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Abstract

Reading Comprehension has been a hot and challenging topic in NLP
research during recent years. Since Stanford NLP group released the SQuAD
dataset in 2016, there has been tremendous progress in this field and many
new techniques have been emerging. In this paper, we implemented a Bi-
directional attention flow based model, and explored several state-of-art
techniques shown in recent papers. The model eventually achieved 65.47%
F1 score and 49.18% EM score on the Dev set.

1 Introduction

Al technologies have gained tremendous breakthrough in many fields in recent years, such as
self-driving cars and language translation. Al researchers have also been exploring tackling
the reading comprehension problem. Reading comprehension, the ability to read text and then
answer questions about it, is a basic task for human beings and performed daily. However, it
is challenging for machines, as it requires machine to understand not only the natural language
within the context and question, but also the linkage between them and more broadly the real
world implication. In order to facilitate the research process, Stanford NLP group released the
Stanford Question Answering Dataset (SQuAD) in 2016 (1). Since then, there has been
amazing progresses made by various groups in this field. In Jan 2018, AI created by Chinese
tech giant Alibaba and Microsoft have tied for first place on the SQuAD, beating the human
score for Exact Match (providing exact answers to questions) for the first time.

Among the new techniques in the reading comprehension field, one key group of breaking-
through techniques is attention mechanisms. Attention mechanisms generally allow the system
to focus on a target area within a context paragraph that is more relevant to the question
(question-aware-context). The recently developed bi-directional attention (2) also obtained
context-aware-question and avoided early-summarizing the context paragraph into a fixed-
size vector. The model enjoyed significant improvement over previous attention models.

In this paper, we built a model based on the bi-directional attention, and also explored
adding/analyzing various other techniques. The rest of the paper is organized as following:
Section 2 analyzes the SQuAD dataset and discusses relevant parameters setting. Section 3
describes the model architecture. Section 4 presents the model’s results and discussion.
Section 5 concludes and discusses future work.

2 SQuAD Dataset Analysis

The SQuAD is a new reading comprehension dataset, consisting of questions posed by crowd
workers on a set of Wikipedia articles, where the answer to every question is a segment of
text, or span, from the corresponding reading passage. With 100,000+ question-answer pairs
on 500+ articles, SQuAD is significantly larger than previous reading comprehension datasets.
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We performed analysis on the statistics of the training data set of the project (86,084 question-
answer pairs) to facilitate various parameters setting.

The histogram information shows that 100% of question length is below 30, 98.6% of context
length is below 300, and 100% of context length is below 400. Accordingly, we set the
maximum length of the question and context to be 30 and 400 respectively. We tried 300 for
maximum length of context as well but there is no material impact on model performance.
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As for answer, we plotted histogram for the answer length, as well as starting position and
ending position of the answer in context. 97.9% of answer the length is below 15. We set the
maximum length of answer to be 15. Without limiting the answer length would deteriorate the
model performance as there would be more false long answers although most answers are
shorter than 15. The starting and ending position of the answer have similar histogram pattern.
99.9% of ending point of answer are within first 300 words in context. This confirms that
setting maximum context length to be 300 would not improve the model performance much.
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3 Model Architecture

Starting from the basic model framework of default project of CS224n, we enriched the model
by adding multiple advanced new techniques, and tried to mutate the architecture using
different subcomponents, derived from existing top performing squad models. The model is
incrementally developed. Components that show meaningful improvements are kept.
Additional training and fine-tuning are introduced for best performing models later. Among
all architecture we have constructed, the best performance model contains relatively simple
structure strongly resemble the BiDaF (2) architecture. The model contains Embedding layer
with character embedding, an simple one level GRU encoding layer, a bi-directional attention
layer, a three decoding layer and an output layer (Our best model turns out to omit the so called
“High way” layer, and another key difference is we have utilized GRU as the default recurrent
neural networks instead of the LTSM unit originally deployed by BiDaF).
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3.1

Based on base model, we added character embedding. Character-level encoding offers
additional information on the internal structure of words. For example, in case there are out
of vocabulary word in the question and context, character embedding could provide word
information in absence of GloVe vectors (3) . Character layer can be as easy as one hot, but
that has similar shortcomings as one hot word vectors. In the BiDaF paper (2), and Google
paper (3), character one hot vectors are fed into a CNN network to obtain embedding. We
deployed similar CNN to embed word characters. Furthermore, we tested two approaches. One
is to deploy a pre-trained embedding’s from Google’s one billing word projects. The existing
embedding showed some aspect of reasonable relationship between characters. As tested by
Morris using t-SNE (4), at certain dimension, not only are digits clustered closely together,
they’re basically arranged in order along a number line. In many cases, the uppercase and
lowercase versions of a letter are very close.

Embedding Layer

Fig. Pre-trained char embedding from one
L] billion word project. (Extracted from
B p8d published model check point). Note
. " 2 g paddings are denoted as <PAD> --mapped
Wl to ASCI 4. <S>, </S> denotes start/end of
sentence, <W>, </W> denote start/end of
word. Unknown Unicode characters are
v L mapped to ASCII 255. The figure is
ig! 0§ originally made by Morris. (3)
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The second approach is to randomize the character embedding matrix and train it as other
parameters. The two approaches generate similar results in the architecture we deployed.

The word embedding layer maps each word to a vector space using pre-trained GloVe vectors
(3) as the baseline model provided by the project.
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3.2 Encoding Layer

The encoding layer is to transform separate word information from embedding layer into a
contextual mix encoding surrounding words to form a meaning representation of paragraphs.
We tried six approaches on this layer: 1. Simple bi-directional GRU, weight-shared between
question and context, obtaining H € R24*N for context and = U € R2?*M by concatenating
forward backward output (d is the hidden size). 2. Adding one “High way” network layer
similar to the original BiDaF (2), before the encoding bidirectional GRU. 3. Adding two
layers of “High way” network, before the encoding bidirectional GRU; 4. Adding one “High
way” network layer after the encoding bi-directional GRU 5. Feeding question ending
hidden state into the context encoding layer as the initial state (both forward and backward).
6. Concatenating the question and context matrices into one

@ a5 - Tn> Gn> C1y Cop o . Cu, G,} = biGRU({y, ... ¥n, X1, -... Xy }) and subsequently
separating them before feeding into the attention layer. The best performing model turns out
to be the simpler one, without any further processing before feeding into attention.

3.3 Attention Layer
We compared four attention architecture and their “mixings”. Namely, a). The baseline
model provided by the project (one way context to question). b). the Bi-attention flow
structure in BiDAF. (2) c). Context level self-attention as proposed in R-Net (5) with basic
attention. d).context level self-attention with bi-attention. It turns out the bi-attention layer
performed best, and utilized a relatively low resources. Self-attention encountered large
cross-context M X M X 2d X batch tenor, which forced us to reduce all other parameters
including hidden size, batch size, and context size to avoid OOM error.

Briefly, the bi-attention layer first generated a similarity matrix using the following: (Note o
represent elementwise-multiplication. S,,,, = WT[H.,, Uj;Hp o Uy,] where WT e R%, a
trainable vector. A context to query attention is subsequently represented by attention
vectora,, = softmax(S,,.). The attended query vectorU., = Y, a n Un > For query to
question, we first calculated the weights on context word by b = softmax(max,,;(S)) €
RN. Where the attended context vector ish = ¥, b H, . h is then tiled N times. Finally,
the contextual encoding and the attention vectors are combined together to get

[h; U;hotll;ho i_l] € R84 for each word. The final concatenated state is denoted as H.

3.4 Decoding Layer

Decoding layer is responsible for combining context-aware question and question-aware
context to produce a new hidden state ready for finding the answer for question. We utilized
two layers of bi-directional GRU, with output size same as previous layers default hidden
size. The last output is denoted as D.

3.5 Output Layer

Output layer is responsible for finding the right positon for the answer. There are a few ways
to do this, one is to predict the start and end position; alternatively, we can predict the span
and a start (or an end). In the baseline model, the start and end positions are predicted
independently. It is natural to assume the end position of the selected answer depends on start
position. Therefore, we limited the accepted end position to be larger than start position. Based
upon earlier examination of the statistics, we selected a max span of answer of 15. Besides,
the start and end position is selected based on the maximum product of probability p,5t® tp, "¢
among the acceptable spans. In addition, we also tried to add more layer of decoding for the
end position, the output of this decoding layer is denoted as D’. Alternatively, the pointer Net
structure encode start position prediction output when predicting end positions (6), so this is
another structure we believed to be effective and tested. It turns out not robust in our test. The
best performing model has the following prediction layer:

pstert = softmax(Wyer " |H; D))
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D' = biGRU(H; D)
pe™® = softmax(W,,,"[H; D'])

(Start, end) = argmax psstartpe end
s,e,e—s<15,e>s

4 Results and Analyses

Consistent with squad challenge standard (1), F1 score and exact match (EM) score are used
for evaluating the model. F1 score is the harmonic mean of precision and recall. We have
achieved a F1 score of 65.47% on the dev set. Please note as current codelab have persistent
issues, we haven’t’ submit on test board. The test F1 score will report separately. Notably, the
second best model is with one more “High way” layer, while it performs similarly to the best
model. This result is further discussed later in the initialization part.

4.1 Model Performance of Different Architectures

Based upon different trials with adding/removing of various components, it can be noticed
that most important layers are the attention layer and modeling (after attention) layer.
Interestingly, in our experiments, adding more preprocessing before feeding to the attention
layer degraded performance. The complicated out layer is also important, as it avoids
generating answers with end position ahead of start position.

Character embedding helped the performance to improve by a certain extent, around 2%
improvement above base line and in the case of biattn. The exact match score increased a little
bit, indicating certain word pattern recognition is at play. The effect is marginal though. Given
the GloVe word vectors contains a total of 40k words with pre-trained knowledge, the out of
vocabulary situation is rare. This is believed to be the reason why the improvement is limited.

Tablel. Model Performance of Different Architectures
Dev F1 Dev EM | TrainF1 ; Train EM
Best Model (char+biattn+mod-+out) 65.47% 49.18% 73.68% 59.60%
char+ 1 layer hiway +biattn + mod +out 65.46% 48.99% 73.25% 55.10%
Char + biattn 49.29% 36.68% 79.26% 68.80%
biattn(no dropout on attn.) 46.98% 34.64% 67.68% 56.40%
Self + basic attn (small parameters) 35.02% 25.97% 47.05% 36%
Char + baseline 41.70% 30.79% 58.15% 46%
self + biattn (small parameters) 35.38% 25.89% 41.58% 30.09%
baseline 40.34% 29.24% 63.17% 50.40%
char +xaivier 2 layer highway + biattn + mod Early termination
Char + biattn + pointer Early termination
Char + cqconcat + biattn + mod +out Early Termination
Char + hidden q2c + biattn +mod + out Early termination

** Explain of every sub component: “hiway ”: this is adopted from BiDaF paper “high way network”. “hiddeng2c”:
The end of hidden state from the question encoding layer fed into context encoding layer as the initial state (both
backward and forward). “Char”: character embedding with 1 layer of CNN. “Xaivier”: The gated matrix in highway
network is usually initialized with identity matrix unless we use “xaivier” in the description above. “Self”: refers to
self-attention mechanism mentioned in the modeling section. Mod: refers to the modeling layer mentioned in the
modeling section. “Cgconcat”: context and questions are concatenated to feed RNN and separate later. “Pointer”:
refers to pointer mechanism adopted from (6). “Early Termination™ refers to the fact it is pretty early in training that
the loss reduction would not compete with the model it is built upon, such that it is not run into full rounds (begin
to see overfitting signs) , but terminated early in training.

4.2 Model Performance under Different Hyper-parameters:
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4.2.1 Dropout:

To fine tune the best model, we tried different dropout ratio. When ratio goes to
only 0.01, the network shows apparent deterioration in performance, dropping form
the high of ~65% to a peak of only 56%. When dropout s within range (0.15-/+
0.05), the performance is similar.

4.2.2 Learning Rate:

As long as we adjust the Learning rate change within certain thresholds, (<0.01), we
can see speed up in the initial loss reduction with a higher learning rate, but the end
performance do not improve/degrade in a significantly way. Once learning rate is
above the threshold, the model would fail to converge and loss would stuck.

4.2.3 Initialization:

We found different initialization impacts performance significantly. In the test of bi-
attention, we used either constant initialization or Xavier initialization. The constant
initialization version had a performance deficit of 14% with respect to the Xavier
version. It is noted if we use the constant version, the model is actually performing
worse than baseline.

In the test of highway network, we tested different initialization as well. Given the
highway network is trying to compose a transformed version with original version
of input, we tried to initialize the gated unit with either identity matrix (with
negative bias) — so it will only function as direct pass-through at the beginning.
Interestingly, this version performs better than Xavier version, this may be due to
the fact a randomized transformation destroys original information in the context
and question and makes the model failed to generalize knowledge and lose direction
to learn.

4.2.4 Char embedding size:

Given most English words are short (<15 characters), when we chose a large
embedding size, there are many padding vectors exist, in our network we do not
give “direct” instruction on how to deal with paddings and hope the model to learn
itself. Such design with adding the char embedding size seems adding the total
“difficulty” of the problem. Indeed, in our experiments, a larger embedding size (20)
performed worse. Not only that, our pre-trained embedding size is 16, when we use
a shorter but randomized embedding transformation matrix, the performance gets
better.

4.3 Error Analysis:

4.3.1 Model performance on question types

The model’s performance on different types of questions are quite different.
Understandably, for the questions that need more comprehension, like questions on
“why”, the performance is worst. On the other hand, “what”, “when”, “who” types
usually only need to pick up direct clues from question and the model predicted them
pretty well.

As noted in the below left figure, question on time (“when”) are relatively easy for the
model, with a F1 score on dev set above 80%. The next three are “who”, “what” and
“how” type of questions. Contrary to our intuition, the “how” type of questions are not
that difficult to our model. On the other hand, the “why” questions are hardest, with an
extreme low exact match score (11%). This may be due to the fact an answer to “why”
questions tends to be long (even longer than 15) and less straightforward. On note is that
there is an answer with 37 words and our model correctly picked the 15 words that is

located in this 37 words answer.
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250 4.3.2 Model performance on true answer lengths:

251 From the right figure above, the model achieved higher performance with shorter
252 true answers. Given we have limited our answer span, all true answers with a span
253 longer than 15 will have an exact match score as zero, while we still archived a F1
254 of 27%. We do noticed the F1 score between questions with true answer span at
255 14,15,16,17 are not significantly different, indicating the trade-off limit we put on
256 answer span did not significantly degrade long-answer span questions. The next step
257 of improvement maybe should put more emphasis on reading comprehension rather
258 than relaxing the answer span limit.

259

260 4.3.3 Detailed analysis on attention and start/end position picking
261 mechanism.

262 Name picking (Right choice):

263 In a sample question “which player played even though he broke his arm two weeks prior
264 to the super bowl?” Our model picked clue about names. When we look at the start
265 position probability distribution, two names are highlighted and all others are not
266 considered good candidate (shown below):

267

268

269

270 We also looked at the similarity matrix in bi-attention to check how the model

271 highlights context words given a question word. For example, the word “broke” in
272 question highlighted the context words (top 15 in terms of similarity matrix value)
273 “finished, game, the, breaking, yards, interception, caught, one, with, forced,
274 two, a manning, just fumble”, which is believed to helped to anchor the name
275 “Davis” instead of the other name “Luke Kuechly”

276

277 Lack of language transformation (Incorrect answer).

278 A question asked “what field of computer science analyzes the resource requirements of a
279 specific algorithm isolated unto itself within a given problem.” The answer lays in the
280 sentence “a key distinction between analysis of algorithms and computational complexity
281 theory is that the former is devoted to analyzing the amount of resources”. The correct
282 answer should be “analysis of algorithms™ as that is what “the former” refers to.
283 While our model picked up correct clue for answer, but failed transform “the

284 former” to the original word it refers to. This is an interesting case as the model
285 seems to get the basics of question and answer, but lack of language transformation
286 capabilities. This reminds us that iterative reasoning method may help in the future
287 generations of models, as the model may be able to learn “the former” type of

288 answer need another round of transformation to its true underlying identity it refers
289 to.
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QUESTION: antibodies transported from the mother to an infant via the placenta is an
example of what type of short-lived immunity?

CONTEXT: newborn infants have no prior exposure to microbes and are particularly
vulnerable to infection. Several layers of passive protection are provided by the mother.
During pregnancy, a particular type of antibody, called igg, is transported from mother to
baby directly across the placenta ... .... This is passive immunity because the fetus does not
actually make any memory cells or _antibodies—... ....

The true answer should be “passive immunity”, and our model picked “igg”. Note if
we observe the heat map, the questions words highlighted the beginning part of the
passage. (See chart above). The word “passive immunity” is introduced in the
middle/end part of the passage. The model seems focused the search near the
passage that resembles the questions -- indeed, if we only allow human to pick
answer for the beginning of the paragraph, we may have to choose “igg” as well.
This highlights the facts that the model tends to find answers correctly if they are
closer to the question (or the context that resemble the question)

5 Future Work

In this paper, we report our result and implementation details of our reading comprehension
model, which is mainly based upon the bi-directional attention flow model with variants
derived from other state-of-art models. Experiments showed that attention and output
modeling are giving performance gains while modeling before the attention layer get some
hard-to-tune scenarios. It is worth further exploring before-attention multi-layer modeling,
especially given state-of-the art results had implanted effective transformations. The current
self-attention layer is quite resource-hungry, but we have devised a time-loop version of the
layer which will cost significantly less memory resources and a full implementation would
help to allow deeper abstracting context and produced better machine comprehension in
general.
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