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Abstract

Machine Comprehension (MC) and Question answering (QA) are difficult Natu-
ral Language Processing (NLP) task which have attracted ever increasing inter-
est in recent years with the release of the Stanford Question Answering Dataset
(SQuAD) [3]. This paper presents an end-to-end neural architecture for the QA
problem on SQuAD, adopting techniques of Coattention Encoder by Xiong et al.
[1], Answer Pointer Network by Wang et al. [2], and the idea of smart span. The
architecture consists of a coattention encoder that encodes the passage and ques-
tion words into mutually-aware representations, and an answer pointer decoder
that decodes the encoded representation and predicts the answer span. With the
smart span technique, the best single model achieves an F1 score of 71.42 and EM
score of 59.62 on SQuUAD development set.

1 Introduction

The question answering task is our setting is that given a question/query and a context/passage, we
are required to predict an answer using an excerpt from the given passage. This kind of problems
have seen vast real world applications such as online customer service, knowledge base querying and
so on. The SQuAD dataset was built for exactly such problems and numerous deep neural network
models have been proposed for tackling it. The dataset consists of 100k context-question-answer
triples collected from Wikipedia articles. The goal is to construct a model to predict the start and
end position of the answer excerpt since the answer excerpt must come from the original context.

Like in many other NLP problems, the key to a successful model is to have some attention mech-
anism to focus the question on a particular portion of the context and vice versa. There have been
many high-performance attention mechanisms proposed for the SQuAD, and our model adopts the
Coattention Encoder by Xiong et al. [1]. The pointer technique is similar to attention in that it directs
the attention of the model to some specific locations of the words, filtering irrelevant information
and producing better performance. The decoder part of the proposed model is a modified version
of the Answer pointer architecture proposed in [2]. Finally, after analyzing the data examples, a
technique to produce the answer span, called ”smart span” is proposed to better predict the answer
location.

The rest of the paper is organized as follows: Section 2 will introduce the background of the problem
and related works; Section 3 presents the architecture of the proposed model; Section 4 presents the
experiment details, the results and error analysis; Section 5 gives a short conclusion and reflection,
and some future ideas for improvement.



2 Related Work

2.1 Stanford Question Answering Dataset (SQuAD)

The SQuAD dataset was proposed in 2016 by Rajpurkar et al. [3]. The dataset is composed of
100k context-question-answer triples. Among all the examples, about 80k are taken as training
set, 10k as development set and the rest 10k examples are withheld from the public as the test set.
All the examples come from Wikipedia articles and the answers are collected by crowd-sourcing.
The answers to the questions are required to be excerpts from the given context texts. Despite this
constraint, coming up the answers require rigorous logical reasoning and understanding of the texts.
Since different people have different understanding of a given text, average human performance
on the dataset has an F1 score of “only” 86.8. In the original SQuAD paper, the baseline models
proposed by the author used a sliding window approach and logistic regression that achieved a 51
F1 score. Below is an example context-question-answer entry taken from the dataset:

e CONTEXT:

"The crew of apollo 8 sent the first live televised pictures of the earth and the moon back
to earth, and read from the creation story in the book of genesis, on christmas eve, 1968.
an estimated one-quarter of the population of the world saw either live or delayed the
christmas eve transmission during the ninth orbit of the moon. the mission and christmas
provided an inspiring end to 1968, which had been a troubled year for the us, marked by
vietnam war protests, race riots, and the assassinations of civil rights leader martin luther
king, jr., and senator robert f. kennedy.”

e QUESTION:
How much of the population of earth ended up seeing the images of the earth and the
moon?

e ANSWER:
One-quarter

2.2 GloVe Word Embeddings

GloVe by Pennington et al. [4] is an unsupervised learning algorithm to encode words into dense
vector representations. The GloVe embeddings are obtained by training a log-bilinear model with a
weighted least-squares objective to learn the global word-word co-occurrence statistics from huge
natural language corpus. The resulting word vectors accurately capture the co-occurrence relation-
ship in human languages, and are commonly used in NLP problems as a substitute to the sparse
word occurrence representation. Our project uses GloVe embeddings to preprocess the data texts
before feeding them into the model.

2.3 Bidirectional LSTM

Long Short Term Memory is an advanced type of Recurrent Neural Network such that it uses mem-
ory blocks to store information and different types of gates to control information flow. This structure
allows LSTM to enhance information flow over long period of time and avoid the vanishing gradient
problem of RNN models.

Bidirectional LSTM further improves upon vanilla LSTM by processing inputs in both forward and
backward direction, allowing the hidden representations to encompass past and future contextual
information. It is the building block of the Coattention Encoder presented in Section 3.

2.4 Dynamic Coattention Network

The Dynamic Coattention Network (DCN) proposed by Xiong et al. [1] in 2016 is a successful
model for the SQuUAD dataset with an F1 score of 75.9 by a single DCN model. It consists of
the context and question encoder, coattention encoder (which is adopted by our model), and a dy-
namic pointer decoder. Specifically, the coattention encoder encapsulates the interaction between
the encoded context and question representations, which is the major contribution of this model as
it invented an effective attention mechanism. The dynamic pointer encoder uses a highway maxout



network to iteratively predict start index and end index. This iterative process improves the perfor-
mance by making use of the previous prediction to make new prediction and hence helps escaping
from local maxima.

2.5 Pointer Net

The pointer net introduced in [2] allows the prediction of end position conditioning on the start
position. The idea of ”pointer” is similar to that of attention in that it enables the model to look at
each location in the context to pick a best one.

3 Methods

3.1 Context and Question Encoders

After preprocessing, both context text and question text are represented using GloVe word embed-
ding sequences. Then they are fed into a 1-layer Bidirectional LSTM shared between the context
and the question. The bidirectional LSTM produces a sequence of forward hidden states and back-
ward hidden states, which are concatenated to form the context hidden states and the question hidden
states. This process can be represented by the equations below. Let [x1, ...x,,] and [y1, ...y ] repre-
sents context and question word embedding sequences, then the encoded representations for context
D and question @ are:

[&1,¢el, ..., &, 80 = iLSTM (21, ...70))
(1, Qs s Gy @) = ILST M ([y1, ---Yim])
D = [ByEl; ontn; B
Q=[G;a, s &n; T

3.2 Coattention Encoder

After obtaining the context and question encoding D and (), we follow [1] to construct the coatten-
tion encoder layer. First we pass @ through a linear layer: Q' = tanh(W (@ Q + b(?)). Then we
use ' and D to compute the affinity matrx:

L = DTQ/

The affinity is normalized with softmax row-wise and column-wise to obtain the attention weights
for context and question encodings:

A9 = softmaz(L)

AP = softmax(LT)

Then, we calculate the attention summaries for the question C? and the context C'”. One thing to
note is that the attention summaries for context C'” involves both the question encoding Q' as well
as C'% and they are concatenated before scaled by the weight matrix AP,

C? = DA
CP =[Q;c9AP

Finally, the question-aware context vectors C” and the context encoding D are concatenated to-
gether to be passed into a bidirectional LSTM to fuse the temporal information and obtain the final
output of the coattention encoder, U:

U = biLSTM([D; CP))
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Figure 1: The Coattention Encoder

3.3 Answer Pointer

The answer pointer network in our model borrows its idea from [2], but is slightly different. In our
model, the pointer network is an RNN running two time steps. It obtains its initial hidden state by
passing the question encoding @ through an LSTM and taking the final hidden state:

ho = LSTM(Q)

As the first time step, we use this initial hidden state h to attend to the coattention output U using
multiplicative attention with weight matrix W and generate the probability distribution for the start
location 3, and an attention output a, weighted by f.

Bs =UWUYhg
as = BTU

On the second time step, a GRU cell will run for one time step with previous hidden state k¢ and the
input as, producing the current hidden state h;. h; will again attend to U to produce the probability
distribution for the end position fe.

]’Ll = GRU(ho,as)
Be=UWYRy

3.4 Output layer and Smart Span

The baseline model provided by the course uses two independent softmax layer applied on the
attention output to produce start and end positions. This apparently has several problems. First,
since we are predicting the span of the answer, the start position should be no later than the end
position, i.e. ps; < p.. However, the baseline approach disregards this fact and simply output empty
string if the end position falls before the start. Another problem is that usually context texts can be
as long as a few hundred words, while the answers are usually very short. By plotting the lengths of
answers we can see that the vase majority of the answers span no more than 20 words. Therefore, to
address these two problems we introduce a smart span technique. The smart span restricts that the
end positions must be no earlier than the start position, as well as no more than 20 words further.
Respecting the smart span constraints, we can find the start and end positions from the probability
distributions 3, and 3. obtained from answer pointer.
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Figure 2: Answer length statistics of SQUAD

4 Experiments

4.1 Implementation details

All the words use GloVe embeddings of length 100. Different sizes of GloVe vectors (50, 100
and 200) have been experimented but not much differences have been observed. The bidirectional
LSTM networks use a hidden size of 200, and batch size during training is 100. To avoid exploding
gradient problem, all gradients are clipped at the maximum norm of 5. We use the Adam optimizer
with a learning rate of 0.001 for training, and to regularize the model and prevent overfitting,
dropout [5] is applied after each RNN network. Figure 3 shows the effect of different value of
dropout, and we do observe that a larger dropout will result in a slightly slower training process,
but increasing the dropout from 0.15 (as in the baseline model) to 0.25 boosts the final F1 score by
1.3%. The final model took about 15 epoch of training to reach a converged performance.
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Figure 3: The train loss and Dev F1 scores obtained by dropout of 0.15 (orange) and 0.25 (green).



4.2 Results

The final model, consisting of context and question encoder, coattention encoder, answer pointer
and smart span, achieved an F1 score of 71.42 and EM of 59.62 on the SQuAD development set.
Different parts of the model can be considered as building blocks and we conducted experiments to
compare the performance of each individual part. Below is a table showing different variants of the
model we have experimented and their corresponding performance.

Due to the technical issues with CodalLab, we were not able to submit to the test set for evaluation,
so only the development set results are presented.

Table 1: Model Performance Comparison (statistics on dev set)
Model F1 score EM score
Baseline 43 32
Coattention 67.16 54.21
Coattention + Answer Pointer 69.18 57.38
Coattention + Answer Pointer + Smart Span | 71.42 59.62
(our model)

4.3 Error Analysis

The coattention mechanism is the major component of the model, and it is useful to see what kinds
of errors are made by the model. After careful observation, most of the errors can be grouped
into two categories: (1) Wrong/imprecise prediction of the answer span; (2) Misunderstanding of
the semantics. In the first case, the model “understands” the question and passage but locates the
answer span incorrectly. This type of errors is roughly estimated to account for more than 80% of
the errors by looking into the prediction results. Here we provide an example of such error:

e CONTEXT:

”Prime numbers have influenced many artists and writers . the french composer olivier
messiaen used prime numbers to create ametrical music through ” natural phenomena”
. in works such as la nativit du seigneur (1935) and quatre tudes de rythme (194950) ,
he simultaneously employs motifs with lengths given by different prime numbers to create
unpredictable rhythms : the primes 41, 43, 47 and 53 appear in the third tude, neumes ry-
thmiques” . according to messiaen this way of composing was ” inspired by the movements
of nature , movements of free and unequal durations ”

e QUESTION:
In which etude of neumes rythmiques do the primes 41 , 43 , 47 and 53 appear in ?

e Predicted Answer: ”third”
e True Answer: “the third tude”

The second kind of error is due to the coattention mechanism fails to direct the attention to the
correct position in the context. Upon inspection, it is realized that despite the erroneous prediction,
the model is able to provide an answer that has the same “part of speech” label as the true one, which
can be demonstrated in the example below. This is very likely due to that the data is preprocessed
using the GloVe embeddings that capture such structure.

e CONTEXT:
”Not only are all the major british architects of the last four hundred years represented,
but many european (especially italian) and american architects’ drawings are held in the
collection. the riba’s holdings of over 330 drawings by andrea palladio are the largest in
the world, other europeans well represented are jacques gentilhatre and antonio visentini.
british architects whose drawings, and in some cases models of their buildings, in the col-
lection, include: inigo jones, sir christopher wren, sir john vanbrugh, nicholas hawksmoor,
william kent, james gibbs, robert adam, sir william chambers, james wyatt, henry holland,



Jjohn nash, sir john soane, sir charles barry, charles robert cockerell, augustus welby north-
more pugin, sir george gilbert scott, john loughborough pearson, george edmund street,
richard norman shaw, alfred waterhouse, sir edwin lutyens, charles rennie mackintosh,
charles holden, frank hoar, lord richard rogers, lord norman foster, sir nicholas grimshaw,
zaha hadid and alick horsnell.”

e QUESTION:
Which architect , famous for designing london ’s st. paul cathedral , is represented in the
riba collection?

e Predicted Answer: “andrea palladio”
e True Answer: “sir christopher wren”

Another observation is that when we implemented coattention and answer pointer along (without the
smart span), the predicted end positions are still often seen to be very far away from the start position,
sometimes even before, which is completely incorrect. This suggests that the answer pointer is not
optimal for conditioning the end positions on start positions. One hypothesis is that the way we
produce the initial hidden state of the answer pointer RNN is not optimal. Also, we used a simple
multiplicative attention mechanism to produce the probability distribution of start and end positions,
which does not have enough capacity for this task.

5 Conclusion

The proposed coattention model enhanced by answer pointer and smart span for the Question An-
swering task on SQuUAD obtains an F1 score of 71.42 and EM score of 59.62 on the development
set. However, since this project is done by the author individually, many ideas were not attempted
due to limited time and human resources. One possible extension to the model is to develop a more
sophisticated answer pointer network for predicting the start and end answer span positions, as the
one in [2]. In addition, different attention mechanism such as the Bidirectional Attention Flow [6]
could be implemented and integrated with the coattention encoder to produce better attention repre-
sentation. Finally, an ensemble of many single models in practice always improves the performance,
and therefore could be implemented as a future extension.
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