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Abstract

We hereby detail our attempt to replicate the paper "A deep reinforced model
for abstractive summarization" by Romain Paulus, Caiming Xiong and Richard
Socher. This paper presents a model for abstractive summarization using an
RNN-based encoder-decoder model with two main innovations. First, it attempts
to reduce repetition in summarizing long texts using what the original authors
called "intra-attention". Second, it combines a maximum likelihood objective
with a reinforcement learning objective in an attempt to improve readability. The
combined effect of these two innovations led to a state-of-the-art performance of
41.16% in ROUGE-1 F; score in the CNN/Daily Mail dataset. In this project we
concentrate on replicating the first of these two innovations.

1 Introduction

Creating summaries of long texts, whether that pertains to medical research articles or patient
records, is an essential, yet arduous and time-consuming aspect of medicine. We are interested in the
prospect of automating at least some of those summarization tasks using state-of-the-art algorithms
for automated summarization. To develop the appropriate knowledge and expertise, we agreed with
Richard Socher to work on replicating a preprint on arXiv for which he is the senior author [1].

Automated summarization is the process of shortening a full text into a summary of its salient points.
Extractive summarization creates such summaries by synthesizing salient phrases from the full text
verbatim [2, 3]. In contrast, abstractive summarization creates an internal semantic representation of
the text, which it translates into a summary much like the human process [4, 5]. We are interested
in the latter task, which even though more challenging, can eventually lead to more coherent and
concise summaries.

High quality summaries with abstractive summarization were only obtained very recently [5], by
implementing the encoder-decoder model with attention for machine translation [6] to summarization.
Nevertheless, early models could only achieve good performance with short inputs of one or two
sentences being summarized into even smaller summaries [7]. Instead, attempts at analyzing longer
full texts with longer summaries using the the CNN/Daily Mail dataset [8] led to summaries with
substantial repetition of phrases.

The first model for abstractive summarization trying to address this problem [9] used an implementa-
tion of the coverage vector [10], which was first proposed in the neural machine translation literature.
Coverage attempts to remind each subsequent decoder time-step of parts from the full text that have
already been covered. The Paulus et al. [1] preprint that we hereby attempt to replicate addresses the
same task by using novel intra-temporal and intra-decoder attention mechanisms, together known as
"intra-attention", which keep track of previous aspects of the full text that have been attended to and
of words that have already been generated.

Our aim in this replication study is to implement an encoder-decoder model with intra-temporal and
intra-decoder attention, i.e. intra-attention, as detailed by Paulus et al. [1]. We also aim to replicate
their pointer mechanism, using which will make our model capable of copying words of the full text



by a mechanism known as pointing [11] and as such compensate for words it would like to use but
which are not found in its vocabulary. We will compare our performance to the study we are trying to
replicate, previous models of extractive and abstractive summarization and to that of See et al. [9]
with no coverage and no pointer mechanism.

2 Model Design

In this section we describe our baseline model and the following aspects of the Paulus et al. [1]
study we are trying to replicate: (1) intra-temporal attention, (2) intra-decoder attention, (3) token
generation and pointer and (4) repetition avoidance at test time. Our implementation differs from
the original in the following aspects: (1) our pointer mechanism does not make use of named-entity
recognition (NER), (2) we are using randomly initialized word embeddings instead of GLoVe vectors,
(3) we are not sharing decoder weights and (4) we are using a maximum-likelihood objective rather
than a combined maximum likelihood and reinforcement learning objective.

2.1 Baseline Sequence-to-Sequence Model with Attention

Our baseline model is that which was presented by See et al. [9] with no coverage and no pointer
mechanism. First, each token of a full-text article was matched to a randomly initialized embedding
matrix £ € RIVIX4= and fed sequentially into a single-layer bidirectional LSTM-RNN encoder. This
led to a sequence of encoder hidden states h¢ € R%, where i € {1,2,...,n}. n was fixed and was
taken to be 400, as per See et al. [9]. Full texts with less tokens than 400 were padded and our loss
was masked to this padding. The final hidden state h{, was used to initialize the first decoder hidden
state, such that hg = h¢.

The decoder was a single-layer unidirectional LSTM-RNN, which at each time-step ¢ computes
hidden states h{ € R, wheret € {1,2,...,n'}. In training mode, each token of the target summary
was fed sequentially into successive time-steps of the decoder. The decoder in training mode had a
maximum sequence length of 100 and used the same embedding matrix £ as the encoder. Decoder
inputs with less than 100 tokens in length were padded and our loss was masked to this padding. In
testing mode, we used beam search with a beam size of 5.

The attention distribution ai € R™ was calculated as per Bahdanau et al. [6]. Attention can be seen
as a way of forcing each time-step of the decoder to attend to appropriate encoder hidden states. We
first calculated attention scores e?;, € R™, which we normalized into the attention distribution and
which we then used to weigh encoder hidden states into the context vector ¢ € R,

eb; = v" tanh(Wench§ + Waechf! + ban) (1)
ab = softmax(e?) 2
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where Wepe, Wyee and by, are trainable parameters. The context vector was then used to create our
predictions probability distribution p(y;) € R!V! by,

p(yt) = SOftmaX(Woutr(VVinnr[h? C?] + binnr) + boqu) (4)

where, Wour, Winnrs Doutr and binp, are trainable parameters.

2.2 Intra-Temporal Attention

Intra-temporal attention was first introduced by Sankaran et al. [12]. Unlike attention used in our
baseline model, this version of attention not only helps the decoder focus on particular parts of the
source sequence, but also penalizes input tokens that have obtained high attention scores in past
decoding steps. As such, intra-temporal attention is thought to be particularly helpful in avoiding
repetition, especially when summarizing longer texts [5].



Attention scores, e;; € R, for each input ¢ at each decoder time-step ¢ are a function of the encoder
hidden state at input ¢, h{ € R and the decoder hidden state at time-step t, h,‘f € R4 such that,

et = (hg)T Wenh$ )

where, W, € R4 ¥dn is a trainable parameter. Input tokens that have obtained high attention scores
in past decoder steps are penalized by normalizing current attention scores by previous attention

scores. This leads to the new temporal scores €;; € R, such that,

~ exp(e;) t=1 ©
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The above temporal scores are normalized into the intra-temporal attention distribution, of; € R,
such that,
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The temporal attention distribution is used to weigh the encoder hidden states into the encoder context
vector, ¢ € R, such that,
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2.3 Intra-Decoder Attention

Intra-temporal attention helps different time-steps of the decoder focus on different aspects of the
encoded sequence. However, with longer summaries, repetition can still occur because in our baseline
model subsequent decoder time-steps have no information about what aspects of the encoded sequence
have already been decoded. Intra-decoder attention attempts to enhance our model’s ability to avoid
repetition by helping each subsequent decoder time-step attend to all previous decoder time-steps.

First, we calculate intra-decoder attention scores, e, € R, where ¢’ € [1,2,...,t — 1], such that,
d dyrrd 1.d
erpr = hy Wamhy ©))
where W2 is a trainable parameter. Then, we normalize the above intra-decoder attention scores

into the intra-decoder attention distribution, o, € R, by dividing current attention scores with the
total previous attention to a specific decoder step, such that,

d eXP(Egt')
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Finally, the intra-decoder attention distribution is used to weigh the decoder hidden states into the
decoder context vector, Cf € R such that,

(10)
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(11)

2.4 Token Generation and Pointer

We used a slight modification of the pointer-generator mechanism detailed in See et al. [9], which
was inspired from Vinyals et al. [11], rather than the one in Paulus et al. [1], which was first presented



in Nallapati et al. [S] and Giilgehre et al. [13]. There are two main differences between the See et al.
[9] and the Paulus et al. [1] pointers. First, the former predicts whether an out-of-vocabulary (OOV)
word should be used at each time-step ¢ conditional on attention distribution ¢, current state h¢
and current decoder input z; € R%, whereas the latter computes the same probability conditional
on intra-temporal context vector c{, intra-decoder attention vector ¢{ and current hidden state h{.
Second, the former uses parameters which it trains against overall cross entropy loss, whereas the
latter uses parameters which it trains directly to predict use of OOV or presence of named entity,

versus not, as well as ;. It is unclear which of the two pointer mechanisms works better.

In our implementation, we substituted c? by ¢ and c¢f. As such, we first calculated the scalar
generation probability for time-step ¢, p(u; = 1) € [0, 1], as,

where, W, and by, are trainable parameters. Our token-generation layer generates the probability

distribution, p(y: | u¢ = 0) € RIVel, where V, is the original vocabulary extended to include all OOV
words seen in the full text and abstract, such that,
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where W, and by, are trainable parameters. The pointer mechanism uses the intra-temporal attention

weights of; as the probability distribution, p(y; | ur = 1) € RIVel, to copy the embedding z; of input
token w;, such that,

of, w; €V
= - = 1 = ti & 14
Py =i | u ) {0 otherwise. 14
As such, the final distribution p(y,) € RIVel is,
p(ye) = plur = 0) p(ys | we = 0) +plur =1) > plye = i | u = 1) (15)

2.5 Loss

Our objective was to maximize the likelihood of observing ground-truth at time-step ¢, given all
tokens of previous time-steps 1, ...,¢ — 1 and current decoder input x;. We did so by minimizing
the cross-entropy objective,

T
Jee = =Y logp(ys) (16)

t=1
2.6 Repetition Avoidance at Test Time

In addition to the intra-attention mechanism detailed above, we further avoided repetition at test time
by setting p(y;) = 0 during beam search if outputting y; would create a tri-gram that already exists in
the previously decoded sequence of the current beam. This is based on the observation of the original
authors that a ground-truth summary rarely includes repeating tri-grams.

2.7 Training and Hyperparameters

We used two 200-dimensional LSTMs for the bidirectional encoder and one 400-dimensional LSTM
for the decoder. We limited the input vocabulary size |V| to 50,000 tokens (unlike 150,000 from
the paper) due to memory constraints, which was also identical to the output vocabulary. Input
word embeddings were 128-dimensional (unlike the paper, where they were 100-dimensional) and
were initialized using the truncated Normal distribution with a standard deviation of 0.0001 (unlike



using GloVe vectors). We trained all models with Adam [14] with a batch size of 50 and a learning
rate a = 0.001. We used gradient clipping with a maximum gradient Euclidean norm threshold of
2. We did not use any form of regularization, as we did not observe a reduction in validation set
performance with further training. At test time, we used beam search of width 5 on all our models
to generate our final predictions. We trained our final model on a Standard NV6 virtual machine by
Microsoft Azure for a total of 3 days. Unlike the study under replication, we always trained against
ground-truth summaries instead of choosing the previously generated token with 25% probability to
reduce exposure bias. In training, all weight parameters were initialized using Xavier initialization
and all bias terms were initialized to zero.

3 Data

We trained, evaluated and tested our model on the non-anonymized version of the CNN/Daily Mail
dataset [5, 8] as found online'. This dataset contains online news articles (mean number of tokens,
781) alongside their summaries (mean number of sentences, 3.75; mean number of tokens, 56)
categorized into 287,226 training pairs, 13,368 validation pairs and 11,490 test pairs.

4 Experiments

4.1 Experimental Setup

All experiments were done using parameters detailed in 2.7. We evaluated the impact of our
modelling decisions by first fitting our baseline model, then replacing its attention mechanism by
intra-temporal attention, then adding intra-decoder attention (collectively we refer to these as intra-
attention) and finally adding the pointer mechanism. All comparisons were made at 3 epochs (about
55,000 iterations), which was approximately equivalent to training for 12 hours. We evaluated
our performance in the validation and test set using the Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) score [15]. We are using F; scores for ROUGE-1 (here taken to be the number
of common unigrams (i.e. tokens) between reference summaries and generated summary irrespective
of sequence), ROUGE-2 (as per ROUGE-1 for bigrams) and ROUGE-L (here taken to be the length
of the longest number of in-sequence matches between reference and generated summaries). These
were obtained using the pyrouge package?. In addition to the original paper we are providing 95%
Confidence Intervals (CI) to express uncertainty in our estimates. We also completed many other
experiments to test modelling decisions that are not presented in this report, such as masking for
padding versus not and passing both decoder input and intra-attention as input to LSTM cells versus
only decoder input.

4.2 Results

Our results in the test set are shown in Table 1. We are also comparing our results to recently
published extractive and abstractive summarization attempts, as per Paulus et al. [1], the results of
Paulus et al. [1] and the results of See et al. [9] (without coverage and pointer-generator). We are
presenting results at 12 hours because we were unfortunately unable to retrieve standardized results
of the final models and hyperparameters for a longer period of time. Progressive implementation
of methods as per the study under replication did not predictably lead to better performance and
our implementations did not manage to outperform our baseline. It also appears that combination
of intra-temporal and intra-decoder attentions into a unified intra-attention, hindered rather than
facilitated our model and that combination of Bandanau attention with our Intra-Decoder attention
did not lead to an appreciable change in performance. Lastly, it appears that our model was not able
to derive benefit from longer training and that almost half of the performance seen in our final model
was due to the pointer mechanism.

"nttps://github.com/JafferWilson/Process-Data-of-CNN-DailyMail
’pypi.python.org/pypi/pyrouge/0.1.3



Table 1: ROUGE F; scores in percentages (%) and 95% Cls in percentages (%) on the test set. The
models in the top section of the graph have already been published. The middle section of the table
details our results for progressive implementations of Paulus et al. [1]. The final section presents our
results for the fully-trained model.

Model ROUGE-1 ROUGE-2 ROUGE-L

Fq 95% ClI F 95% CI F; 95% CI

Lead-3 [3] 39.2 - 15.7 - 35.5 -
SummaRuNNer [3] 39.6 - 16.2 - 35.3 -
words-1vt2k-temp-att [5] 35.46 - 13.30 - 32.65 -
ML, no intra-attention, pointer [1] 37.86 - 14.69 - 34.99 -
ML, with intra-attention, pointer [1]  38.30 - 14.81 - 35.49 -
Baseline [9] 31.33 - 11.81 - 28.83 -
Baseline 23.16 +£0.80 7.63 +0.79 21.03 +0.77
Intra-Temporal 1448 +£0.56 393  +0.31 1343 +0.52
Baseline + Intra-Decoder 2272 £0.75 7.27 +0.70  20.67 £0.74
Intra-Attention 9.78 +0.44 241 +£0.19 9.14 +0.40
Intra-Temporal + Pointer 20.11 +0.64 6.71 +0.43 18.61 £0.59
Baseline + Intra-Decoder + Pointer  25.96 +0.76 942  +£0.63 2336 +0.73
Intra-Attention + Pointer 1760 +0.64 596 039 1641 +£0.60

Intra-Attention + Pointer (3 days) 17.58 +0.67 5.85 +0.42 16.17 +0.61

4.3 Error Analysis

First, we set out to confirm that our models are minimizing cross-entropy loss by making conver-
gence plots (Figure 1). Convergence plots for increasingly complex model specifications illustrate
exponentially decreasing cross-entropy loss for the first 20,000 iterations followed by a plateau. The
intra-temporal attention model displayed the least loss within the first 63,000 iterations, whereas
the model with intra-attention and pointer generation displayed the most. The rest of our modelling
choices did similarly well, even though based on Table 1 we expected less loss reduction with
intra-attention. We would have also liked to plot loss for the seq2seq =+ intra-decoder model.

o 20000 40000 80000
teration

Figure 1: Loss for varying model specifications.



Second, we attempted to re-tune hyperparameters presented in Paulus et al. [1] for our full model
against loss; loss was a more convenient proxy to tuning against ROUGE scores. We concentrated
on tuning learning rate, which in view of time-constraints and indications of performance boosts
detailed in See et al. [9], we believed was the most important hyperparameter to tune. We hereby
present a 6 hour plot for some of the learning rates we tested against loss (Figure 2). Even though
all presented learning rates led to a similar loss within the displayed iterations, our hyperparameter
search confirmed the learning rate suggested in study under replication (alpha = 0.001).

Alpha
0.0008

Loss

0.002
0.005
0.009

0 1000 2000 3000 4000 5000
Iteration

Figure 2: Hyperparameter search for learning rate (alpha).

Third, we attempted to quantify the ability of our model to overfit the train set and the extent to which
this may hurt its performance in the validation set across iterations (Figure 3). Our model performed
better in the training set than in the validation set at all times, as expected, and we did not observed
a drop in performance within the validation set across epochs for which we were able to train our
model. However, it did confirm that our model’s performance does not improve significantly beyond
roughly 30,000 iterations (i.e. almost 2 epochs) and that our model was unable to overfit the training
set. We would have liked to repeat this experiment with (1) only one mini-batch of training examples
and (2) variable learning rates across the run as previously suggested See et al. [9].

20-

Dataset
- Train
Validation

ROUGE-1
=

0 30000 60000 90000
Iteration

Figure 3: ROUGE-1 F; score for train versus validation set.

Lastly, we also explored the quality of summaries we obtained with different model specifications
and we hereby present an example (Figure 4); these summaries were created after 12 hours of



training for each of the models shown. As shown, even though our model is a model for abstractive
summarization, the grand majority of our summary content was extractive, regardless of model.
All models were prone to repetition, even though we observed this becoming limited to phrase and
sentence repetition after implementation of beam search as per Section 2.6. Models with intra-decoder
were less prone to repetition and made more semantic sense. Interestingly, our model seemed capable
of skipping phrases within " tokens and most summaries were surprisingly readable, despite the low
ROUGE F; score.

ost recent robbery monday during lunch
ank with arms , robbed the bank and
t bi . [20¢

Reference. latest of 8 rabberies came at wel in ol
nk , fbi says

ir . fbi : one robber white , the other black ; they 're in their 40s and stand
about 5" 8 " trio includes a driver who waits outside while other two take ove

Intra-Temporal. a bank bank bank robbery arrests a bank bank bank robbery three years ago . a bank bank bank robbery arrests a bank bank bank robbery . a bank bank
bank robbery arrests a bank bank bank robbery

Intra-Decoder. (1
40s and [UNK] . t

ross maryland and yirginia . the black hat bandits have been described as in their

Intra-Attention. a bank robbery trio trio known as the black hat bandits sus;
in a two-month string of robberies across maryland and virginia . the tr

tia . the trio bandits suspected
d and virginia

Intra-Decoder + Pointer. 1 § 3

hat bandits . the bl

sunglasses , black

s have been described as the black

s and wearing winter coats ,

Figure 4: An example summary across different model specifications: orange for text extraction;
green for information from the full text that were also seen in a summary; purple for clear paraphras-
ing of the full text; blue for words or phrases that were not found in the full text; red for repeated
text.

5 Discussion

In this project we attempted to replicate a preprint by Paulus et al. [1]. We started off using data
and a baseline model with no coverage and no pointer made available by See et al. [9] and we then
attempted to build into it intra-attention and pointer from the study we are attempting to replicate.
Unfortunately, our results did not appear to improve on our baseline and aspects of our model, such
as intra-temporal attention, led to a significant decrease in baseline performance. Nevertheless, our
error analysis identified that our model was able to learn and that important hyperparameters we were
using were well-tuned. Analysis of summaries we obtained revealed that most of our performance
was derived from extractive summarization and that intra-attention was not as effective as we had
hoped in repetition avoidance.

Given further time we would also like to observe the distribution of attention in our model to identify
whether this was allocated appropriately. We would also like to systematically ablate parts of our
model to discover which parts of it led to the observed decrease in performance. Even though we ran
multiple such ablations, the sheer number of combinations of what may be buggy did not let us run
all possible such ablations.

Upon appropriate replication, we would be very interested in (1) automating the quantification of
repetition in generated summaries, (2) exploring methods of helping our model pay attention to all
parts of a full text rather than preferentially attending to its beginning (as shown in Figure 4), (3)
identifying a dataset in which ground-truth summaries are not as extractive as the ones in our current
dataset and (4) exploring the impact of feeding many more information to the model in the quality of
its summarization, e.g. the article title, name of author and date of publication.
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