A Hybrid Deep Learning System for
Machine Comprehension

Gang Wu
Stanford Center for Professional Development
Stanford, CA 94305
gangwul@stanford.edu

Abstract

In this paper, a hybrid deep learning system for the machine comprehension task
is presented. Particularly, I have combined the state-of-art bi-directional attention
and self-attention mechanisms in to my model. In addition, different practical
techniques, such as more accurate span prediction, adding extra input features
etc., are applied in order to further reduce memory usage, help speedup runtime
and boost performance. Experiments based on the SQuAD is performed on the
proposed model. The F1 score 74.397 and EM score 64.418 is achieved using a
single model on the test leader board.

1 Introduction

Machine comprehension is the ability for the machine to read text and then answer questions related
to the text. It is a challenging topic while has become a very hot research field nowadays, due to the
recent breakthrough in deep learning neural networks [1]-[6].

Recently, techniques based on the idea of attention has shown large performance improvement on
the machine comprehension systems. The basic idea of attention is to make the system focus on a
particular part of the context during the decoding process. Therefore, it can overcome the bottleneck
issue encountered on the recurrent neural network [2]. In [2], the authors have proposed an enhanced
attention scheme, which makes the attention to flow both ways: from question to context and from
context to question. In [3], the authors have proposed a self-attention scheme which makes the
content attends to itself. In [6], the authors show that machine comprehension can be done by just
applying attention techniques without using recurrent neural network (RNN), as RNN is not able to
be computed in parallel and therefore has a longer runtime.

In addition to different attention schemes, various other approaches have been proposed to improve
the machine comprehension system. In [5], the authors show the performance can be greatly im-
proved by adding extra input features such as exact match or POS. In [4], the authors have proposed
an answer pointer network to better predict the starting and ending probabilistic distribution of the
answer.

In this paper, I combined the state-of-art attention schemes in my machine comprehension system.
I also added practical techniques to improve the performance and reduce the memory usage and
runtime of the model. Experiments are performed using SQuAD[1] and the final results are evaluated
on the test leaderboard. Detailed error analysis is also done on the proposed model.

2 Problem Definition

I formally define the machine comprehension problem in this section. The input to the machine com-
prehension problem is a sequence of context words denoted by ¢ = {c1, ¢a, .., ¢, } and a sequence



of question words denoted by q = {q1,¢2,...,¢m }. Given the input, the machine comprehen-
sion problem outputs a pair of starting and ending position denoted by {ps, p. } with the constraint
1 < ps < pe < n. The segments of context words within this starting and ending position will
indicate the answer to the question.

3 The Proposed Hybrid Model

In this section, I present the proposed hybrid deep learning system in more details. An overview of
the proposed hybrid model is shown in Fig. 1.

Pr(estzz:’zon « Start Softmax End Softmax
biRNN
Decoder
[vi;a1],...,[vN;aN] € = v tanh(Wiv; + Wav)) € R
~ o' = softmax(e’) € RY
Self t N
Attention ‘ = Jz_:l"‘;”f’ W
(context_len X 8d)
C2Q Attention: bi = [ci; ai;¢i 0 ai; i 0 €] Q2C Attention:
ai=softmax(5;‘:) ‘ i y Wiy &g 13 ~ m,:mjnxs.]elk
F B = softmax(m)
BiDAF - ;
i = tg; €R’ L ,
a §a1¢b ~ S = wi,[ci;q55 60 g ‘ °'=‘>:lﬁ-¢-€"*
biRNN (question| len X 2d) (context
Encoder

PreProcess ‘

Figure 1: Overview of the proposed model.

3.1 Pre-process

Besides the basic pre-process used in the baseline model, a special pre-process method is added in
order to implement the “Exact Match” idea in DrQA[S]. Particularly, during the pre-process stage,
I extracted the three binary feature indicating whether the context word can exactly match to one
of the question word in either its original, lower-case or lamma form. The extracted features are
dumped out as extra train/dev.feature files, which will later be load in during the training and then
concatenated with the context word embedding.

3.2 Bi-RNN Encoder

The purpose of the Bi-RNN encoder layer is to make the question / context embedding more “context
aware”. In addition, to make the context to be depended on the question, the baseline model shares
the RNN weight between the question RNN and context RNN. To further enhance this, I used the
final state of the question RNN as the initial state of the context RNN.



3.3 Bi-Directional Attention

The idea of BiDAF is to make the attention flow both ways: from the context to the question and
from the question to the context [2]. After calculating the similarity matrix, the rest of the BiDAF
implementation is quite straightforward. I use the BiDAF to replace the basic attention layer in the
baseline model.

3.4 Self-Attention

Following the idea of R-Net [3], a self-attention layer is added after the bi-directional attention layer.
To reduce the memory usage, I use the multiplicative attention instead of the addictive attention. As
addictive attention consumes a lot more memory. Also, an extra normalization dividend is added
based on the idea in [6].

3.5 Bi-RNN Decoder

After self-attention, a bi-directional RNN layer is added similar to [2][3].

3.6 Span Predictor

Instead of taking argmax as the baseline model, I implemented better span predictor to limit the
answer span to be the one giving the best p[i]*p[j] within 10 words.

4 Implementation Details

In this section, I will present more implementation details about the proposed machine comprehen-
sion system. Particularly, I will discuss different practical techniques I used to reduce memory usage
and runtime in Section 4.1 and Section 4.2. In addition, I will discuss the strategies I used to improve
the system performance in Section 4.3.

4.1 Reduce Memory Usage

Neural network based machine comprehension system tend to have heavy memory usage. With
only 8GB memory of Nvidia M60, it is very easy to run out of memory. Besides using multiplicative
attention to save memory, as mentioned in Section 3.4, I listed below of the other practical techniques
that I have used to reduce the memory usage:

e Reduce context length: Based on the statistics of the input data, a majority of the contexts
is within 400 words. Therefore, a lot of memory can be saved by simply ignoring the few
outliers and just use 400 as the context length.

e Reduce batch size: It can help to fit the bigger model, but it also affects the training speed.
Therefore, I just used the default batch size 100 for most of my experiments.

e Reduce hidden layer size: I reduced the hidden layer size to 75, as I did not see major
performance degradation by using a smaller hidden layer size.

e Use Nvidia K80: Instead of M60, K80 has 12GB memory. However, since this is an older
generation GPU, the training process takes longer than Nvidia M60.

e Use multiple GPUs: With the interface of Tensorflow, I easily mapped different compo-
nents of my model into different GPUs. This enables me to build a model with both BiDAF
and self-attention without reducing the batch size or hidden layer size.

4.2 Speedup Training Time

Initial baseline model takes about 5 hr to train. However, with the increasing model size, the train-
ing time can easily increase to 12 hr or even more than 24 hr. In order to reduce the experiment
turnaround time, it is very critical to improve the training time. Here I listed few techniques I used
for the training time improvement:



e Use CudnnRNN: CudnnRNN is a different implementation of RNN in tensorflow. Since it
is directly optimized based on Nvidia GPU architecture, it has a much faster runtime and a
smaller memory usage compared with traditional RNN implementation. However, a major
drawback I find is that the weights trained by CudnnRNN is not directly loadable into the
system without a GPU. Even though Tensorflow has listed few APIs (e.g. CudnnCompati-
bleLSTMCell, CudnnLSTM Saveable) which supposed to help loading back the parameter
into a regular RNN, but the lacking of documentation makes it very difficult to use. In order
to submit my results to dev / test leaderboard, I used regular RNN for the final training.

e Use multiple GPU and increase the batch size: By mapping my model into two GPUs, I'm
able to increase my batch size to 120 or even 150 during some experiments.

4.3 Performance Boost

Apart from having good machine comprehension model, some small tweaks can be very helpful to
further improve the performance:

o Use glove840B300d: The default glove6B100d setting is trained based on a smaller data set
and therefore can suffer from the out-of-vocabulary words. Thus, I used glove840B300d
Common Crawl as the word embedding database during my training.

e Apply dropout and regularization: dropout and regularization help reducing overfitting in
different ways: dropout randomly zero-out activations during the training and regulariza-
tion restricts all the weights to be small. Since dropout are inserted in many places of my
model, setting a large dropout value could zero-out too many activations too early during
the training process. In my model, I applied both dropout and regularization.

e Use LSTM: I use LSTM RNN instead of the default GRU in my model and it usually gives
better performance. However, LSTM also takes longer compile time and consumes more
memory.

e Apply answer pointer network: I implemented the answer pointer network based on the
idea in [4]. The initial hidden state I used for predicting the starting point is based on
the discerption in [3]. However, this more complicated answer pointer network gives very
similar performance compared with just using a simple fully-connected layer during my
experiment. Therefore, a fully-connected layer is used in my final model to predict the
probabilistic distribution of the starting and ending point.

5 Experimental Results

The proposed hybrid model is evaluated using SQuAD [1]. I use the AdaDelta optimizer [7]. More
detailed parameters configuration is presented in Table 1. The training is performed using two M60
GPUs on the Azure platform. Particularly, the RNN Encoder, BiDAF, self-attention is mapped into
one GPU. RNN Decoder and the rest of the model is mapped into another GPU.

Parameter Value
learning rate 1.0
p 0.95
€ le-6
dropout 0.15
regularization le-5
batch size 100
hidden size 75
context len 400
embedding size | 300

Table 1: Parameter configuration of the proposed model.



Exact Match F1

Dev Test Dev Test

BiDAF [2] 67.7 68.0 77.3 77.3

R-Net [3] - 68.4 - 77.5

DrQA [5] 69.5 78.8 70.0 79.0
Ours 64.437 64.418 | 74.744 74.397

Table 2: Performance comparision of various models.

DevEM Dev F1
baseline 29.47 39.72
with self attention + biRNN decoder 47.90 62.53
with Bi-directional attention 50.11 64.41
with LSTM + span prediction 53.05 68.10
with glove840B300d 54.34 68.90
with regularization 54.35 69.30

Table 3: Comparing the performance impact of adding different components.

The proposed model has achieved EM score of 64.418 and F1 score of 74.397 with a single model on
the test leaderborad. The convergence of the EM and F1 score is shown in Figure 2. In addition, the

performance comparision between my model and several state-of-art models is presented in Table
2.

dev/EM dev/F1

Figure 2: Convergence of EM and F1 score on dev set.

In Table 3, I compare the performance impact after adding different components and applying dif-
ferent techniques. Initially, the F1 score is 39.72 in the baseline mode. I get a huge performance
boost and reached F1 score of 62.53 after implementing the self-attention and adding bi-directional
RNN decoder. Another big performance improvement happens after replacing GRU with LSTM
and adding the better span prediction, which reached F1 score of 68.10.

6 Error Analysis

6.1 Incorrect Boundaries

A common type of miss prediction is the miss alignment of the boundaries, i.e. the predicted an-
swer contains more words than needed or having not enough words. A better layer to generate the
probabilistic distribution of the starting and ending position might be helpful in this case.

e Context: To remedy the causes of the fire, changes were made in the Block II spacecraft
and operational procedures, the most important of which were use of a nitrogen/oxygen
mixture instead of pure oxygen before and during launch, and removal of flammable cabin



and space suit materials. The Block II design already called for replacement of the Block I
plug-type hatch cover with a quick-release, outward opening door. NASA discontinued the
manned Block I program, using the Block I spacecraft only for unmanned Saturn V flights.
Crew members would also exclusively wear modified, fire-resistant Block II space suits,
and would be designated by the Block II titles, regardless of whether a LM was present on
the flight or not.

e Question: What type of materials inside the cabin were removed to help prevent more fire
hazards in the future?

e Prediction: removal of flammable cabin and space suit materials

e Answer: flammable cabin and space suit materials

The following is a clear example that the span selection algorithm is not doing a good job, given
the correct probabilistic distribution of each word. A simple improvement could be making the
algorithm to choose a shorter answer give two answers which have the same probabilistic results.

e Context: A job where there are many workers willing to work a large amount of time (high
supply) competing for a job that few require (low demand) will result in a low wage for that
job. This is because competition between workers drives down the wage. An example of
this would be jobs such as dish-washing or customer service. Competition amongst workers
tends to drive down wages due to the expendable nature of the worker in relation to his or
her particular job. A job where there are few able or willing workers (low supply), but a
large need for the positions (high demand), will result in high wages for that job. This is
because competition between employers for employees will drive up the wage. Examples
of this would include jobs that require highly developed skills, rare abilities, or a high level
of risk. Competition amongst employers tends to drive up wages due to the nature of the
job, since there is a relative shortage of workers for the particular position. Professional and
labor organizations may limit the supply of workers which results in higher demand and
greater incomes for members. Members may also receive higher wages through collective
bargaining, political influence, or corruption.

e Question: What is the potential earnings for a job where there are few skilled workers but
many available positions?

e Prediction: high demand), will result in high wages

e Answer: high wages

6.2 Missing Question Information

In this example, part of the question ignored by the model and therefore a wrong answer is generated.
This shows the model needs better encoding / more attention to the question.

e Context: The success of the first two landings allowed the remaining missions to be crewed
with a single veteran as Commander, with two rookies. Apollo 13 launched Lovell, Jack
Swigert, and Fred Haise in April 1970, headed for the Fra Mauro formation. But two days
out, a liquid oxygen tank exploded, disabling the Service Module and forcing the crew to
use the LM as a “life boat” to return to Earth. Another NASA review board was convened
to determine the cause, which turned out to be a combination of damage of the tank in
the factory, and a subcontractor not making a tank component according to updated design
specifications. Apollo was grounded again, for the remainder of 1970 while the oxygen
tank was redesigned and an extra one was added.

e Question: What happened to the Apollo program in for the rest of 1970 after the incident
regarding Apollo 13?

e Prediction: oxygen tank was redesigned and an extra one was added

e Answer: grounded

Similarily, in the following example, the part “continent” is not well understood in the model and
therefore a wrong answer is generated.



e Context: A resurgence came in the late 19th century, with the Scramble for Africa and
major additions in Asia and the Middle East. The British spirit of imperialism was ex-
pressed by Joseph Chamberlain and Lord Rosebury, and implemented in Africa by Cecil
Rhodes. The pseudo-sciences of Social Darwinism and theories of race formed an ideo-
logical underpinning during this time. Other influential spokesmen included Lord Cromer,
Lord Curzon, General Kitchner, Lord Milner, and the writer Rudyard Kipling. The British
Empire was the largest Empire that the world has ever seen both in terms of landmass and
population. Its power, both military and economic, remained unmatched.

e Question: In which continent besides Asia were major gains made by the British Empire
in the late 19th century ?

e Prediction: Middle East
e Answer: Africa

6.3 Out of Vocabulary Words

The quesiton containts incorrect words (which is out of vocabulary) and lead to wrong prediction of
the model. Implement character level embedding might be able to help on this issue.

e Context: 20th Century Fox, Lionsgate, Paramount Pictures, Universal Studios and Walt
Disney Studios paid for movie trailers to be aired during the Super Bowl. Fox paid f
or Deadpool, X-Men: Apocalypse, Independence Day: Resurgence and Eddie the Eagle,
Lionsgate paid for Gods of Egypt, Paramount paid for Teenage Mutant Ninja Turtles: Out
of the Shadows and 10 Cloverfield Lane, Universal paid for The Secret Life of Pets and the
debut trailer for Jason Bourne and Disney paid for Captain America: Civil War, The Jungle
Book and Alice Through the Looking Glass.

e Question: Paramount paid fo, 10 Cloverfield Lane and which other film trailer to be aired
during the game?

e Prediction: the Super Bowl

e Answer: Teenage Mutant Ninja Turtles: Out of the Shadows

7 Conclustion

A hybrid deep learning system for the machine comprehension task is presented in this paper.
The proposed system combines the advanced machine comprehension architectures such as bi-
directional attention and self-attention. In addition, various techniques are explored and imple-
mented to improve the performance, memory usage and runtime of the model. The proposed system
is evaluated on SQuAD and achieves competitive results compared with the state-of-art models.

References

[1] Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. “Squad: 100,000+ questions for
machine comprehension of text.” arXiv preprint arXiv:1606.05250 (2016).

[2] Seo, Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. “Bidirectional attention flow
for machine comprehension.” arXiv preprint arXiv:1611.01603 (2016).

[3] Wang, Wenhui, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. “Gated self-matching networks for
reading comprehension and question answering.” In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 189-198. 2017.

[4] Wang, Shuohang, and Jing Jiang. “Machine comprehension using match-Istm and answer pointer.” arXiv
preprint arXiv:1608.07905 (2016).

[5] Chen, Dangi, Adam Fisch, Jason Weston, and Antoine Bordes. “Reading wikipedia to answer open-domain
questions.” arXiv preprint arXiv:1704.00051 (2017).

[6] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, ukasz
Kaiser, and Illia Polosukhin. “Attention is all you need.” In Advances in Neural Information Processing
Systems, pp. 6000-6010. 2017.

[7] Matthew D Zeiler. “Adadelta: an adaptive learning rate method.” arXiv preprint arXiv:1212.5701, 2012.



