent” matches with
words with similar meanings such as “denied” and “defend”. Furthermore, wo notice that noun
phrases almost always match with themselves, this means a word in the context can effectively
localize itself in the question and synthesize its surrounding information, and vice versa. In contrast,
stop words such as “the” and “to” are not paid much attention to in most cases.

5 Conclusion

In this project, we implemented an end-to-end neural network model to perform reading comprehen-
sion on the SQuAD dataset [1]. Our approach combined several state-of-the-art techniques such as
character CNN [8], bi-directional attention flow [2], and self attention [3, 6]. The ensemble model
achieved F1 81.9 and EM 73.8 on the hidden test set, and ranked number one on the class leader-
board as of Feb 20. From detailed error analysis and attention analysis, we found that the model
can effectively synthesize information in the sentences and pay attention to the most relevant infor-
mation in the context, but is not good at predicting longer answers and struggles on questions that
require deeper logical reasoning.

As of the submission of this report, our ensemble model F1 score is about 7.4% lower than the best
model submitted to the public SQuAD leaderboard, and 9.3% lower than the human performance.
There are several approaches that we plan to try in order to bridge this performance gap, including
using multiple hops memory network to better exploit and reason about the attention layer outputs
[4], using methods other than residual connections to control information flow at different stages
of the model [16]-[18], using pretrained deep contextualized character-level embeddings such as
ELMo if more computational resources are given [11], and running more experiments to tune the
hyperparameters.
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