SQuAD Reading Comprehension Task -
(CS224n Final Project

Adva Wolf
Stanford University
codelab: advaw
advaw@stanford.edu

Abstract

The Stanford Question Answering Dataset (SQuAD) contains more than 100000
questions and paragraphs with highlighted answers, taken from Wikipedia. Our
model uses Bidirectional attention flow and predicts the location of the highlighted
answer with an accuracy of 67.6% F1 and 52.2% EM (exact match). We also
investigate the effect of different span selections.

1 Introduction

The SQuAD challenge allows us to measure how well machine learning systems can understand
text: given inputs (paragraphs from Wikipedia articles) and questions about them, can our model
extract the answers from the inputs? Our output is the “span” of text in the paragraph that answers the
question. We compare our model span to the ground truth, which is based on crowdsourced answers.
We compare by using two measures: The exact match, which is the percentage of predictions that
match any one of the ground truth answers exactly, and the F1 score metric, a looser metric that
measures the harmonic average between precision (what percentage of our span also appears in the
ground truth?) and recall (what percentage of the ground truth appears in our span?).

Our approach is mostly based on a prior work by Seo et al. [1] - also known as BiDAF. Our model
includes word embedding, BiLSTM encoder, bi-directional attention flow layer, a BILSTM modeling
layer and an output layer. We investigate different models for predicting the span: we can predict
the start position of the span, the end position and / or the length of the span. We try different
combinations of the above and analyze their performance.

2 Related Work

The SQuAD databased allows many researchers to investigate different deep learning and NLP
techniques, as it can be seen in the project website: https://rajpurkar.github.io/SQuAD-explorer/.
We will survey the BiDAF model approach and other models working with more complex span
predictions.

2.1 BiDAF

The BiDAF model contains word and character embedding, BiLSTM encoder, bi-directional attention
flow layer, double BiLSTM modeling layer and an output layer. The output layer obtains the
probability distribution of the start index by applying a weight matrix on the output of the previous
layers and a softmaxing the result. In order to get the probability distribution of the end index, the
model applies an additional LSTM layer to the output of the modeling layer, and applies the same
method as for the start index (with different weights). We notice that in this model, the start position
and the end position are predicted independently. The core part of the BIDAF model is its attention

layer, which we implemented in our model. Attentions are a key ingredient in many NLP models,
since they allow us to focus on a particular part of the input that is relevant to the current state. Here,
the attention is computed in two directions: from context to question and from question to context.
Both of these attentions are calculated from a shared similarity matrix between the embeddings of the
context and the question, where the 7, j entry of this matrix indicates the similarity between the i-th
context word and j-th question word.

2.2 More complex predictions

One of the problems with predicting the start position and the end position independently is the
possibility that the most probable option has the end position before the start position. Different
models deals with this problem. For example, the DrQA model [3] chooses the best span from word
i to word 7’ such that i < ¢/ < i+ 15 and Pgtqrt(7) Pena(i') is maximize. Other models, such as
RaSOR [2] or DCR [4] define a probability distribution over all possible answer spans.

3 Approach

The layout of our model can be seen in the following figure. This figure is based on the BiDAF [1]
model architecture figure, and the layers that we omitted are blackened.

Start

End Length Query2Context

Dense + Softmax | Dense + Softmax |
Output Layer Uy

Uz
Uy

8L L] [] hhp e

9 9
! 2 or Context2Query
Attention Flow Query2Context and Context2Query
Laver Attention SR+ uy
S
hy hy hy Uy Uy é,H.‘ .H,H,H,‘ U,
Contextual z D ‘—_—| [:I H D I:I -J M LoJ U U U Uy
Embed Layer 7] @
Word Embed = =] i = O - hy hy hy

Layer

Word
Embedding
X4 X2 X3 X7 [Sh q
L ! L ! GLOVE
Context Query

Figure 1: Histogram of the ground truth width

Word Embedding layer: maps each word in the context and question to a fixed size vector, using
pre-trained word vectors, GloVe. The output of this layer is two sequences of d-dimensional vectors:
Xi, ..., XT representing the context, and qs, . . . , gy representing the question.

biLSTM Encoder layer: 1-layer bidirectional LSTM (which share weights between the context
and the question):

{hy,...,hp} = BILSTM({x1,...,xt}), h; =[h}; h;j] € R?"

{uy,...,uy} = BiLSTM({qs,...,qs}), w = [&; 5] € R*"

when [Hi, E] is the concatenation of the forward and backward hidden state for the context, and
similarly for the question.

Attention Flow Layer - BIDAF Attention: We implemented the attention layer described in Seo
et al. [1]. This layer output is a question-aware representation of the context words, together with the

output of the previous layer. We start with calculating the similarity matrix:

S¢; = wrlrht + wg‘uj + (wgo ht)Tuj eR

When w1, wo, wg € R?" are weight vectors. Notice that our formula is equivalent to the description
in [1], and represents our implementation. Implementing the above formula for S¢; is more memory
efficient than direct implementation of the original formula. Next, we use this matrix to calculate
attention-aware vectors in both directions:

Context-to-question Attention. First we calculate for each context word attention distributions
over the question words ot = softmax(Sy.) € R”, and we use them to calculate a weighted sum of

the question hidden states, for each context word: Uy = Z;-Izl aé— u; € R2,

Quetion-to-context Attention. First we calculate the maximal element in the each column in the
similarity matrix, and softmax the result: b = softmax(max.,; S) € RT. This vector represents the
weights on the context word, when the the most important words with respect to the question will

have larger weight. The attended context is h = Zthl bshy € R2h.

The output of this layer the following combination of the above:

gt = [h; dg; he o tg; hye o h] € R

Modeling layer: This layer contains 1-biLSTM layer applied to the sequence g:
{m17 cee 7mT} = BlLSTM({g17 fiE . 7gT})’ m; :[I—I—>117 (I'I—ll] € R2h

it captures the interaction between the question-aware context words. It is different than the encoder
layer, since the encoder layer captured the interaction between the context words and question words
independently. The original BiDAF implementations includes double biLSTM layer, and we decided
to include only one since every biLSTM layer increases the running time of the model by almost
twice.

Output layer: We experimented with four different models, sharing the above layers and differ in
the output layer. All outputs layer include a fully-connected layer followed by a ReLU non-linearity,
and we obtain the vectors m;’ € R” after this layer.

The “naive” model: This model output layer predicted the start and end position independently,

by applying the following to the vectors {m/, ..., m/.}:
start __ T / end __ T /
D = softmax; (W g4 M + bstare) ¢ = softmax; (w,,sm; + bend)
This model used the following loss function: loss = — log p**%"*(i4t4r¢) — log p°"%(icna), and the

following predictions: [5¢" = argmax;p5!2"t, [°"? = argmax,p™d.

The conditioning model: This model differs from the above only in the choice of 1**"* and [°"9,
Here we choose the best span from word i to word 4’ such that i < i’ < i+ 15 and p**®"t(i)p°™d (i)
is maximal, following DrQA [3].

The start-and-length model: This model output layer predicted the start position and the length

of the span independently, by applying the following to the vectors {m/, ..., m/}:
pstart — softmaxi(wganmg + bgrars) D= softmaxi(wlj;nm; + bien)
This model used the following loss function: loss = — log p***" (issart) — log p'®" (i1en), and the

following predictions: [°%" = argmax,p3!e"t, [°"¢ = argmax,p.®" + [°!%". See the remark in the
conclusion regarding this implementation for the length prediction.

The “triple-power”” model: This model output layer predicted the start, end positions and the

length of the span independently, by applying the following to the vectors {mj, ..., m%.}:
pstart = softmax; (wz—t'artmg + bstart) plen = softmax; (wl];nmi + blen)
p"? = softmax; (wl, ;m} + bena)

This model used the following loss function:

loss = — logpsu“nt(istart) - logplen(ilen) - logpend(iend)

Here we choose the best span from word ¢ to word ¢ + k such that 0 < k < 15 and

ptart(§)plen (k)ped(i + k) is maximal. See the remark in the conclusion regarding this imple-
mentation for the length prediction

4 Experiments

In this section we evaluate and analyze our models performance. We start with the F1 and EM scores
on the official SquAD DEV set:

Table 1: F1/EM results on DEV set

Model EM Fl1

Naive 50.9 65.5
Conditioning 522 67.6
Start-And-Length 353 58.0
Triple-Power 52.0 66.6

BiDAF (Seo et al. implementation, single mode) 67.7 77.3

4.1 Error analysis

We analyze the errors in our models quantitively based on the answer lengths, start, end positions and
the question type. In addition, we explore specific examples.

4.1.1 Performance on specific question type

Table 2: Performance on specific question type

question containing: ’what’ "why’ "where’ who’
Total number of such questions: 5981 153 478 1227
EM Fl EM Fl EM Fl EM Fl

Naive 512 657 536 647 487 620 500 653
Conditioning 523 674 601 741 515 660 50.0 66.3
Start-And-Length 353 58.0 457 664 360 574 349 56.6
Triple-Power 519 668 582 68.1 515 640 504 653

question containing: "how’ other

Total number of such questions: 1173 1379

EM Fl EM Fl

Naive 500 644 515 66.8

Conditioning 532 67.7 524 69.2

Start-And-Length 347 577 349 589

Triple-Power 52.1 673 529 675

In Table 2 we summarized the performance of each model on each question type. The results are
quite similar to the total EM/F1 evaluations - the conditioning model has the best performance. We
also see that all the models performed exceptionally well on questions of type “why”.

4.1.2 Performance on specific location of the answer

We measure the accuracy of our models based on the starting and ending positions: For intervals of
10 consecutive positions, we average the F1 and EM scores for all examples in the DEV set with
ground truth answer starting / ending at this interval. If our interval included less than 25 examples,
we set the average to be zero. The results are summarized in the graphs below:

1 as a fucntion of start, flatten 1 as a fucntion of end, flatten

[00 200 300 40 00 600 [00 200 300 40 00 600
start end

em as a fucntion of start, flatten em as a fucntion of end, flatten

[00 200 300 40 500 600 [00 200 300 40 500 600
sart end

Figure 2: Performance on start and ending position location

In order to understand this results better, it would be also useful to look at the histogram of the ground
truth start and ending positions:

Histogram of span start position Histogram of span end position

Total number
Total number

300 400 500 600

0 100 200 300 400 500 600
span end position

span start position

Figure 3: Histogram of the ground truth location

Overall, the performance of the different models looks pretty uniform, with the conditioning model
with the best results. We also see that starting from the ~ 150 location, the number of examples that
we have is quite small, and the jumps that we have in the average scores are probably due to noise.
We do see a slight advantage for the “triple power” model for answers that are located at the first
sentence in the paragraph, which happens frequently. However the conditioning model performs
better in all the other locations, and has a better score overall.

4.1.3 Performance on specific width of the answer

We measure the accuracy of our models based on the length of the ground truth answer: For each
length, we average the F1 and EM scores for all examples in the DEV set with ground truth with that
length. If the number of examples in that length included less than 25 examples, we set the average
to be zero. The results are summarized in the graphs below:

f1 as a fucntion of length em as a fucntion of length

o start-and-length . o start-and-length
08 i B * naive 07 % . « naive

s « conditioning o « conditioning
« triple power 06 e . « triple power

i 054 ‘8

0.4

03

0.2

0.1

length length

Figure 4: Performance on start and ending position location

In order to understand this results better, it would be also useful to look at the histogram of the ground
truth answers length:

Histogram of span total length
4000 9 P g

3500

3000

2500

2000

Total number

1500

1000

o 10 20 30 40 50
span total length

Figure 5: Histogram of the ground truth width

Also here we see the effect of noise starting from length of size ~ 15. We notice that the most
frequent option (length size equal to 0, i.e. the golden truth answer is a single word) represent the
total performance that we get on the total DEV set.

4.1.4 Exploring examples

We are interested in examples in which some of models were correct and other failed. We will try to
explain the specific reasons for it in each example.

Example 1 - predicting the length helps in short answers:

e context:as well as being added , forces can also be resolved into independent components at
right angles to each other . a horizontal force pointing northeast can therefore be split into
two forces , one pointing north , and one pointing east . summing these component forces
using vector addition yields the original force . resolving force vectors into components of a
set of basis vectors is often a more mathematically clean way to describe forces than using
magnitudes and directions . this is because , for orthogonal components , the components
of the vector sum are uniquely determined by the scalar addition of the components of the
individual vectors . orthogonal components are independent of each other because forces
acting at ninety degrees to each other have no effect on the magnitude or direction of the
other . choosing a set of orthogonal basis vectors is often done by considering what set of
basis vectors will make the mathematics most convenient . choosing a basis vector that is in
the same direction as one of the forces is desirable , since that force would then have only
one non-zero component . orthogonal force vectors can be three-dimensional with the third
component being at right-angles to the other two .

e question: what can orthogonal forces be when there are three components with two at right
angles to each other ?

e predictions: naive and conditioning: “no effect on the magnitude or direction”, start and
length: “no”, triple power: “three-dimensional”.

e ground truth:”three-dimensional”

Here we see that the “triple power” model has an advantage in small sized answers. However, when
depending completely on the start and the length prediction, we get the same wrong answer, just must
shorter. Hence our chance for good F'1 score drop with the “start and length” model.

Example 2 - length prediction ruins the final answer:

e context:a resurgence came in the late 19th century , with the scramble for africa and major
additions in asia and the middle east . the british spirit of imperialism was expressed
by joseph chamberlain and lord _rosebury_ , and implemented in africa by cecil rhodes
. the _pseudo-sciences_ of social darwinism and theories of race formed an ideological
underpinning during this time . other influential spokesmen included lord cromer , lord
curzon , general _kitchner_, lord milner , and the writer rudyard kipling . the british empire
was the largest empire that the world has ever seen both in terms of landmass and population
. its power , both military and economic , remained unmatched .

e question: in which continent besides asia were major gains made by the british empire in
the late 19th century ?

e predictions: naive: EMPTY, conditioning: “asia and the middle east”, start and length and
triple power: “africa”.

e ground truth: “middle east”

Here we see that the naive model predict the start position after the end position, resulting in an empty
string. In addition, it is not suprizing (based on the length histogram) that the models that use the
length prediction would tend to predict short answer. Apparently here, the attention-aware context
gave larger weight to possible locations, and together with a condition for a single word answer,
“africa” was the most possible answer for the latter two models. We also see here that predicting
long answers can be better than predicting short ones in terms of the F1 score: even if the start / end
position were wrong, limiting ourselves to short answers decreases the chance for a positive F1. We
remark here that we can also see this phenomenon in Table 1: the difference between the conditioning
model (our best model) and the “triple power” model is larger in the F1 score.

4.2 Model details:

In all the models, we used a learning rate of 0.001, dropout of 0.15, batch size of 100 and our hidden
size d is 200. Our models trained on ~ 15k examples from the training set.

5 Conclusion

In total, we have seen that predicting the length of the answer didn’t improve our model, and even
worsen it when relying on it too much (start-and-len model). In retrospect, even for a human reader,
predicting the length of the answer in a reading comprehension task can be a complex task: we can
probably say if the answer would be short / long, but in order to predict an exact number we would
most likely first find the answer, and then count it length. The most significant improvements to our
model baseline came from the modeling layer. We’ve also see that studying our models performance
based on the location of the answer mimicked the performance on the whole DEV set, which shows
that our models are flexible. As future improvements, adding one more BiLSTM layer to the modeling
layer would most likely boost our models performances (it was omitted in our implementation due to
running time considerations).

remark: we treated the prediction of the length distribution the same as the start and end location
prediction: however, conceptually they differ and predicting that the length is 7 doesn’t necessarily
rely on the ¢-th context word. Our current architecture forces a connection between the two, which
might explain the poor results we obtained. A better architecture would produce a length prediction
that depends on all the outputs of the model layer together - e.g. by adding a NN layer that takes

as an input the sum of these vectors, and output a single vector. Unfortunately, understanding this
flaw in our models was very close to the due date on the project, and training the better architecture
couldn’t have been completed by the due date for this project.

Acknowledgments

I would like to thank the CS-224n staff for their guidance and help though the course and this project.

6 References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[2] Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur Parikh, Dipanjan Das, Jonathan Berant.Learning
Recurrent Span Representations for Extractive Question Answering. arXiv preprint arXiv:1611.01436, 2017.

[3] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051, 2017.

[4] Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. End-to-end answer chunk
extraction and ranking for reading comprehension. arXiv preprint arXiv:1610.09996, 2016.

